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This group G is the group considered in [11], 6.2. Let 4 = {a;: i 0). Then 4
is an abelian normal subgroup of G, the group G/4 is infinite cyclic and

A<L(@)<m(O) <5< LO),

see [11], 6.2. By 3.4 of [10] we have (v, ) = il and the same inductive proof on / yields
that (v, W) = ilr' for all re Z and /> 0. Thus L(G)n{g) = {1} and 4 = L(G).
Also by [11], 6.2 the group G is hypocentral of central depth at most w and G is not
nilpotent so the central depth is exactly w. Finally the claim concerning 'G follows
easily.
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The structure of compacta satisfying dim(Xx X)<2 dim X
by

Stanislaw Spiez (Warszawa)

Dedicated to Professor Yukihiro Kodama
on his Sixtieth Birthday

Abstract. Let X be a 2-dimensional compactum. In this note we prove that the condition
dim (X'x X)-<4 is satisfied iff any mapping from an arbitrary closed subset 4’ of X into a circle' S
admits an extension X By for some n, where By is a certain 2-dimensional CW-complex defined
in Introduction. As a corollary we obtain that if dim(X x X)< 4, then any mapping X —~R* can be
approximated arbitrarily closely by imbeddings. This together with results of [Kr] and [Sp] shows
that for an m-dimensional compactum X the condition dim(Xx X )<2mis satisfied if and only
if the set of all imbeddings X--~R*™ is dense in the space of all mappings X-R¥, .

Introduction. In this note we prove the case m = 2 of the following

THeorem 1. Let X be an m-dimensional compactum. If dim(XxX) <2m,
then the set E(X, R*™) of all imbeddings X— R* is dense in' the space C(X, R*™)
of all mappings X —R*™. ‘ ‘

The above implication for m > 2 was established in [Sp]. The inverse implication
was proved by J. Krasinkiewicz in [Kr] for all m. Theorem 1 and 2 result of [Kr]
imply the following ‘ " ' ‘ ‘

THEOREM 2. For an m-dimensional compactum X the condition dim(X x X) < 2m
is satisfied if and only if the set E(X, R¥Y is dense in the space C(X, R™™).

The abave result was conjectured by J. Krasinkiewicz (cf [M=R2]). For other
related results the reader is referred to |M-R 1], [K~L], [M--R2], [Kr], [Sp] and [K-K].

The case m = 2 of Theorem | is u consequence of the following main result
of our puper, Tn the statement we necd the following notion. Let Sv T be the one
point union, with the base-point , of the circles § and T. Let @ and b be generators
of the |-homotopy groups 7,(S, %) and 7, (T, %), respectively. By a 2-dimensional
Boltyanskii-Kodama bubble B} we understand the CW-complex obtained by attaching
two 2-cells to §v T by mappings corresponding to the element "b" e n(Sv T, %)
and the commutator [a, b] @ my(S v T, %), respectively. The reason for using this

~ name for B? is that Boltyanskii and Kodama. applied a similar CW-complex in

Ll
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their constructions of a 2-dimensional compactum X such that dim(Xx X) <4
(see |Bo] and [Kol).

TuroreMm 3. Let X be a (2-dimensional) compactum. Then dim(Xx X) <4
if and only if for an arbitrary closed subset A of X any mapping A—S admits an
extension X—BZ for some n.

In the proof of the case m = 2 of Theorem 1 an essential role is played by the
fact that two linked 1-spheres in §° = 8D* bound a certain pair of disjoint mem-
branes in the ball D*. This fact, first discovered in [K-L] and further developed
in [M-R], is expressed here in. Proposition (4.8). Combined with (4.8), Theorem 3
implies (see § 4, compare [K-K]) the following corollary conjectured in [Kr]:

COROLLARY 1. Let X be a (2-dimensional) compactum such that dim(X x X) < 4.
Then for an arbitrary closed subset A of X and any mapping f: A—S there exist
mappings

Fi: X»D*x D* and F,: X—D?*xD?

with disjoint images such that

Fi(x) = (f(x), 0) and Fy(x) = (O,f(x))

Jor each x € A. This means that any mapping g: X— D% is transversely trivial in the
sense of [Kr].

Above D? denotes a 2-dimensional disc with the boundary S. By Theorem (2.2)
in [Kr] (compare also [M-R2]. Corollary 1 implies the case m = 2 of Theorem 1.

The strategy of the proof of Theorem 3 and Fundamental Lemma is as follows.
Let A be a closed subset of a 2-dimensional compactum Xandlet g: (X, 4) - (D2, S)
be a mapping such that

(2) the homomorphism H?*(g): HXD? S)~»H*X, A) has the property
H%*g) @ H(g) =0
(observe that (a) holds if dim(Xx X) <4). Then the mapping g is homotopic to
a composition

(X, 4)> (L, L) 5 (D, §), where

(b) H¥g") ® H*(g") = 0, and

(¢) (L,Ly) is a pair of finite polyhedra, dimL < 2.

Now our task is to change the diagram above to the form where Ly =8,
g'|Ly = idg and L has a possibly simple structure; it is important in this simpli-
fication process not to loose property (b). To do so we introduce in § 1 the following
notion.

We say that a mapping f: (L, Ly)— (K, S) is admissible, if for any homo-
morphism k of abelian groups the following condition is satisfied

(H?(f)5*) @ h is trivial iff 5* ® h is trivial ,
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where §*: H'(S)—H?(K, S) is the coboundary homomorphism. Since
(H*(f)o ") @ h = (H*(f) ® id) o (6* ® k)
thus only one implication in the above condition, is essential.

