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Periodic orbits indices
by

Roman Srzednicki (Krakéw)

Abstract. In this note we define a periodic orbits index as a mapping which transforms fixed
point germs generated by local semiflows on a topological space into elements of a given group in
such a way that the conditions of Existence, Additivity and Homotopy Invariance are fulfilled. We
use the relative Dold fixed point transfer to construct several indices of periodic orbits. The main
of these indices is the index j which can be regarded as an extension of the Fuller index. The index j is
defined for local semiflows on an ENR-space, and takes values in the group JIZ,/@Z, (where p
Tanges over prime numbers). In the case of a smooth flow on a manifold the nontriviality of the
Fuller index is equivalent to the nontriviality of the index j.

0. Introduction. In 1967, F. B. Fuller has presented in [Fu] an index related
to periodic orbits of smooth flows. Some authors have discovered other methods
of defining this index (see [CM-P] and [DGJIM]). The methods they have used are
based on the assumption, that the flow is generated by a vector-field. C. C. Fenske
(see [Fel]) and A. J. B. Potter (see [Pol]) have posed a question about the possibility
of extending the Fuller index to continuous semifiows on ANR’s. The paper [Fel]
defines this index for semiflows having isolated periodic orbits and the paper [Fe2]
considers the general case. The index obtained in [Fe2] turns out to be a 1-homology
class, and it may vanish in some situations, in which the original Fuller index is
non-zero. Another approach to this problem, based on approximation methods, is
presented in [Po2].

In this note (which is based on unpublished preprints [Sr1] and [Sr2]) we consider
mainly the finite-dimensional case (i.e. the underlying space is an ENR). We present
two ways extending of the Fuller index. The first one assumes the existence of a certain
1-cohomology class (called a Fuller class), and the resulting index j has values in Q.
The second index, j, is defined in the general situation, behaves as good as
Fuller’s, but takes values in a certain more complicated group.

We are using the fixed point transfer of fibre-preserving maps presented in the
paper [Do3]. Since [Do3] relates to finite-dimensional ANR’s, in order to solve
the problem of Fenske and Potter in full generality one ought to use an infinite-
~dimensional version of the above transfer. Atthe end of this paper we sketch briefly
3 — Fundamenta Mathematicae 135.3
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148 R. Srzednicki

the method of constructing such a general index. The details of this construction will
be published elsewhere.

We begin with the introduction of the fixed point homomorphism (Section 1).
We define this homomorphism using the fixed point transfer, and indicate some of
its properties. Theorem (1.8) plays a basic role in the constructions presented in this
paper. The main definitions concerning local semiflows are introduced in Section 2.
In Section 3 we present some facts about the Alexander—Spanier approach to Cech
cohomologies. Section 4 presents the definition and properties of so-called g-mappings
of the circle. The standard generator of a periodic orbit is defined in Section 5.
Section 6 is devoted to isolated periodic orbits of smooth flows. The main result of
this section (Theorem (6.1)) states that the fixed point index of a Poincaré mapping
is equal to the image of a generator of the first cohomology of the orbit by the fixed
point homomorphism. Motivated by this result, in Section 7 we introduce so called
Fuller classes, and examine their properties. We make use of these classes to define
the iqdex 1 in Section 8. Section 9 presents a construction (originating from Puller)
which leads to the index j. The latter index and the auxiliary indices Ja» 4 €N, are
constructed in Section 10. Theorem (10.3) establishes the connection between the
Fuller index and the index j. In Section 10 we also present an idea of extending j onto
ANR’s. ! :

Since the index j plays the main role in this paper, it should be noted that its
definition is based only on the notions introduced in Sections 1, 2, 9 and 10. The
results of Sections 3-7 are used for proving that j can be treated as an extension of
the Fuller index. « :

The terminology and resulis of the algebraic topology used here are quoted
from the books [Dol] and [Sp]. In particular, H, H* and H* denote the singular
homology, the singular cohomology and the Cech cohomology functor, respectively.
If 2 (X, 4) > (Y, B) is a continuous mapping, then it induces a homomorphism f;, on
homologies and f* on cobomologies. If f is an inclusion and u is a cohomology
class on (Y, B), then we write |y 4 instead of f *(u). By R, (or R, ) we denote
the interval [0, o) ((0, c0), respectively). Analogously we define R_ and R__.

1. The fixed point homomorphism. Assume that T and X are fixed topological
spaces. Let fi E— X, where ESTx X, be a continuous mapping such that

Fix(f) = {(t. x) e E: f(z,x) = x}
is _compact and E is a neighbourhood of Fix(f) in Tx X. Such a mapping will be
said to be compactly fixed. A mapping f': E'— X is equivalent to f iff there exists

an open set V, :

Fix(f) = Fix(f) S VS EnE'
such that

Fly=rflv.
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The equivalence class of f is denoted by [f]. A set ¢ of continuous mappings with
domains contained in T'x X and ranges in X is called a fixed point germ (shortly:
a germ) on (T, X) iff there exists an f such that ¢ = [f]. For any germ ¢, we denote

Fix(¢) = Fix(f).

Let ¢, and @, be two germs. We say that ¢, and ¢, are digjoint iff there exist
fit Ei— X, ¢; = [f;],/ = 0,1, such that E, and E, are disjoint. The germ of their
join fou fi: EgUE;— X is denoted by @, @;.

By @ we denote the empty germ, i.e. the class of mappings f such that
Fix(f) = @.

We say that the germ ¢, is homotopical to ¢4 (@o= @) iff there exist germs ¢,,
o € I (where I denotes the interval [0, 1]), such that for any o there are: an A&/,
a compact neighbourhood of o, an open set E< I'x X and a mapping s: Ex4— X
such that ¢, = [A(:, f)] for any fe 4 and ﬂUAFiX(q)B) is compact. In this case we

€

say that ¢, is a homotopy comnecting ¢, and ¢,. :

Let p: Tx X - T denote the projection. If f is a mapping of the form considered
above, then the composition (p,f) can be viewed as a fibre-preserving map over
the base T, so we can apply to it the Dold’s theory ([Do2], [Do3]).

Suppose that R is a given commutative ring with unit. In this section we will
assume that all (co-)homologies have coefficients in R, and we will write H(X)
instead of H(X; R), etc. Let T be a k-dimensional manifold orientable over R
and let X be an ENR. Fix an orientation {o}er, 0s€ H(T, T\1). If f: E- X is
compactly fixed, we introduce an R-homomorphism

op: H¥Fix(f))—>R,

called the fixed point homomorphism, as follows:

(1.1) DerrTION. By the fixed point homomorphism o, we mean the compo-
sition <+, 0p) © t( ), Where (-, - is the scalar product, P is the image of Fix(f)
under the projection p, 0, € H(T, T\P) is the fundamental class of P generated
by {o,} and

to.py: HY(Fix(f)) = HXT, T\P)
is the relative transfer (see (3.9) in [Do3]). If ¢ = [f], we put o, = 0.
Using the definition of the transfer we can present a direct description of .

Since X is an ENR, we can assume that X < R" for some n € NV and that there exists
an open neighbourhood ¥ of X in R™ and a retraction r: Y- X. Put

D={(t»eTxY: (t,r(»))cE},
and define
g: Da(t,»)—~f( r(»))eR",
F = Fix(g) = Fix(f) .

1
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Let o" be a given orientation of R", i.e. a generator of H,(R”, R"™\0). By
q"e H'(R®, R"\0) we denote its dual, i.e. {g”, 0") = 1. The homological cross-
products o, x o", t € T, determine an orientation of T'x R”, so we have a fundamental
class

op € Hy 1 (Tx R", Tx R"™\F)
related to this orientation.