After discussingin § L and § 2 some preliminary results and examples concerning
admissible mappings we prove in § 3 a sequence of lemmas leading to the following
main step of the proof of 2-dimensional case of Main Theorem:

FLJNPAMIEN’I‘AI. Lumma (3.9). Let (L, Lo) be a pair of finite polyhedra such
that dimL = 2. Then any mapping Ly~ 8 can be extended to an admissible mapping
[ (L, L) (K,8) where K has the Jollowing form:

() K is a CW-complex obtained by adjoining 2-cells to a one-point union
SVS(V..vS8 of circles by attaching mappings corresponding to words of the Jorm

IJ'(')U)I)ZIU) for 1 <j<k and

[bi, b;]  for O<i<j<k,

where by is a generator of w,(S, *) and b; is a generator of w(8;, %), for 1 <j< k.
We note that the condition (b) for a mapping

(X,8)- (D% 8),

which is an identity on 8, implics that

(i) m(j) divides (n()))? for cach j,1<j<k.

Using this we prove in § 4 the following

ProPOSITION 1. Let A be a closed subset of a 2-dimensional "compactum X.
Then, a mapping g: (X, A)— (D%, S) satisfies H*g) ® H%(g) = 0 if and only
i gld admits an extension (X, A)— (K, S), where K is a CW-complex satisfying
conditions (i) and (ii) above,

Finally, if 4 is a closed subsct of a compactum X such that dim(Xx X) <4,
then we prove that the assertions of Proposition 1 arc satisfied with k = 1, thereby
completing the process of simplifying the polyhedral structure of the complex K
to the final form B2,

In a similar way as in our paper one can prove a higher dimensional version of
Fundamental Lemma (3.9) and then:

Trmworem 3, Lot X be an m-dimensional compactum. Then, dim(X'xX)<2m
if and only if for an arbitrary closed subset A of X any mapping A-—8""* admits an
extension X -» By for some n, where B is an m-dimensional Boltyanskii-Kodama
bubble.

By an m-dimensional Boltyanskii-Kodama bubble By, where m >3, we under-
stand the m-dimensional CW-complex obtained by attaching one m-cell to the
one-point upion $”~!v I ! of (m~1)-spheres by the mapping corresponding
to the element a"b™ of the group 7. (S"~! v T™~*, »), where a and b are generators
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of the groups 7, (S™ "%, #) and =, ,(T™", ), respectively. (We use multiplicative
notation for the higher homotopy groups also.)

The case m > 3 of Theorem 1 follows from Theorem 3'. We will not give details
of the proof, since they are analogous to the ones discussed before in the case m = 2.
An alternative proof for the case m > 3 was in given [Sp] using the Whitney lemma.

Using the methods of this paper one can prove the following characterization
of compacta with the property which occures in the famous construction of
Pontrjagin [Po].

THEOREM 4. Let X and Y be compacta such that dimX = m and dimY = m’,
Then, dim(Xx Y) <m-+m' if and only if for arbitrary closed subsets A, B of X, Y,
respectively, any mappings

A->8S""' and B-oS™?

admit extensions ,
X—PP,:’:;’, and Y"*P;’c'/’, v,

such that the common greatest divisor of I and I' divides the product k-k', | divides
k-r', I' divides k'-r and r-r' = 0.

Above, Py, denotes the CW-complex obtained by attaching three m-cells
to S™~v I™~1 by the mappings corresponding to a*b’, a" and [a, b], respectively.
(If m>2 then the cell corresponding to [a, b] is clearly redundant.)

In this note we will not give the proof of the above theorem, since it is similar
(however slightly more elaborate) to that of Theorem 3. The main step is a version
of Proposition 1 that characterizes the property H™(f) ® H"(g) = 0 of mappings

[ (X, > D", 8™ ") and g: (Y, B)-(D",S""

in terms of extendibility of the mappings f|4 and g|B into certain polyhedra of the
form considered in (3.9) or its higher dimensional analogue.

The paper is concluded with some remarks stated in § 5.

We would like to add that recently (during a visit to Warsaw in the middle of
December 1988) A. N. Dranishnikov has informed that he, E. V. Shchepin and.
D. Repovs have also been working on problems similar to those discussed in the
papers [Kr] and [Sp] (submitted to Fundamenta Mathematicae in early Spring of
1988) and those of the present note.

1. Admissible mappings. By D" we denote the unit n-ball, ie.
D" = {xeR'| ||x||<1}, and by 8"~! we denote the unit (n-1)-sphere, i.c. the
boundary of the ball D",

Let (X, 4) and (Y, B) be pairs of compacta and let

p:4-8""" and ¢q: B-§"1
be (continuous) mappings. Let

P:XAH>OLS and g (% B)- (DS
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extend p and g, respectively. By the convexity of D", the homomorphisms H"(p')
and H'(¢) depend on p and ¢ only. We say that a mapping f: X - Y is admissible
with respect to p and q if the following two conditions are satisfied

(A1) f(A)s B and gof|d = p, and

(A2) for any homomorphism h of abelian groups, the tensor product b ® H"(p)
is trivial if and only if the tensor product & ® H'(g") is trivial.

Observe that the composition of admissible mappings is admissible.

If A = B =S8"""and p, ¢ arc the identities on 8" then f: X— Y which is
admissible with respect to p and g we will simply call admissible with respect to S" 1,
Observe that in this case the conditions (A1) and (A2) are equivalent, respectively,
to the following two conditions

(A3) flA is the identity on §"~!, and

(A4) for any homomorphism k of abelian groups, the tensor product h ® &*
is trivial if and only if the tensor product h ® (6')* is trivial; here 6* and (8")* are
the connecting homomorphisms from H""'($""1) into H'(X,8""%) and
H'(Y,$""), respectively

The following lemmas will be useful.

(1.1) LeMMA. Suppose, for i = 1,2, there are mappings X;—Y; which are
admissible with respect to the mappings p;: A,~ S" ' and q:: B;—»S" 1 Let

pit (Xi, A)~(D",8"7") and  g: (X;, B)) (D", S""1)

extend p; and q,, respectively. Then the homomorphism H"(p\) ® H"(p,) is trivial
if and only if the homomorphism H™(q)) @ H™(q}) is trivial,

(1.2) LemmA. Suppose that S"~ ' XAY, If the mappings f: XY and
g Y= X are both identities on $"™* then they are admissible with respect to S*~1,

(1.3) CorOLLARY. Let X' be obtained from X by adjoining a cell by a homotopically
trivial attaching map 8" —X. Then there exist mappings X— X' and X'—X which are
admissible with respect to any sphere contained in X.

Proof. It is well known and easy to proove that there is a retraction X'~X,
The corollary follows by (1.2).

2. Admissible transformations of 2-dimensional CW-complexes, First let us
introduce some conventions. In the sequel of the paper we fix a copy of the unit
circle and denote it by 8, or by S. Let Sy v...vS, denote the one point union, with
the base point », of the circles S, ..., S, and let a; be a generator of ,(S;, *) for
O0<j<k Il {o,: i1} is any collection of words in the symbols 4y, ..., a then one
can form a 2-dimensional CW-complex whose 1-skeleton is 8o V... VS8, and whose
2-cells {o;: ief} are such that the aitaching map of o, is given by
v em Sy V... VS, %) for each fel We call

P = {ag, .., m; {v;: iel}}
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the presentation of the arising complex K (P) and identify that complex with P often.
Given presentations

P= '{ao, cery Qg Vg ey vp} a’nd Q = {bOB seey bl; Wis e wq}

we say therefore, with some abuse of the language, that f: P— Q is a mapping fixed
on aqy (resp. f: P—Q is an admissible mapping with respect to a, or shortly an
admissible mapping) if a, = b, correspond to the same distinguished circle
S, = K(P)nK(Q) and f: K(P)—~ K(Q) is 2 mapping such that f(x) = x for xS,
(vesp. f: K(P)— K(Q) is an admissible mapping with respect to §y). Similarly, we
sometimes speak about mappings P~ @ which are fixed on a specified set of gene-
rators belonging to {ag, ..., &} {bo, ..., b}

Let us recall (see [M-K-S]) that an elementary Tietze transformation of ihe
presentation

P={ag, .., a; v, ..., 0,}

is one of the following transformations applied to P.

(T.1) If the word w is derivable from vy, ..., v,, then add w fo the words in P.

(T.2) If the word v;, for some 1 < i< p, is derivable from the other words in P,
then delete v; from the words in P.

(T.3) If w is any word in ay, ..., 4;, then adjoin the symbol a to the generators
in P and adjoin the word a™'w to the words in P.

(T.4) If some of the words in P take the form a) *w, for some 0 <j < k, and w is
a word 1 m generators of P other than a;, then delete a; from. the gencrators in P,
delete a7 *w from the words in P and replace a; by w in the remaining words in P.

If in (T.4) we additionally assume that a; # a, then we say that the above
transformations are elementary Tietze transformations fixed on ag.

(2.1) Lemma. If there exists an elementary Tietze transformation from P to Q
which is fixed on aq then there exists an admissible mapping f: P— Q.

Proof. If the given transformation is of type (T.1) or (T.2) then the lemma
follows by (1.3). If it is of type (T.3) then it is fairly easy to construct mappings
f: P—Q (the inclusion) and g: QP (a retraction) which are fixed on a,; thus (1.2)
applies.

Now, assume that for some j and 7, 0 <j< k and 1 € i< p, we have v, = a;tw,
where w is a word in generators in P other than a;, For simplicity we assume that
J=kandi=p. Letv, denote the word obtained from the word v, by replacing a;
by w, for 1 <s<p. Then the presentation

. ”1’1"“13 vl,}

can be obtained from P by a repeated application of the Tietze transformations (1.1)
and (T.2). Namely, first add the words v}, ..., v~ to the words in P and then delete
the words oy, ..., v,.,. Thus there is an admissible mapping P—P'. Observe that

;o )
P = {ao,-.., Ap; Vi, ..
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also there is an admissible mapping (a retraction) P’
P = {a,,..
This finishes the proof of the lemma.

Remark. Observe that, if the given transformation in (2.1) is of type (T.1),
(T.2) or (T.3) then there is a mapping f: P — Q which is admissible with respect to
any a;, 0<j<k.

The following two transformations of P are compositions of the Tietze transfor-
mations (T.1) and (T.2) and thus, by the above remark, they correspond to mappings
of P which are admissible with respect to any a;, 0<j < k.