(1.2) PROPOSITION. The fixed point homomorphism o, coincides with the direct
limit (with respect to the neighbourhoods V of F) of the composition:

n Gd,j~a)* C0ry
HH) 5 HE(V 5 (R, RNO) ——> BV, NF)~ > R,
where x denotes the cohomological cross-product (defined in [Spl, p. 249), j is the

projection Tx R* — R” and o is treated (by excision) as an element of H, . ,(V, V\F).

(1.3) Remark. In the first version of the present paper (and also in [Srl],
[Sr2]) o, was presented as the composition of the Poincaré duality isomorphism
~og: HY(F)- H,(D, D\F) with the homomorphism

G~g)x: Hy (D, D\F)— H,(R", R\0) = R.

The referee has pointed out the possibility of expressing it in the present form.
Below we present some properties of the fixed point homomorphism, which are
direct consequences of the results of Section 3 in [Do3].
(1.4) PrOPOSITION. If @, and ¢, are digjoint germs and u;e H*Fix(p)),
= 0,1 then

Tpoups(H) = Oou(to)+ 04, ()

where u is the pre-image of the pair (uy, uy) under the isomorphism induced by inclusion

H*(Fix(go) U Fix(p ) » H*(Fix(po)) @ H*(Fix(p,)) .
Now we state results concerning homotopical germs. Let ¢, and ¢, be germs,
and let u;e H*(Fix(¢y)), j = 0, 1.
(1.5) DeriNiTION. We say that (e, 4) is homotopical to (¢, , u,), in symbols
(9o, to) = (@1, uy), iff there is a homotopy ¢, connecting ¢, and ¢, and
u, & H¥Fix(p,), «e I, such that the following condition holds: For every ael

there exist an open subset U of T'x X, an element u € H*(U) and a neighbourhood 4
of a in I such that for any fe 4:
Fix(pp) cU and UlFix(pp = Up -

(1.6) PROPOSITION. If (g, tp) = (@y, uy) then

Gwo(uo) = a'm(u.l) .

The following result states a kind of continmty property of o,(u) with respect
to f. As usual, we assume that f: E— X is compactly fixed. Let Ube an open neigh-
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bourhood of Fix(f), let c1(U) be compact and contained in E, and let ue H*U).
Proposition (1.6) implies the following:
(1.7) CoROLLARY. There is a neighbourhood N of f in the compact-open topology
of mappings E— X such that for any ge N with Fix(g) €U
0 4(Ulrixe) = o, lpixes) -
Now we state the main theorem of this section, which is an immediate conse-
quence of the already presented results.
(1.8) THEOREM. If ue H KT x X) and ® denotes the set of all fixed point germs
on (T, X) then the function
Iy @390 —0,(Ulpine)) ER,
has' the following properties:
(1.82) (Existence) if i, ()% O then Fix(o) # &,
(1.8b) (Additivity) if ¢, and @, are disjoint, then

i(po V1) = i(@o) +i(01) »
(i.8c) (Homotopy Invariance) if ¢o ~ ¢, then
i9o) = i(y) .
(1.9) Remark. If Tis a point, then we do not distinguish between X and T'x X.
In this case, if 1 € H°(X) is the unit, i, is the ordinary fixed point index.

2. Local semiflows and periodic orbits. We begin with the definition of a local
semiflow. Let X be a topological space and let : D — X be a continuous mapping,
where D= R, x X.

(2.1) DermiTION. 7 is called a local semiflow iff D is open in R, x X,
{0} x X< D, for any x € X the set
I.,={teR,: (t,x)e D}
is an interval and the following conditions hold:
(2.1a) (0, x) = x for any x€ X,
21b) sel,, tel,, iff s+tel, and
n(t, (s, X)) = n(s+1,x) .
Define the set of periodic orbits as
Per(n) = {(t,x) e D: t>0,n(¢,x) = x,3s: n(s, %) # x} S R, . x X .

We are especially interested in isolated compact subsets of Per(m). Let C be
such a subset. By definition, there exists an open subset E of R, , x X such that
C = Fix(n|z) (see Section 1). The fixed point germ [=|z] will be denoted by (%, C),
and called a flow-germ on X. By II(X) we will denote the set of all flow-germs on X.

Let IT be a subset of IT(X). k
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(2.2) DeenviTioN, We say that a flow-germ (n®, C°) is homotopical to a flow-
-germ (n, CY) in 1T ((=°, C°) = (z', C1)) iff there are (n%, C*) € II, a € I, such that

for any o e I there exist: a compact neighbourhood 4 of « in I, an open subset E
of R, ,xX and a continuous mapping ¢: Ex 4 X, which satisfy the following
conditions for any feA:

(2.2a) Ec D’, where D" is the domain of =,

(2.2b) C* = EnPer(n’),

(2.2¢) mglg = (-, B)s

(2.2dy U C* is compact.
Bed

In the case when IT = II(X) we write ~ instead of i

Now we introduce the main object of our considerations. Let G be a given abelian
group, and let IT < II(X).
(2.3) DermNITION. A function
i: -G

is called a periodic orbits index on II iff the following conditions are fulfilled:
(2.3a) (Existence) if i(n, C) # 0, then C # O,
(2.3b) (Additivity) if C° and C* are disjoint, then
i(m, C°UCY) = i(m, CO)+i(n, CY),
(2.3¢) (Homotopy Invariance) if (n% C°) = (n', CY), then
i(n% C% = i(=*, CY).

The following definition will be useful in the sequel.

(2.4) DermviTION. We say that o€ Hy(R, R\0; Z) is a standard orientation
of Riff o is the homology class of a singular simplex ¢: 4, — R such that o(e;) >0
and o(ey) < 0. (For any g € N, 4, denotes the set conv{e,, ..., g}, called the standard
g-dimensional simplex, where {e;}, is the canonical basis of R***.) The class o induces

an orientation of the 1-dimensional manifold R. , over an arbitrary ring R, called
also the standard orientation. ‘

We can define immediately some indices, using the following way. Assume that X'
is an ENR. Consider fixed point homomorphisms determined by the standard
orientation of R, over R (see (1.1) and (2.4)). Let ue H*(R, x X; R). By Theo-
rem (1.8), we have:

(2.5) PROPOSITION. The function
i,: I(X)3 (n, C) > 0, olc) € R
is a periodic orbits index on IT(X).

However, the indices presented above are trivial on spaces for which the first
cohomology vanishes, so we must look for other constructions. To this end we
introduce several notions.
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Let 7 be a Jocal semiflow on a topological space X. For any point x such that
(¢, x) e Per(n) for some ¢, we define

o, =inf{teR, .: n(t,x) = x}.

We have always w,> 0. If (o, x) e Per(n) we put m, . = E. This number is
a)x

called the multiplicity of (w, x). We define also
t
Otn: 0y S*2 cxp(Zrci—) - (w,n(t,x)) e R x X,
1)

the periodic trajectory of (w,x) in = and

Fayo, = G(n;m,x)(Sl) B

the orbit of (@, x) in n. The letter = is dropped in these symbols if no confusion can
arise.

A set 'R, , x X is called a periodic orbit (shortly: an orbit) iff I' = I'¢, x
for some (w, x). In this case we write my instead of m,, »), and the latter number is
called the multiplicity of I.

For any flow-germ (z, C), the mapping

t AN
Bc: S'xCa (exp <21rz'——-) , (o, x)) = B, o) eC
®

is a continuous S!-group action on C. By M, we denote the set of multiplicities
of C, i.e.
Mg = {mp: T is an orbit, = C}.