Proccdure R If v; and v; are two words in P, then replace the word v; by
v, g5~ " or by v tgp R where n is an integer and g is a word in the generators
@y eens @y

Procedure C. Let v; = ¢,9,919, and v; = [g,, g,] be two words in P, where gs
is a word in the generators ay, ..., a, for s € {1, 2, 3, 4}. Then replace the word v, by
v = 41939294

‘We will also need the following transformation of P.

Procedure A. Let g; and g, be a word in the generators ag, ..., a;. Then
adjoin the commutator [g,, g,] to the words in P.

(2.2) Lemma. If a presentation Q is obtained from P by Procedure A, then
there is a mapping P - Q (the inclusion) which is admissible with respect to any a;,
0<j<k.

Proof. We will denote by i: (K(P), S;)—(K(Q), S;) the inclusion map. Observe
that the cohomology group H*(K(Q),S,) contains a direct summand G such that

() G contains the image of the connecting homomorphism (§)*: H(S;)—
—H*K(Q), 8,), and

(i) the homomorphism HZ2(i): H(K(Q),
phically G onto H*(K(P), S;).

The connecting homomorphism is a natural transformation, thus we have
H2(i) o (6'y* = 6%, where &*: H'(S)~H?*K(P),S;) is the connecting homomor-
phism. Since the tensor product commutes with direct sums, we obtain that the con-
dition (A4) of the definition of admissible mappings is satisfied. Thus the inclusion
K(P)— K(Q) is an admissible mapping with respect to any S;, 1<j<k.

The following two examples of mappings of a presentation P will be useful.

(2.3) ExampLE. Suppose a word v, in P has the form w”, where w is a word
in the generators dg, ..., &. If Q is the presentation obtained from P by replacing
the word v; by the word w, then there is a mapping P - Q which is fixed on the set
{ag, ..., ).

(2.4) Examrrg, Let w be a word in the generators &, ..., @. For some
Jo&{l, ..., k}, replace a;, by w in each word in P; additionally, if w is the empty

= P", where P is of the form

tp_1}

-
> @15 D1y euey

S;)—>H*(K(P), S;) maps isomor-
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word, delete a;, from the generators in P. If* @ denotes the resulting presentation,
then there exist a mapping P - @ which is fixed on cach a;, j # Jo.

Now we will give some examples of admissible transformations of 2-dimen-
sional CW-complexes.

(2.5) LEMMaA. Let us consider two presentations

P={a,b; @"b" [a,b]}, Q= {a,b;a'b", [a, 0]}

of 2-dimensional CW-complexes, where k, | and m are nonzero integers,

(a) If I divides k then there exists a mapping P— Q fixed on a,

(b) If1 = (k, m), the greatest common divisor of k and m, then there exists a map-
ping Q—P fixed on a.

Proof. (a) Let k = I-r. First, apply (2.4) to the presentation P; namely, replace b
by b" in each word in P. Next, applying Procedure A, adjoin [a, b] to the words in P
and then delete the word [a, b] applying the Tietze transformation (T.2). Finally,
replace the word a*™" by a'b™ applying Procedure C and (2.3). 1t finishes the proof
of part (a) since to each of the above transformations corresponds a mapping

which is fixed on a.
(b) Let s and £ be integers such that #-k = I+5'm. There is a mapping

0— Q' = {a, b; d'(@b)", [a, ]} .

fixed on a, which can be obtained by using the following sequence of transformations.
First, replace b by a°b* in each word of Q applying (2.4). Then, adjoin the commutator
{a, b] to the words in the resulting presentation and delete the superfluous word
applying the Tietze transformation (T.2).

Observe also that there is a mapping Q' — P fixed on a. Namely; first, replace
the word a'(a°b"y" by the word (a*b™)’ applying Procedure C and then, the last word
by the word ab™ applying (2.3).

By Lemma (2.5), we obtain the following

(2.6) COROLLARY. In notation of (2.5), if (k, m) = (I, m) then there exists a map-
ping P— Q which is admissible with respect to a.

Proof. Let P’ = {a, b; a®™b", [a, b]}. Then use (2.5) and (1.2) to obtain
the desired map as a composition of admissible mappings PP’ Q.

We shall also employ

(2.7y LemMA. Let us consider two presentations

P={a,b; ab’,b" [a,b]}, Q= {a,b; ab’, b, [a, b]}

of 2-dimensional CW-complexes. If (k, m) == (I, m) then there exists a mapping P~ Q
which is admissible with respect to a.
Proof. As in the proof (2.6), it is sufficient to show that there exist fixed
on ¢ mappings @ —P provided / divides k& and P—Q provided [ = (k, m).
The mapping Q- P is easily obtained by substituting b by b in cach word
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i(n Q and then, using (2.3) and applying procedure A and the Tietze transformation
(T.2).

Let I = t-k+s-m. To get P— Q use the following sequence of transformations
of the presentation P. First, replace b by b’ in each word in P. Then, replace the word
"™ by the word b™ applying (2.3). Next, replace the word ab** by the word
ab' = ab"*p*™ applying Procedure R. Finally, adjoin the commutator [a, b] and
apply the Tietze transformation (T.2).

3. Simplifying 2-dimensional CW-complexes by using admissible transfor-
mations. First we will prove the following lemma.