This set is always finite. The maximum of M, is denoted by mc.
In Section 4 we will examine the properties of trajectories..

3. Some properties of the circle. In this section we use the construction of Cech
cohomologies based on Alexander-Spanier cochains (see [Sp]). It leads to the same
theory as the construction in [Dol]. Now we shall briefly indicate some facts con-
cerning this construction. In the sequel we assume that R is a commutative ring with
the unit.

Let (X, A4) be a topological pair, and let (%, ¥°) be an open covering of (X, 4),
i.e. % is an open covering of X, ¥ is a covering of 4 which consists of open subsets
of 4 in the induced topology, and ¥” is subordinate to %. We define a complex
C*U,¥) by

C@,v) = {p: U U™ > R: ¢ vanishes on |J V**'}
Uew Ve?
and the cobord operator
&: CNu, vy C N U, ¥v),
q+1 .
5(p(x0= ey Xgg 1) = i—z(‘l) ('_ 1)l¢(x09 e 2;" (L) xq+1) .
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If (%', ¥") is an open covering subordinate to (%, ¥"), then the restriction defines
a chain mapping C*(®%, ¥)— C*(', V"), so we have a direct system. We put
CHX, 4) = im C*(%, V).

The homologies ofvthis complex are identical with the Cech cohomologies,
so they are denoted by H*(X, 4; R). We will drop the letter R if it does not lead to
confusion. If ¢ is an element of C%(%, ¥"), then we denote by ¢ its image in CUX, A).
va @ is a cocycle, then ¢ is also a cocycle, and [gB] denotes its cohomology class in
HY(X, A). If 4 = @, then ¥ = {@}, and we write C¥®%), C*(X), H*(X) instead
of C*®,{@}), CHX,O), H*(X,d) respectively. Since CY%, vy = CUU), we
can regard C*(X, A) as a subcomplex of C*(X).

Let ¢ € CH%). The support |@| of ¢ is defined as follows:

lol = {xe X: VW open, xe W A(xg, ..., x) € W1 p(x,, ..., x,) # 0}.

If ce C*(X, 4), ¢ = ¢, then we define the support of ¢ as le] = ||, and the latter
set does not depend on the choice of ¢. If A is open, then c e C*(X, d)iff ce C *(X),
lel = X\4. In order to define an element of C*(X), it suffices to define it in a neigh-
bourhood of its support.

Let f: (’X , A)— (X', 4') be a continuous mapping, (%, ¥") an open covering
of (X', A)and (%, ¥") an open covering of (X, 4) subordinate to (f~(@"), f~1(¥ )
Define

CHf): CXU', vy C* U, V)
by C*(f)gf)(xo, wwrs @g) = 0(f(X0), o, £ (%). The limit mapping is denoted by
C*(f). Tt induces a homomorphism
f*=HYf): BNX', 4)~> H¥X, 4).
Ff (X, 4) X, 4)is til.e inclusion and ¢ e C*(X’, 4'), we will write clex, 4
instead of C*(i)(c); if ue H*(X', A’), then ey, 4, denotes i*(u).

An?.logogsly, we define S%%, ¥°) as the group of all mappings from the set of
all g-dimensional singular simplexes o: 4,~ X (see (2.4)) such that o(4)= U
for some Ue %, to R and equal to zero for any ¢ with a(d4,) <V for some Ve ¥ .

In the same manner as above we can define the cobord operator on S*@, ),
ete., and ﬁnallsf obtain a complex im §*(%, ¥°). The homologies of this complex
are naturally isomorphic to singular cohomologies, so they are denoted by
H*(X, 4; R) (or H*(X, A)).

Ifoe S’.(%), theg we can define @], the support of p by || = {x & X: ¥ W open,
x€ W 3 a singular simplex o: 4,— X such that ¢(d,) < W and (o) # 0}

There is a natural chain mapping

B CHU VY= SHU, V)

g((ﬂ)ga) = ¢(o(eo), ..., a(e,)) which induces a natural homomorphism (also denoted
Y I
p: H*(X, 4) > H*(X, A) .

If (X, 4) is an ANR-pair. then p is an isomorphism.
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Now we shall construct a generator of H1(S1). Let % be an open covering of S?,
with % = {U,, Uy, U,}, where;

Uy = {re>—4%}, U;={re<0,im>—~3},

Define ¢ € CH%) as follows: if (xy, x,) € U? for i = 1,2 then ¢(x,, x;) =0, if
(%0, x,) € U2, then 9(xy, x;) = a(x;)—a(x,), where a: Uy—R,

() = {é if im(x)=0,

if im(x)<O0.

(3.1) LEMMA. The cochain ¢ defined above is a cocycle and z = [@] is a generator
of HY(S%).

(3.2) DerniTioN and Remark. In the sequel the generator z defined as above
will be called the standard generator. Since S' is an ANR, then z induces u(z), which
is also a generator of H'(S'). We will call u(z) also the standard generator. For
simplicity, we will write z instead of u(z).

Proof of (3.1). We will use the Eilenberg-Steenrod axioms for Cech cohomo-
logies. The mapping

U, = {re<0,im<4%}.

l: Ry, 2x—>1€eR

is a cocycle in C%(R, ), and [1] is a generator of HO(R...). Hence the class [/[g~ol,
where : R—>R, ¢(x) =1 if x>0 and 0 if x<0, defines a generator of
HO(R\O, R__). Since the connecting homomorphism in the exact sequence of the
triple (R, R\O, R__) is an isomorphism, [x] is a generator of H'(R, R\0), wherc
Y€ CYR, {Ry., R_Y), x(xg, x1) = 8(xg, X,). One can verify that z is the image
of [x] under the following composition of isomorphisms:

AR, RN0) > H'(Us, U)o HE(SY, S'\1) > H(SY),

where the first arrow is induced by excision and the exponential mapping, the second
is induced by excision and the third is induced by the inclusion. This ends the proof.

It is easy to verify that a class member of z can be also defined as follows. Let
g: Uy— R be a mapping such that:

(3.32) g(x)> 0 if re(x) <0, im(x) >0,

(3.3b) g(x) <0 if re(x) <0, im(x) <0.
Define 8: U, R, as follows:

_f1 ifgm=0,
ﬁ(")“{o if g(x)<0.
Let yeCY@), Wixe,x) =0 if (xp,x)eU? for i=1,2, and (%, X)
= B(x)—B(xo) if (xo, ;)€ Ui Then z = [J]. Indeed, one can verify that
¢—y = 8y, where y: S'—>R and

a(t)—p@) ifre(r)>0,
"(’)’_‘{ 0 if re(1) < 0.
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Let us consider a more general_situation. Assume that r is a positive integer and
let {1, w,..,w ™"} be the set L,/1. We put

2 2
UO,O = €Xp (m(~ —37, 5;)) )
1 7
Uo=c¢ il —, —
1,0 XP(” <2r’ 6r)>'
. 7 1
Uy o = exp(m(—g;, —5;))

Then U,‘lo.is the image of U; under a suitably chosen branch of L,/™. Denote by 4 the
branch with Uy o = A(Up). Fix j=0,..,r—1. We put U.; = 7w (U,p), where
7,: S'at—steSt.

Let g;: Uy,;— R be a mapping such that the composition
gjoTyioh: Uy R
has i i
509 = 0 oy <0, Dot e E1Ga. w7 P = 1 F0/9>0,and

%r = {Ui,j}x‘=o,1,2 B
J=0

s P 1

as foﬂows: Vi(xo, %;) = 0 if (x,x)eUly, i=1,2 and ¥,(xo, x;) = Bj(x,)—.
+ By(x0) if (xo, x,) € Us ;. Repeating the argument presented above and using the
fact that the mapping

, 6": Slatatest
induces the homomorphism

o™*: H\(SYeu—rue HY(SY,
one can prove the following result:

(3.4) PROPOSITION. 1, is a cocycle in C*
- yele in CH%U,) and [{,] = ;
standard generator of H'(SY). ) (1 = re where = s he

‘ Now we sliall 1presex}t a certain fact concerning singular (co-)homologies of the
circle. If ze HY(S!; Z) is the standard generator, then an element ¢ is called the

standard 1. i
ot generator of Hy(S*; Z) iff {z,{) = 1 (where ¢-,-) denotes the scalar

(3.5) PrOPOSITION. { is the homology class of the singular simplex
o Ao (1—t)ey+te; —exp(2nit)e ST .

Proof. One can see that i i
o oroof. ee that the homology class of ¢ in H,(S*, §'\1) is equal to

o’i 413 (1—1)ey+1e, »exp(ni(t—3)) e ST.

icm

Periodic orbits indices 157

By (3.1) the cochain ¢ induces also a generator of HY(S, 8'\]) and {¢p,0") = 1.
The assertion follows from definition and the naturality of the scalar product.

4. q-mappings of the circle. Let X be a topological space. A continuous mapping
0: S'— X is called a g-mapping on X (g is a positive integer) if can be represented
as a composition of the form

9: Siisi—'lrc—%X

where ¢%(¢) = t* and A is a homeomorphism.

(4.1) ExampLE. For a given local semiflow 7 and (w, x)y e Per(n), the trajec-
tory 0, defined in Section 2 is a m, -mapping on R,,xX. Indeed, 0O, x)
coincides with the composition

. t T (@ rx)
{exp (Zmzu—) - (o, 7(t, x))} o g .

Let 6 be a g-mapping, 0 = (F'c<— X)oho ¢ If z is the standard gemerator
of H'(SY), we define
7 = ™ %) e H'() .
One can easily prove the following fact:
(4.2) LemMa. If v, is the multiplication by s, then

Zp = Zgaty -

Now Wwe are going to present the main results of this section. We assume that X
is an euclidean space with the scalar product (-, -) and the induced norm |-|. For
any two continuous functions 6, 6': S 15 X we put

16—06' = max {|0(t)—0'(1)|: teST}.
(4.3) TusoreM. Let 6: S'—= X be a q-mapping,
0 =( <> X)ohoo.
Then there exist >0, an open neighbourhood U of I' and ue H'(U; R) such that
if ': S'—> X is a q'-mapping, 0'(SY) = I and |0—6'} <&, then q' divides q and
wlp = ;I 2 € HYI", R) .

Proof. Since the transformation between Cech cohomologies with coefficients
in Z and R induced by the canonical ring-with-unit homomorphism Z— R is natural,
it suffices to prove the theorem in the case where R = Z.

It is easy to find g, > 0 such that if |§— 0’| < & then g’ divides g. To this end
one can use a retraction of a neighbourhood of I'-onto I' itself. Let y, = (),
y_ = h(—1i), and let Ly, L, be closed arcs given by the formulae

Ly = exp(ni[-%,3D, L, =exp(il}, 3D
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By translating the origin if necessary, we can assume that there exists a linear form
g: X— R such that g(y,)>0 and g(y_)<0. We can assume that g(x) = {x, )
for some ve X, |v| = 1. Define H = ker(g). The sets h(L,)n H and A(L,)n H are
compact and disjoint, so there exists a Urysohn Lemma mapping f: H—[0, 1]
such that

RLY)AHSSTH0), h(L)nHSS'(1)
and the set £71([0, 1)) is bounded. Let c € (0, 1) be an arbitrary number. We put

U = X\f~(¢). Since h(L,) is compact and separated from the set f (¢, 1]), there
exists an &,; 0 < g, < ¢, such that

RLYAGE e, 1D +[—&, 4]0) =D
We define ¥7, an open covering of U, as follows: ¥" = {V,, Vy, Vs, V3}, where:
Vo = (f710, c))+Ro)ug™*((es, ©0)u(~ 00, —&)),
Ve =970, )),
Vy=g"((~,0),
Vs =" (e, 1D+(—25, &)v.
Define y € C' (¥) by the formula

W (x x)"{ ° if (xo, X) €V}, for j=1,2,3;
O T B~ Ba(xo) i (xo, x)EVE,
where
1 if x>0,
ﬁ(x)={o if x<0.

Then  is a cocycle. Let u = [J]e fI‘(U). Choose an ¢, 0 < & < &4, so small that if
|6—-8'|< ¢, then for any j =0, ...,q—1:

2 1 2 1
6’(cxp<ni[~]-—,—"+-—:|>>EVo,
g9 29 q 24
2 1
B’(exp(m’(—l+~>)>g Ve,
g 29
2 1
g (exp (m’ <—J - rw)))s; Vs,
q 2q
T2 1 2 3
0 exp(nz([~+--—,~+~~j|>)§V uV,uVs;.
( g9 2°q 2 TR

Let 8': S'— X be a ¢g'-mapping with |0—6'] <& Then 0" can be represented as
a composition of the form (I €— X) o k' o 7 for some homeomorphism #’. Now
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we can use Proposition (3.4). In fact, the cocycle presented in this proposition differs
from the cocycle C*(h’ » 0¥)(Y]r-), but they induce the same limit elements. By (3.4),

H*W o a¥)(ulp) = [C*H o e P|r)] = gz.

Since ¢ induces the multiplication by ¢', we have

HH ) ) = L2,

’

and thus u|p = g/zo. The proof is finished.
q

(4.4) COROLLARY. Let 8 be as in (4.3), let V be an open set, TV and
ve HY(V; R), vly = rz, for some re R. Then there exists a 8 > 0 such that for any
q’-mapping 6’ with |0—0'| <& the following holds:

I'=0'(SYcV, g divides q and v|. = rgrzs,eﬁl(l"’; R).
q

Proof. Choose ¢, U and u as in the conclusion of (4.3). Since rul; = v|;, the
tautness of Cech cohomology implies the existence of an open set W such that
re We UnV and ruly = v|y. The corollary holds for any 0 <8 < ¢ such that if
|0—@| < b then I" = W.

5. Standard generators of periodic orbits. Let X be a topological space, and let =
be a local semiflow on X. (4.1) and (4.2) enables us to introduce the following:

(5.1) DerFINITION. If I' is a periodic orbit of n, then by z; (the standard generator
of HY(I'; R)) we mean Zy e x for any (w,x)eT.

This z; can also be treated as an element of H'(I'; R), so we may introduce
{r e H\(I'; R) such that {z;, {y) = 1. By Proposition (3.5), we have the following
result:

(5.2) PrOPOSITION. For any (w,x) €T, the element {r is the homology class
of the singular simplex

4,3 a7 ()~ (o, (n(t, ) e T,

where

a: [0, w,]3 t—»(l — —At-)eo-i- Lel ed,.
w}t wx

6. Isolated periodic orbits of smooth flows. In this section we will use the notion
of a standard generator in the case of a smooth flow.

‘We will deal with the ordinary fixed point index, denoted by #; (this notation is
explained in (1.9)). We use a similar convention as in Section 1; For any mapping
g : U— X (where U is an open subset of X), iy(g, x) denotes the index of a germ
[glp], where D is open in U and Fix(glp) = {x}.