(3.1) LemmA. Let p: Lo—S be a map of a subpolyhedron of a connected com-
pact 2-dimensional polyhedron L. Then there exists a finite 2~ dimensional CW-com-
plex K which has a single 0-cell and whose 1-skeleton contains the circle S, and there
exists a map f: (L, Lo)—~ (K, S) such that

() fiLy = p,

(i) H*(f): H¥K,8)—~H*L,Ly) is an isomorphism.

Proof. We may assume that the map p is simplicial. First let us consider the
polyhedron K’ obtained by attaching L to S by the map p. By g, we denote the
projection of L onto K’'. Observe that the map

g1: (L,Ly)—(K', S)
induces an isomorphism H?(g,) of the cohomology groups.

There is a simply connected 1-dimensional subpolyhedron (a tree) T of K’
which contains all vertices of K’ and all 1-simplexes of S except exactly one. Let K
be the 2-dimensional CW-complex obtained from K’ by shrinking T to a point.
By g, we denote the projection from K’ onto K. Then g,(S) is a circle which we
i dentify with S. The 0-skeleton of K is the base point * = g,(T). Let us note that g,
considered as the map of pairs (K', S)— (K, S), is a homotopy equivalence. Thus
the mapping

f=g93°9:: (L,Lo)—(K,S)
satisfies the condition (ii) of our lemma and the following condition
the maps p and f|Ly: Ly—S are homotopic.
Thus by the Borsuk homotopy extension theorem we may assume that also the con-
dition (i) of the lemma is satisfied.

(3.2) Remark, The map f: LK asserted in (3.1) to exist is admissible with
respect to p and the identity map on S.

Now we consider a finite 2-dimensional CW-complex K with a presentation

P o= {ay, ., aq; Wy, ... W},

In this section by an admissible mapping of a presentation we will always
understand one with respect to the first gemerator which appears in the pre-
sentation.
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(3.3) LemmA. There is an admissible mapping
P Py = (g, s @45 Wor s Wy [, @] for 0<i<j<k}.

where
W =
with m(iy = 0 if i # 0. -
Proof, Procedure A vields an admissible mapping PP, where

Ot a}‘"(”‘) Jor 0<i<r,

P' == {ao, ey Qs LOTRIE) Wiy [aiv aj] fOl' 0< i<J£k} N

Using Procedure C allows us to assume that

w, = dPal gt for 0i<r.

Moreover, we may assume that n(i) # 0 if 0<i<p and n(i) = O otherwise.

An elementary operation on a SEqUENCE Mg, ..., 1My, of integers is the replacement
in that sequence of some m;, 0 < i< p, by m;+m; or by m;—m;, wherej # i. Suppose
that n is the greatest common divisor of the integers n(0), ..., n{p). If p >0, then
we can find (using the Euclidean algorithm) a sequence of clementary operations
on the sequence 1(0), ..., n{p) in order to get finally the sequence », 0, ..., 0.

Thus, if p > 0, we apply to the presentation P’ the Procedures R and C finitely
many times (each corresponding to the above clementary operations) and we get

finally the required presentation P;.
Next we will prove the following lemma.

(3.4) Lemma. Let Py be given by (3.3). Then there is an admissible mapping
P, —P,, where the presentation Py is of the following form

Py = {bg, by, .., bys v, 00, ..., 9y, [by, b)) for 0<i<j<q},
where q=p, by, = a,, and moreover
v = bV .. B®,
v = b for 1<j<p.
Additionally we may require that each 1(j) is nonzero and that each k(j) is a power
of a prime.
Proof. Since we have m(@) = 0 for 1 <i<r thus
P = {ay, .., Wi, Wy, [0, a] for 1<i<j<k)
is a presentation of a 2-dimensional CW-complex as well as a presentation of an
(abelian) group G. Let
P = {by, ..., by; vy, ., v, [by, b)) for 1<i<j<q)}

be another presentation of the group G, such that v, = b*¥, By the Tietze theorem
(IM-K-8], Corollary 1.5), the presentation P’ may be changed into P'’ by a finite

icm°

The structure ‘of compacta 137

sequence of elementary Tictze transformations. Observe that this sequence of trans-
formations applied to P; changes P, into the following presentation

Py = {bos s bg; w0, s 0, [by, bj] for 1<i<j<q, vh; for 1<k},

where by = a, and vp ; is an element of the commutant of the free group generated
by by, ..s by, for 1<j<k. Now, adjoin the commutators [bo, B] to the words
in P7 and delete all vy ; applying (T.2). Finally we obtain the required presentation P,
applying Procedure C to the word vy, The above transformations yield an admissible
mapping Py — P,.

We may assume that all integers /(1), ..., /(g) are nonzero. Otherwise, if IG)=0
for some j & {1, ..., g} then there is an obvious retraction of P, onto the presentation
obtained from P, by deleting b;, v; and the commutators with b;.

(3.5) LemmA. In (3.4) we may achieve that pe {q, ¢—1).

Proof. Suppose that p < g. For p <j < g, let I(j) = I I'(j), where /is the greatest
common divisor of the integers /(p+1), ..., I(g). Then, by using Procedure C, the
word v in P, can be replaced by the word S ... 5P}, , where
Cpry = b}fﬂ,"f . b,','(‘). Since the greatest common divisor of the integers
I'(p+1), ..., I'(q) is equal to 1 thus there exist words Cpt 2, ey € In terms of
b,y1, .., by such that ¢,.y,...,¢, generate the free abelian group given by the
presentation {Bp..q, .., by, [b;, b;] for p<i<j<g}.