Assume that X is a smooth (i.e. of C*) manifold and n: Rx X - X is a smooth
flow on M. Let I < Per(x) be an isolated periodic orbit with the multiplicity my = m.
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By y we denote the image of I' under the projection Rx X — X. Such a y will be called
the underlying orbit of T. (Usually, y is called a periodic or closed orbit of = (see
[MeP]), but this term has another meaning here.) Let P be a Poincaré mapping
associated with y. P is defined for some section % transversal to y. Let ynZ = {x,}.
We will prove the following result:

(6.1) THEOREM. Under the assumptions presented above,

il(Pm: -XO) = G(N,T)(ZI‘) ’

where P™ is the m-th iterate of P, 0(, ry is the fixed point homomorphism Sletermined by
the standard ovientation of R. . and zr is the standard generator of HY(I', Z) (see
Definitions (1.1), (2.4) and (5.1)).

(6.2) Remark. (6.1) is also valid if Z is rplaced by R. In this case, the left
side is interpreted as the image of i;(P™, x,) € Z under the canonical ring-with-unit
homomorphism Z — R. The proof is the same as in the case when R = Z.

Before we start the proof of (6.1), we introduce a lemma.

(6.3) LemMa. Let X and Y be euclidean spaces, let D be an open neighbourhood
of o€ X, and let ¢: DY be a differentiable mapping with @(xo) = 0. Let X be
an orthogonal direct sum H @ K, where K = kerd,, @, and let me N. Then there

exists an & > 0 such that for any §,0< 8 < ¢, if |[x—xo| <& andix:f;([(x—xo)—lcl > -:;1,
then
19 (X) = o @ (x=X0)} < |y @ (X = X0 -
Proof of (6.3). Let L>0 be such that for any ve H, v #0
Lip| < deo @ ()] -

There exists an ¢> 0 such that if 0<]x—x,|<e, then

[ (%) = dy @ (x = X0)| < Llx—xo .

m+1

é
Let §<e¢ and 0 < |x—Xo| <8. Put x—xo = v+w, ve H, we K. If |o| > o then

|wl <8 <m|s| by the orthogonality of v and w. Thus
s L
[ (%) — deop (x— X0)| < oy (Iol + 1w < L] < |deep (0+ W)l

and the lemma is proved.

Proof of (6.1). It is well known that he number 7,(P™, Xo) and the eigenvalues
of d.,P™ do not depend on the choice of the Poincaré mapping P. First we assume
that 1 is not an eigenvalue of d, P™. In this case it suffices to prove that

0, )(Zr) = sgndet(id—d, P™).
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Let » be the dimension of X. Without any loss of generality, we can assume that X
is a submanifold of R**", x, = 0, T}, X = 0x R" (first k coordinates are equal to 0),

an
% (0, xp) = (0, ..., 0, 1) for some A> 0 and that (w, xo) €. Let ¥ be a normal

tubular neighbourhood of X (see [H]), and let r: ¥ — X be the induced retracion.
‘We choose an open set D such that DnPer(n) = I'. Put

E = {(t,y) e RxR**": (t,r(y)) e D}.

Let us assume the following convention. Any point in R x R**" will be written as
a quadruple (¢, y, x, 5), where ¢,s€ R, ye R* and xe R"™*. We also put

¢c={(»,0,0,0).
Let W be a normal tubular neighbourhood of I' contained in E. Denote by r,
the induced retraction r;: W—I. We define a singular cocycle i as follows: the

support || (see Section 3) i s equal to J = ry *(c) and there exists a neighbourhood Z
of J in W such that for a y singular simplex o: 4; —» W with ¢(4,) = Z we have

Y (0) = a(o(e)))—a(o(eo))
where a(w) = 1 if the last cord inate of w € Z is greater than 0, and «(w) = 0 other-
wise. Such a ¥ determines an element v e H'(W, W\J). By results of Sections 3
and 4, the class v restricted to I' is equal to the class zy defined in (5.1). For any natural
number I, let o' e H;(R’, R\0) be a given orientation (i.e. generator), and let
¢'e HYR', R\0) be such that <g',0") = 1. We assume that o' = o (o is defined
in (2.4)) and we put ¢ = g'. Let 4 denote the class ¢*x¢"~* x¢. The orientation
oxo*xo" 1xo determines a fundamental class o € Hyy,+ (W, WNI'), and
by (1.2) our task is to compute

iy £ Yl x D), 06
where

fo AW, W)= (R**", R**™\0)
is defined as
Ly, x, )=y, x,)-n(t, r(y, x, ).

By the naturality of the considered products, it suffices to compute

<(1dW>f)*(U X Q) s Oc>

where
(idw,f)*: HI +k+"((W, W\J) X (Rk+n, Rk+"\0)) - Hl -|-lc+n(I,V=| W\C) A
We can assume that the Poincaré mapping P is defined on a section X, where Z is
a neighbourhood of 0 in (R¥x R""1x 0) n X. By standard calculations one can verify
that d.f has the following matrix form in coordinates (¢, y, x, 5) and (¥, x, )
0 id 0 0
00 id—d,P* 0
-40 b 0

3

1
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where b is a certain operator R"™'— R and id is the identity. Let 4; denote the
interval (w—§, w+9), and let K} denote the open euclidean ball with 0 as the centre
and the tadius 6 in R, /e N. Put:

&, = dsx Kfx K} "' x K5
Ay = ol (dy) x el (Kyjz) x cl (K3 ") % K.

Lemma (6.3) implies that there exists an &> 0 such that for any 6, 0 <d <& and
any o €/ we have

f; #0 on ¢5\A5 s

where f, = af+ (1 —0)d, f o . (here 7.(w) = w—c). Not let n < ¢ be so small that @,
is contained in Z. Denote ® = @, and 4 = A,. Observe that the following diagram
commutes (the vertical arrows are induced by inclusions):

Gd, f»
H*((W, WNJ) % (R**", R¥*™\0)) —

- H*(W, W\©)

¢
HA((®, \J) x (R*", R*™\0)) ——= HY(®, D\(ANT)).

Indeed, if ze ®\4, then (id,f)(2)ePx (R¥*™0), and if zed\J then
(id, £,)(2) € (#~J) x R**" for any « € 1, so the homotopy axiom implies the commuta-
tivity. By this diagram and the naturality of the scalar product our problem reduces
to the computation of

Gd, d. f o tle)* (0@, o0 X 9,00,

where o, is the fundamental class. Let p denote the projection (¢, ¥, x, §) —s. Then p
induces an isomorphism

p*: HY(R, RNO) > HY(8, &\J),

and by the proof of (3.1) we have p*(q) = v|(p o\ 1), 50 by the naturality of products
and the definition of 4 we have to compute

Up, d fIHgx g xq" " xq), 0% 0 x 0" I x0).

Using the matrix form of d_f, it is easy to verify that the above scalar product is
equal to sgndet(id—dyP™), so the theorem is proved in the considered case.
Now let us consider the general sitnation, when d, P™ is arbitrary. By a variant
of the Kupka-Smale Theorem (see [MeP]), for any relatively compact neighbour-
hood V of I' and any neighbourhood N of = in the C'-topology on the space
of smooth flows on X, there is a n"e N such that if a periodic orbit I of
7' is contained in V, then the underlying orbit 9’ of I" is hyperbolic (i.e. the dif-
ferential of a Poincaré mapping associated to 9’ has no eigenvalues in the unit circle
in C). Fix an open relatively compact neighbourhood ¥ of I', where I' = Per(m)n
acl(¥). Consider a section I transversal to y. If a neighbourhood N of = is suffi-
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ciently small, then ¥ is a section for any =’ € N. By a shrinking of N if necessary, for
any n’ € N such that Per(n") n ¥ consists of finite number of periodic orbits (denoted
by I'y, ..., I'y, where y; is the underlying orbit of I';, i = 1, ..., k), we have: m; = my,
is a divisor of m, y; intersects X' in exactly — points (denoted by x; 7,/ = 1,...,—) ,
m; m;

i

and the following conditions are satisfied:

k mjmyi

{6.42) i(P™, %) = i; 1;1 il((Pi,j)m‘r xi,j) s

where P,; is the Poincaré mapping associated to =’, Z and y, at the point x; ;;

(6.4b) There exists an open neighbourhood U of I', U< ¥, such that for any
i=1,..,k IS U and there exists ue H*(U) with

m
zr =y, Ulr,= ;;Zn H
i

(6.4¢) )@ = Oer,urn(Ul ory) -

The property (6.4a) can be obtained as follows. The index i; does not change if we
replace the germ (P™, x,) by the fixed point germ of a suitable mapping induced by =’
for n’ sufficiently close to 7. The latter mapping is of the form

Wax—n'(t(x), x)e X,
where 1(x) is close to @ and W is open in X. The fixed point set of this mapping is

{xi,j: i=1,k, j=1, -"1} so the additivity of #, implies the required
m;

property. (6.4b) is a consequence of Theorem (4.3) and (6.4¢) follows from Propo-
sition (1.7). By (6.4c), Proposition (1.4) and (6.4b), we have

(6.5) O@ny2r) = Z%:am(uln) = Z ‘3:— O, ro(Zrd) -

Now the result follows easily from the previous case. Indeed, we can assume that all
the y; are hyperbolic, so no iterate of P;; has 1 as an eigenvalue. By the previous
case,

i1((P W) X)) = O, roZr))

for any j=1, ...,in". Connecting this fact with (6.4a) and (6.5), we obtain
m;
e, ry(2r) = i1(P™, X,). The proof is finished.

7. Fuller classes. In this section we will deal with a (commutative) field K.
The image of n e Z under the canonical ring-with-unit homomorphism Z — K will
be denoted by [n]. If K = Q, the square brackets will be omitted.

2 — Fundamenta Mathematicae 135.3
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Assume that = is a given local semiflow on a topological space X. Let C < Per(ny

be compact and isolated.

(7.1) DErINITION. An element ue HY(C; K) is called a Fuller class for the
germ (m, C) over the field K iff for any periodic orbit I' contained in C

ulp = [mp] ™ zp,

where zj € H'(I'; K) is the standard generator (see Definition (5.1)).

Of course, we must have [m] # 0 for any m € M, where M is the set of multi-
plicities of C.

If C consists of a finite number of periodic orbits and the above condition is
fulfilled, then such a class exists and is unique. In general neither existence nor uni-
queness is guaranteed.

Assume now that X can be embedded into an euclidean space. Let C be isolated
and u e H1(C; K) be a Fuller class. By the tautness of the Cech cohomology there
exists ¥, a neighbourhood of C and ve HY(V; K) such that v|c = w.

(7.2) PROPOSITION. Assume V and v to be as above. Moreover, assume that
cl(V) is compact and Per(m)ncl(V) = C. Then there exists a neighbourhood N of @
in the compact-open topology such that for any ©n'e N

C' = Per(n)yncl(V)sV

and v|¢- is a Fuller class for (n', C').

Proof. If o' is sufficiently close to =, then, for any (', x) € C’, the mapping
Oearyor,xy 18 Close 10 O o, %) for some (w, x) € C (see Section 2 for the definition),
so Corollary (4.4) can be applied. Denote by I'" the orbit of (w, x) in =, and by I’
the orbit of (@', x') in n'. By (4.4) we have

vl = [mp] ™ mp/mpd 2 = [mp] " 2
so the proposition holds.
Now we present the results concerning Fuller classes of smooth flows on a smooth
manifold X. Recall that the Fuller index i¥ is defined as follows. If I';, i = 1, ..., k,
are isolated periodic orbits of a smooth flow 7, we define

1
iF(”: Uri) = Z;‘_H(H’": x)e@,

i
where P, is a Poincaré mapping of y;, the underlying orbit of I';, m; is the multiplicity
of I'; and {x;} = y;nX;, where X, is a section which determines P;. Let (n, C) be
an arbitrary germ such that = is smooth. Since (=, C) is homotopical to some germ
(n', C") such that C’ consists of a finite number of periodic orbits, we put

if(z, C) = i*@', C").

Fuller in [Fu] has proved that such a definition is correct and iFisa periodic
orbits index for the set of all smooth flows on X.
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The main result of this section is the following:

(7.3) TerorEM. If C is an isolated set of periodic orbits of a smooth flow =,
ue HYC; K) is a Fuller class for (n, C), and n is a common multiplicity of the set M
and [n] # 0, then

[ [ni"(, ©)],

where oy, is the fixed point homomorphism over K determined by the standard
orientation of R ;.

Proof. By the same argument as in the proof of (6.1) we conclude that for any
relatively compact isolating neighbourhood ¥ of C and for any neighbourhood N
of 7 in the space of flows there is a n’ € N such that the set C’ = Per(n’)ncl(¥)
is contained in ¥ and consists of finite number of periodic orbits. Moreover, if NV is
sufficiently small, we can assume that (z, C) = (z', C"), since = and =’ are generated
by vector-fields, 7 js a common multiplicity of M, (this follows from Theorem (4.3))
and

O, 0(88) =

O, or(#) = T, 0(8) 5

where u' is the unique Fuller class for (', C*) (this is a consequence of (7.1) and
Proposition (1.7)). By the definition of ", it suffices to prove that

O oy@) = [l [ni" (', CI.
k
Let C' = U I;, I'; are isolated, and let m; be the multiplicity of I';. By the additivity

of i¥ and Proposmon (1.4) it suffices to show that

o, (M "'zr) = 1171 [—:—;— (P, x,-)} forany i=1,... k.

(P; and x; are described in the definition of i¥.) The latter equation is a trivial con-
sequence of Theorem (6.1) and Remark (6.2).
(7.4) COROLLARY. If K = Q, then under assumptions of (1.3) we have

Oy = ', C)e Q.

This corollary indicates a problem of determining which germs have Fuller
classes. The following result presents a sufficient condition for their existence.

(7.5) ProposiTiON. Let 0 be a local semiffow on a topological space. Let (n, C)
be a flow-germ. If the orbit space C|S* of the action fc: S x C— C deflned in Section 2
is triangulable and H*(C/S';Z) = 0, then there exists a Fuller class for (x, C)
over Q.

Proof. Let n be a common multiplicity of M¢. Put Z,= %,/Ic S*. Forx,ye C
introduce a relation

x~y iff yeZ,x.

z‘
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Denote B = C/.. The mapping ‘
StxBa(t, [x)—t[x] = [wx]le B

where we /% is a free S'-action on B. In order to prove the proposition it suffices
to determine a class v € H'(B; Z) such that, for any b € B, v, is equal to the class z,
for the mapping 6: ¢— tb (where y(b) denotes the orbitof b, i.e. the set § 1p). Indeed,

1 . . .
in this case we put u = —g*(v), where ¢ is the quotient mapping C — B. Such a class v
n

can be obtained as follows. Let y be an orbit of the action on B. Choose a point b & y.
Then there exists a slice S, of the action in b (see [Br], Ch. IL. 4) such that the mappings

fo: Sy2y—7y(y) € B/S?
and
SixS,2(t,y)>tyeB

are homeomorphisms onto images under them, and these images are open. Put
W, = fy(Ss). The set # = {W,: y € B/S'} forms an open covering of B/S* so we
can find a triangulation such that for all vertices y;, i = 1, ..., k, of this triangulation,
{St(y,)}; is a covering subordinate to #", where St means the star of a vertex. Let
b, e B be a point such that St(y;) S Wyp,. Put

Z; =f';1(St('yx)) > Uz = Slzg .
Let g;: St(y;)—Z; be the restriction of f;, ', and let
hi: S*xSt(y)= (s, )~ s9,0) € Us .