Therefore, there exist mappings

P,»P' and P-P,,

which are fixed on b, and thus admissible by (1.2), where P’ is the following pre-
sentation

P = {cy, ..., v, 0], .., 05, [0, ¢;] for 0<i<j<q},

where
¢ =1b for 0<j<p,
v = chel® .. c:,(”)cf,ﬂ and
1K) for 1<j<g
b; = C; orlgjxp.

Finally, there exists an obvious retraction P'— P, where
P e fey, ., €04 q3 0, 0, Ly, [e, 6] for 0i<jg<p+1}.

(3.6) Lemma, Let P, be the presentation given by (3.4) and let P, be defined
in the same way as P, except that we replace 1(j) by r(j) for some je {1, ..,p}. If
(r(N), k(7)) = (1), k())), then there exists an admissible mapping P, ~P;.

Proof. For simplicily assume that j = 1. The following presentation

P = {by, .., byuysw, bys b, 0y, o, vy, [y, by for 0<i<j<q+1},

where
I i
W = byby b5 .. B,
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can be obtained from P, by applying transformations of the type (T.3), R and A
successively. Thus there exists an admissible mapping P, —P'.

Using (2.7), and applying the transformations A and (T.2), it follows that there
exists an admissible mapping P’ —P"', where P is the presentation defined in the

same way as P’ except that we replace /(1) by r(1).
Finally, there exists an admissible mapping P” — P, which can be defined using

the Tietze transformations (T.4) and (T.2).

Now we will prove the following lemma.

(3.7) LeMMA. Let P, be the presentation given by (3.4), where pefq,g—1}
and each k(j) is a power of a prime and each 1(j) is nonzero. Then there is an admissible
mapping P, — Q, where Q is of the form

38 0=

Addmanally, we may require that n(j) # 0 for each j.
' Proof. The proof is by induction with respect to the number ¢ of the g ;,enem-
tors b; in P, decreased by 1. The cases
(©) g = 0 (then P, = {b,; bp}) and , o
(ii).qg =1 and p = 0 (then P, = {by, by; Bob\", By, 5,]})
1. By (3.6), we may assume-that /(1) di-

{bg, s bys DEPBTD for 1 <j<k, [by, b)) for 0<i<j<k}.

are obvious. Now suppose ¢ =1 and p >
vides k(1).

We consider the following 4 cases.

(a) I(1) divides each l(/)

Applying Procedure C, we can replace the word v in the presentation P, by the
word of the form

v = by(h 5P . B @YD

Next, replace the word v, = B5Y by v = o7 ‘(")) and then v} by the word

o = BRI bfl'("))"”’.
Thus, there exists an admissible mapping P, —P', where

P = {by, ..., by v',v{,v; for 2<p, [b,, 8] for 0

bas gi<j€q}.

Let P” be obtained from P’ by replacing the word v’ by the word v = byb{".
There exist mappings P’ ~P'* and P’ ~ P', which are fixed on b, and thus admissible
by (1.2). The mapping P’ —P" can be defined by using the following sequence of
transformations. First, applying (2.4), replace b, by b (b5 ... B;)"* in cach word
in P’. Then adjoin the required commutators and delete superfluous words by
applying the Tietze transformation (T.2). The mapping P =P’ can be obtained
in the same way except that we replace by by by b5* ... b}'? in each word in P".

Now, it is easy to complete the inductive step in case (a).
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By (3.6), we may assume that /() divides k(j) for each j, 1 <j< p. Therefore
1(j) is a power of a prime. Thus we may assume this property in the remaining
three cases.

®p=gq

We may assume (changing the order of generators if necessary) that /(1) divides
each /() which is a power of the same prime as /(1) is. By (3.6), we can replace each
1(j), 2</j<¢q, by r(j) which is divisible by /(1); thus we reduced this case to (a).

(¢) p=q~1 and [(q) is divisible by some I(j), | <j<p.

Therc is &, 1< io<p, such that i(iy) divides each /(i) which is a power of the same
prime as /(f) is, 1<i<p. For convenience we assume that 7o = 1. Again, by (3.6),
we can reduce this case to (a).

(d) p=gq—1 and I(g) is not divisible by any 1(j), 1 <j<p.

By (3.6), we can replace each /(j), I <j< p, by r(f) which is divisible by /(q).
Then we can replace in the presentation P, the word v by the word

' I !
br(')(b'l(n bp(p)bq) (a) ‘
and it is easy to define an admissible mappings

Py =P = {bg, ..., by; Boby®, vy, ..., v,, [b;, B)] for 0<i<j<q}
and

P P = {by, by; BAB, [By, B,}

(above, the first mapping is induced by replacing b, by b,(i" ... BL™)~1 and
the second by replacing by, ..., b, by the empty word).

Observe that we may assume that n(j) # 0 for each je {l, ..., k}. Otherwise,
we apply an argument similar to the one given at the end of the proof of Lemma (3.4).

As a corollary of the above lemmaé we obtain the main result of this section.

(3.9) FUNDAMENTAL LEMMA. Let (L, Ly) be a pair of finite polyhedra such
that dimL = 2. Then for any map p: Ly~ S there is @ map f: LK such that

(3.10) X is a finite 2-dimensional ;CW-complex with the presentation Q given
by (3.8), such that n(j) # 0 for each j, and

(3.11) f is admissible with respect to p and the identity map on S.