Define v; = (pry o b ')*(z) e HX(U,), where z is the staadard generator and pry
is the projection onto the first factor. Thus for any b such that y = y(b) € St(y;)
we have v], = 2, (where 8 is the mapping — tb). We prove that vilu,nv, = Vjluinu;-
Assume that y € U;n U;. Since the set St(y;) nSt(y)) is contractible, the restriction
mapping H*\U;n U)) > H*(y) is an isomorphism. As it maps vy, and vjp,nn,
onto the same element, so these restrictions must be identical. Now we can use the
methods presented in [BT], p. 116-119 and 189-191. To this end one must replace
the Cech-De Rham complex by the Cech-singular complex. The free S!-action
determines on B the structure of an S'-bundle over B/S*. The set {v;: i=1, .. ,k}
forms an orientation of this bundle. Since B/S* = C/S, the second Cech cohomology
of the good covering {St(y,)}; of B/S* is equal to zero. Thus the Euler class vanishes,
and the result follows from the remark on page 119 of [BT].

A sufficient condition under which C/S* is triangulable is presented in the
paper [Y].

(7.6) ExamPLE. The germ (n, {1} x S®) for the Seifert flow = on §° (see [Se]
or [Fu]) provides an example of a case in which the assumptions of (7.5) are not
fulfilled. Indeed, for the S'-action on S determined by 7 we have S3/S* = §2.
Since H'(S®) = 0, the above germ does not have any Fuller class.
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8. The index j. The results of the previous section suggest the possibility of
introducing a periodic orbit index in the following way. Let IIF(X) be a set of flow-
germs on a given ENR-space X such that, for any (x, C) e II*(X), the following
conditions are satisfied:

(8.1a) There exists a Fuller class for (n, C) over Q.

(8.1b) (=, C) is approximable by germs (zn’, C’) having a unique Fuller class
(approximability means that the condition presented at the beginning of the proof
of (7.3) holds).

A condition which guarantees (8.1a) is presented in (7.5). The condition (8.1b)
is fulfilled if = is a smooth flow on a manifold.

(8.2) THEOREM. The function

3: I°(X) 3 (n, C) > o) € @,

where u is an arbitrary Fuller class on (z, C) over Q, and the fixed point homomor-
phism ¢ is determined by the standard orientation in (2.4), is a periodic orbit index.

Proof. We must prove that ¢, (%) does not depend on the choice of a Fuller
class u. Let u; and u, be two Fuller classes on (r;, C). By the tautness of the Cech
cohomology, there exist open neighbourhoods U; and U, of Cand classes v; € H\U)
such that u; = vlc. If (', C’) is a flow-germ from (8.1b) sufficiently close to (=, C),
by the same argument as in the proof of (7.3) we conclude that

O, o) = T cy(Vilc)

for i = 1, 2. By Proposition (7.2), v;]c- can be regarded as Fuller classes. Since such
a class on (7', C) is unique, v;]c = v,]c-. Thus we have shown that o, cy(2y)
= (s, ;(tz). The additivity and the homotopy invariance of | follow from (1.4)
and (1.6), so the result is proved.

(8.3) Remark. If = is a smooth flow on a manifold X and (z, C) e IFF(X),
then j(n, C) = i*(=, C) — which is stated in Corollary (7.4).

(8.4) Remark. The index 7 is an extension of the index constructed in [Fel]
in the finite-dimensional case.

Now we compute j in a simple situation.

(8.5) PROPOSITION. Assume that ¥ lis @ compact polytope, and X = S'x ¥.
Then for the flow

m: Rx X3 (¢, (s, )~ (exp(2nit)s, y) e X

we have §(n, {1} x X) = y(Y), where y is the Euler characteristic.

Proof. Obviously, there exists a Fuller class on {1} x X, but such a class need
not be unique. We prove that = is approximable by flows with the discrete set of
periodic orbits. Let 4, be the standard g-dimensional simplex (see (2.4)). One can
construct a flow ¢? on 4, such that all the simplexes of the first barycentric subdi-
vision of A4, are invariant with respect to ¢? (thus all the vertices are stationary),
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and inside any simplex of this subdivision ¢* “flows” into the direction of the vertex
which has the greatest number of coordinates equal to zero. Moreover, ¢* can be
constructed in such a way that if 4,— 4, is the canonical face operator, then
the image of " under this operator coincides with the restriction of ¢ By the carte-
sian multiplication of the flow

Rx S'a(t,s)—exp(2nit)se S*

by ¢* we obtain a flow on S'x4,. Choose an &> 0. We can find a triangulation
of ¥ such that any of its simplexes has the diameter less than &. Glueing together the
flows obtained in the above way for each simplex of this triangulation, we obtain
a flow on X s-close to = and having isolated periodic orbits.

For convenience, assume that ¥ < R". We can find an embedding e: S ' R?
such that e(exp(2mit)) = (z,0) for te(—%, %), and a neighbourhood retraction
s: V—e(SY) such that s(x,y) = (x,0) if (x, y) is sufficiently close to (—%,Hx0.
Let r: WY be also a neighbourhood retraction, where W is open in R". Put
i Y<- W.In order to find j(z, {1} x X), it suffices to consider the following mapping:

Ry xVxWa(t, (x, 1), W)= ((x, 3), w)—(e(n(t, e (s(x, 3)), r(w))) e R*x R".
In a certain neighbourhood of {1}x {0} x ¥ this mapping is of the form:

(. e 3D, W)= (L =1, ), w—r(W)) .

By similar arguments as in the proof of (6.1), the above fact implies that J (z, {1} x X)
is equal to the fixed point index of i o r: W—» W. By the Lefschetz Fixed Point Theorem
this index is equal to x(Y), so the result is proved.

In the following corollary to this proposition we consider also mappings which
need not be local semiflows.

(8.6) COROLLARY. Let X = S 1% Y and n be as above. Assume that y(Y) # 0.
Then for any &> 0 there exists a neighbourhood N of = in the space of all continuous
mappings Rx X — X with the compact-open topology such that for any feN there
exists (t,x) e (l—e, L+e&)x X for which f(t, x) = x.

Proof. By the definition of § and (8.5) we have 61 «xy(#) # 0, where o is the
fixed point homomorphism and u € H'(1x X) is a Fuller class. By the tautness of
the Cech cohomology we can extend u to a certain neighbourhood of 1xX. Now
the result follows easily from Proposition (1.7).

9, Fuller’s construction. The index } presented in the previous section cannot
be regarded as an extension of the Fuller index, since it is not defined for ail flows.
In order to find a proper extension we will adapt to our considerations some argu-~
ments used in the paper [Fu].

Let X be a Hausdorfl space, and let p be a given positive integer. Denote

& = {(%y, -, x)€ X*: x; % x; for i #j}.
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The group Z, acts freely on X the corresponding action is generated by

(1, (xg, ...

Define X, = )?/Zp. The quotient mapping X — X, is a p-sheet covering; the image
of (xy, ..., x,) under this mapping is denoted by [x,, ..., X,].
Assume that m: D— X is a local semiflow on X. Let D= R, x X be the set

x,): (¢, x)e D and Vze[0,1]: (r(z, %), o 1z, X)) € X}

LX) = (X2, ey Xy Xy

i, xg, os
Since D is open and invariant with respect to the relation
x N~ (t, (Vg -oos ¥,)) iff 5=t and there exists ge Z,:
Dires g = (x5 e
the set D/. is open in R, xX/., and by (0.4) in [Sw] the set
D, = {(t, [x1, .., x,) € Ry x X, (1, (%1, -.v, %) € D}

(s, (xg, e,

is also open. The mapping

np: Dps (t: [xls sy xp])_’ [ﬂ(f, xl)a weny ‘It(t, xp)]E Xp

is a local semiflow on X,.
Consider the continuous mapping

t 1 p—1
@, Ea(t, )=~ |x,n|—t,x), e, ;| — 1, X eD,
P p p

where E is the maximal subset of D such that for any (¢, x) € E the element on the
right is defined. Analogously as in the smooth case (se¢ [Fu], Lemma 4.3), we have

(9.1) LemMaA. Let p be a prime number. Assume that C is a compact isolated set
of periodic orbits for m. If p > m (where myg is the maximum of the set of multipli-
cities M), then C< E and ©,(C) is a compact isolated set of periodic orbits for m,.
In this case the transformation I~ ®(I') is a bijection between orbits of the germs
(n, C©) and (n,, $,(C)); moreover, the multiplicities of I and ®,(I') are equal. If
(=, C% ~(r', CY) and (z*, C*), we I, is a homotopy such that p >mc. for any o,
then

(53, B,(CO) = (s}, 2,C)

Now we present some (co-)homological properties of this construction. As
at the beginning of this section, we assume that p is a positive integer, and X}, is
attached to X and p. If Y is a path component of X, and y, € Y, thenwe have a nat-
ural homomorphism

(Y, yo) 3 [w] = [o,] € H(Y; Z)

where 7 denotes the fundamental group functor, w: [0, 1]— ¥ is a loop in y,, [@] is
the class of » and
6y 4,9 (1—1)eg+tey v w(t)e Y
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is the singular simplex determined by . The monodromy homomorphism
7(Y, yo)~» Z, induces a homomorphism Hy(Y;Z)~Z, such that the following

diagram commutes
7i( Y, o) \

ZF
' /!
m(:2)”
As the latter homomorphism does not depend on the choice of y,, then we have
another homomorphism

Q: H(X,;2) = ® H(Y;Z)~Z,.
Y

The Universal Coefficients Theorem implies that there exists a unique element
v, € H*(X,; Z,) such that for any ¢ e Hy(X,; Z)

Q&) =<, &eZ,.

Assume now that X is an ANR. By the Hanner’s Theorems X, is also an ANR.
The singular cohomology class v, defined above induces naturally a Cech cohomology
class u,€ H'(Ry x X,; Z,). We have the following result:

(9.2) TueoreM. Let p be a prime number. If (z, C) is a flow-germ on X such
that p>mc, then uplo,, is a Fuller class for the germ (,, ®,(C)) over Z,.

Proof. By (9.1), any orbit in ®,(C) is of the form @,(I') for some orbit I' = C.
- For convenience, we will write I', instead of @,(I". Let I' be an orbit in C, let
(0, x) € I and let m be the multiplicity of I'. The underlying orbit of I, is contained
in some path component ¥ of X,, and the monodromy homomorphism maps the

loop
o 1 p—1
0,—|3at=m |t {x,m| -, x|, ...,n| — @, x eY
P P p

onto 1€Z,. The multiplicities of I' and I', are equal by (9.1). Hence if w, is the

minimal period of x, then the loop [0, %]—» Y (defined as the restriction of the
p

. . Oy, s .
previous one) is mapped onto [m] ' € Z,. As the number — is the minimal period
p

of points of the underlying orbit of I',, the latter loop defines the standard generator
{r,e H(I',; Z) (see Proposition (5.2)). We have

<up|1‘,,, Cr,,> =[m]™' = ([m]_izr,, (:r,> >
which implies that

— -1
up]l‘p = [m] ZI‘,:
so the result is proved.
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10. The indices j, and j. In this section we assume that X is an ENR-space.

“Since ENR-space coincide with finite-dimensional, separable and locally compact

ANR’s (see [Dol]), the results of the previous section imply that the space X, is
also ENR for any p.

Let g be a given positive integer. Denote by II,(X) the set of all low-germs on X
such that (n, C) e II,(X) iff mc<g. We have the following result:

(10.1) PROPOSITION. The function

Jot T(X) 3 (m, €)= {0, 0icnWpl o)} p €

Il z,

PprimeZ>gq
(where we use notation introduced in Section 9 and the fixed point homomorphisms are
determined by o from (2.4)) is a periodic orbits index.
Proof. This follows immediately from (2.5) and (9.1).
Now we introduce the main object of this note. We have the canonical mapping

o 1 z- Il z/ ® Z,.

pprimeZq P prime pprime

Since for any homotopy (%, C), w € I, of flow-germs on X, the set of its multipli-
cities ) Mc« is finite, (10.1) implies

ael

(10.2) TuaeoreM. The function
X))o (n, C)=6(jm, Ce ]

pprime

Z ® Z,

pprime

where q is a sufficiently large number depending on (r, C), is the periodic orbits index
defined on the set II(X) of all flow-germs on X.

Now we explain why the index j may regarded as an extension of the Fuller
index. To this end we need the following result.

(10.3) THEOREM. If = is a smooth flow on a manifold, (x, C) is a flow-germ,
n is a common multiplicity of M and i¥ denotes the Fuller index, then

j(m, €) = 6({[n}; *Ini"(n, C),},)

where p is prime, p>n and [-], is the modp class.

Proof. Since the fundamental result of [Fu] states that for any p>mg

iz, C) = i¥(n,, B,(C))

(see [Fu], Lemma 4.5), the assertion follows easily from Theorems (7.3), (9.2) and
the definition of j.

(10.4) COROLLARY. For any germ (n, C) generated by a smooth flow m we have
j(m, C) = 0 if and only if i¥(z, C) = 0.

(10.5) Exampre. Let a compact manifold (without boundary) X be the total

space of an orientable smooth S-bundle. This structure induces 2 S!-action on X,
and, consequently, a smooth flow on X such that any point is periodic with the
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minimal period equal to 1. The same argument as in [Fu), p. 142-143 shows that
iF(x, {1} x X) = x(X/S?), where the right side denotes the Buler characteristic of
the orbit space of the S'-action. In particular, if this characteristic is non-zero,
then (10.4) implies that j(x, {1} x X) # 0. This fact induces the following generali-
zation of the Seifert Theorem (see [Se]): For any germ (¢, C), where ¢ is a (continuous)
local semiflow on X, such that (g, C) is homotopical to (n, {l} x X), the set Cis
nonempty. It is interesting to know whether in this statement the term “local semi-
flow” can be replaced by the term “continuous mapping” as in (8.6).

(10.6) Remark. For spaces with the nonvanishing first cohomology, the com-
position (j, {i,},), where the indices i, are defined as in (2.5), has better properties
than j alone.

Finishing the paper we present an idea how to extend the index j onto arbitrary
ANR’s. We assume that the considered local semiflow = is compact, i.e. for any
compact set K contained in the domain of n there exists a neighbourhood U of K
such that =(U) is relatively compact. Let (z, C) be a flow-germ. Since the local
semiflows 7, are also compact and defined on ANR-spaces, it suffices to apply the
argument presented above using an extended version of the fixed point, homomor-
phism from Section 1. Inorder to obtain this version, one must introduce a generali-
zation of the fixed point transfer in the spirit of the paper [G]. Some results in this
direction were obtained by J. Jezierski [Je] and H. Ulrich [U].
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