Checking the proofs of (3.3)-(3.7) one can obtain:

(3.12) Proprosrrion, Let

P o= {bnw vy b,,; Wo s ey Wes [By, bj] SJor 0< i<j<P} :

Then there exist fixed on by mappings P— Q and Q— P, where Q has the form given
by (3.8) and n(j) 0 for each j.

4. Main results, For compact pairs (X, A) with dim(X x X) <4, the process
of simplifying the polyhedral structure of the complex K of (3.9) is concluded by
the following . L
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(4.1) TeeoreM. Let g: (X, 4)—(D% S) be a map of a compact pair (X, A)
such that dim(Xx X)<4. Then there exists a mapping )
h: (X,4)—(B,S)
such that h(x) = g(x) for x € A and B is given by the presentation of the form
P= {bo’ bj,: b’(‘)b,llzl [bO: bl]} 3
where by corresponds to S.
The proof of the above theorem is divided into two lemmas:
(4.2) LemMA. Under assumptions of (4.1) there exists a mapping
h: (X, A)—(K,S)
such that h(x) = g(x) for xe A and K is given by the presentation
Q = {bo, ..., b; BB}V for 1<)k, [by, bl for 0<i<j<k},
where
() m(5) divides (n(j))* and n(j) # 0 for 1 <j<k.
Proof. Since dim(X x X) <4, the homomorphism
H*%(g xg); H*((D?, S)x(D? S)) ~HY (X, 4)x (X, 4))
is zero and also dim X< 2. It follows that the homomorphism
H*(g) ® H*(g): H*(D?, S) @ H*(D%, ) ~»H*(X, 4) ® HX(X, A)
is zero. By a standard argument there exist a pair of connected polyhedra (L, Lg)
with dimL = 2 and mappings
9" (X, )—>(L,L;) and g¢': (L,Ly)—~(D? S)

such that g’ o g'’ and g are homotopic (as the maps of pairs) and H?(g’) has the
property H*(g") ® H*(g") = 0. By (3.9), there exists a map f: (L,Ly)—(K,S)
which satisfies conditions (3.10) and (3.11).

_ By Lemma (1.1), the map q: (K, S)—(D?, §), which is an extension of the
identity map on .S, has the property that H%(q) ® H2(q) = 0. Obscrve that the
cohomology group H*(K, S) is isomorphic to the group Z,q, @ ... & Zyn® Z',
where Z, = Z and r is the number of all commutators [b;, ;] in Q. Let us denote
by 1 a generator of the groups H*(D2, S) and H(S) which are identified by the
coboundary homomorphism. Observe that

HZC‘I)(I) = &% (1) = (n(l)’ ey n(k)~ Ov AARE] 0) € zm(i) D . Zm(k) @ z
Since
(n(]')' sy n(k)s 0, sery 0) ® (nO, erey n(k), 0, asey 0) = 0

in the tensc:r.product of the group Z,;)y @ ... @ Z,qy @ Z' by itself, it follows
that m(j) divides (n(j))* for each 1<j< k.
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- .~Observe that g|d and fo g”|4 are homotopic as maps from 4 to S. Thus by
the Borsuk homotopy extension theorem the required map h exists.

- Remark. In the proof of (4.2) the assumption dim(Xx X) < 4 can be relaxed
to H*(g) ® H*(g) = 0 and dim X < 2. Using this together with an easy computa-
tion, which is implicit in the proof of (4.2), completes the proof of Proposition 1 of
the Introduction.

(4.3) Remark. Under the assumptions of (4.1), for a prime p there exists
a mapping o
(X, AH-~(L,S)

such that f(x) = g(x) for xe 4 and L is given by the presentation R = {by; b3}.

Proof. Let h: (X, 4)— (K, S) be as asserted by (4.2). By (2.6), we may assume
that p divides cach n(j). Thus the lemma follows since there exists an obvious fixed
on by mapping @ — R. (Remark (4.3) is also a direct consequence of the fact that the
condition dim (X x X) <4 implies edimy, X' <2.)

(4.4) LemMmA. Under the assumption of (4.1), let

h: (X, )~ (K, S)

be as asserted by (4.2) and let j, € {1, ..., k} and a prime p be given. Then the assertions
of (4.2) are satisfied also with a polyhedron K' whose presentation is obtained from
that of K by replacing n(jy) by p-n(jsy and m(jy) by p-m{j,).

Proof. Assume for simplicity that j, = 1 and consider first the case k = 1.

In the 2-cell o of K, corresponding to the word by 87", consider a disc D inter-
secting do along {+}. Applying (4.3) to k|h™*(D) we get a complex L and a map

S (YD), h~*(@D)} (L, 8D)
such that f (x) = h(x) for x & 5~ 1(8D) and L is given by the presentation R = {¢,; ¢b}
with ¢, corresponding to dD. Replace D by L and hlh~Y(D) by f to get a map
hy: (X, 4)-+(Ky(, S),
where K, = (K\D)UL has the presentation
R = {by, by, co; BB V5, eb, [bo, by1} -
Next, there is a mapping
R = Q' = {by, by; BBy, by, b1}

which is fixed on b, and on b;. It can be defined using the following sequence of
transformations applied to R'. First, adjoin the commutators [by, ¢} and [y, €]
to the words in R’. Next replace the word ¢f by the word B Op™ ) applying Proce-
dures R and C. Then, applying (T.4), delete ¢, from the. generators, delete
BB et from the words and replace ¢, by BB In the remaining words.

& ~- Fundamenta Mathematicae 183.2
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Finally, delete superfluous words applying (T. 2) and apply Procedure C. This fini-
shes the proof of the lemma in the case k=1
The case k> 1 follows from the one k = 1 and the fact that the mapping

R'— Q' was fixed on b, and on b;.

Proof of (4.1). Let f: X— K be given by (4.2). Applying (4.4) successively we
may alter the numbers 7() so as to replace all of them by the least common multiple
of n(l), .., n(k). In this process property (i) of (4.2) is being kept and thus we may
assume without loss of generality that K is given by

0= {bO: vy By k, [bi: bj] for 0

where m(j) divides n? for je {1, ..., k}.
Obviously there exists a fixed on b, mapping

{bO:bl; T: [bO’bl]}!

where m is the least common multiple of m(l), ..., m(k).
Finally, using the fact that m divides n® we can replace byb} by b
applying (2.4), Procedure A and the Tietze tramsformation (T.2) successively.

nByY for 1</ < i<j<k},

Q—)Pl =

Proof of Theorem 3 (2-dimensional case). One of the implications follows
from (4.1). The reverse implication follows from (1.5) in [Kr]. For the sake of com-
pleteness let us give a sketch of the argument here, Let f be any mapping from X
into a 2-dimensional compact polyhedron P with a triangulation &, For a 2-simplex
o €, we introduce the following notation

X, =f""o), d.=7"'@lo]) and
= f1X,: (X;, 45,)~ (o], dlol),
where d|o| denotes the boundary of |o|. By the assumption the mapping
fl4,: A,—0d|o| admits an extension over X, into a Boltyanskii bubble. Since the
homomorphism 8} ® 8} is trivial (where 8): H(S)~ H*(BZ, S) denotes the co-
boundary homomorphism), it follows that the homomorphism H*(f, % f)

= H*(f,) ® H*(f,) is also trivial for any 2-simplexes o, 7 € J. Thus by the Hopf
theorem there is a mapping

Fot Xo X X = 8(la] x|v])
which coincides with f'x f on (f % £)~*(2(lo] % |z])). It follows that there is a mapping
F: Xx X—(PxP)®,

such that F(z) and (f x £)(z) belong to the same cell of 7 x I~ (by (P x P)® we denote
the 3-skeleton of PxP). Suppose &> 0 is given. We may choose f such, that f x f is
an e-mapping. If 7 is chosen sufficiently fine then. also F will be an a«mappmg This
1mplxe=. that dim (Xx X)<4.
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Now, we will prove the case m = 2 of Theorem 1. Let P be given by (4.1).
It is easy to see that there exist mappings

4.5) PP, = {by; b3} and

4.6) PP, = {bo: by; bob’{}

which are fixed on b,. (Similar mappings were applied in [K-K].)

To get P— P, first, replace byb"" by bybl, using Procedure C and (2.3) and then
delete [by, b;] applying the Tietze transformation (T.2).

Thus, by (4.1), we obtain the following

(4.7) CorOLLARY. Let X be a 2-dimensional compactum with dim (X x X) <4
and A be a closed subset of X. Then for any map g: A— S there is an integer n
and there exist maps

h: (X, A)>(KP),S), fori=1,2,

such that hJA = g, where K(P,) and K(P,) are 2-dimensional CW-complexes whose
presentations Py and P, are given by (4.5) and (4.6), respectively.

Now, we invoke the following
(4.8) ProrosiTioN (see [K~L], [M-R] and also [K-K]). There exist mappings

F.: K(P,)-»D*xD* and F,: K(P,)—D*xD?

with disjoint images such that

Fy(x) = (x,0) and Fy(x)=(0,x)

Jfor each xe S.
(In the papers [M-R] and [K~K], this result was stated for polyhedra which are
homotopically equivalent to K(P;) and K(P,) by homotopies fixed on S.)
Clearly, the above result and (4.7) imply Corollary 1 and thus also Theorems 1
and 2 stated in Introduction (see the discussion there).

5. Remarks

(5.1) Remark. Theorem 3’ with known techniques (see [Br]) shows that an
m-~-dimensional compactum X satisfies dim (X x X)<2m if and only if it can be
expressed as

X = lim{K, f{}

so that: (i) each K| is an m-dimensional polyhedron with triangulation 7, (ii) for
every m- blmplex o of 7., the inverse image ( 2L )" (o) is a copy of some By,
with (fZL ;)" 1(d0) = 8o as the distinguished circle of that copy, and (iii) for each i

lim mesh f{(7;) = 0.
Jeren
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Some of the propositions and their proofs in our paper can be reformulated

in the language of abelian groups (then proofs become more concisc). For example’

Proposition (3.12) can be stated in the following way

(5.2) PROPOSITION. Let a be an element of a finitely generated abelian group G.

Then there exist an abelian group with a presentation of the form given by (3.8) and

homomorphisms f: G—H, g: H— G such that f(a) = b, and g(b,) = a.
Using theorem (3.2) in [Sp], one can prove (compare [Kr]) the following

(5.3) ProrosITION. Let X and Y be compacta such that dimX 3. Then the
condition

dim(Xx ¥Y)<n = dimX+dim Y
is satisfied if and only if any two maps
fi X-R" and g: Y-R"

can be approximated arbitrarily closely by maps with disjoint images.
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