icm

A reduction of the Nielsen fixed point theorem for symmetric product
maps to the Lefschetz theorem

by

Dariusz Miklaszewski (Torun)

Abstract. In 1957, C. N. Maxwell [3] defined a Lefschetz number and proved a Lefschetz fixed
point theorem for symmetric product maps of compact polyhedra. In 1979, 8. Masih [2] defined
a fixed point index and a Nielsen number for such maps. The goal of this paper is a proof that the
Masih-Nielsen number is 0 or 1 and it equals 1 if and only if the Lefschetz number does not equal
zero. Consequently the Nielsen theorem [2] for symmetric product maps reduces to Lefschetz’s.

Tntroduction. Let X be a topological space and n>2 be an integer. The n-th
symmetric group S, acts on the n-th cartesian product X" by the formula
S(X0y eres Xy} = (Xgiays +ors Xsqmy). The n-th symmetric product X, of X is the orbit
space X"/S,. Continuous maps from X to X, are called symmetric product maps.

Let g: X"— X, be the projection onto the quotient space and f: X—X, be
a symmetric product map. A point x is said to be a fixed point of f if f(x) is the
projection of a point having x as a coordinate. According to [2], fixed points x, ¥
of f are in the same fixed point class if there exists a path C in the cartesian pro-
duct X" such that the first coordinate C; of C is a path from x to y and fo C; is
fixed end-point homotopic to go C (fo Cyxge C).

The main result. The notion of fixed point classes is trivial in view of the
following:

PROPOSITION. If X is a pathwise connected topological space, then every sym-
metric product map f: X— X, has at most one fixed point class.

Proof. Let x, y be fixed points of f. There are X,y€ X" ' gsuch that
S = q(x, X, F(») = q(y, ). Let C, be a path from x to y and D be a path from X
to j. The projection g: X" — X, induces an epimorphism of fundamental groups [13,
p. 91, Cor. 6.3. Since X" is a pathwise connected space, this result does not depend
on the choice of the basepoint of the fundamental group of X", in particular there is
a loop (E, E) based in (x,X%) such that (foCy)(g9(Cys D))"t ~¢(E, E). Let
(x', x'") be coordinates of X in Xx X"~% and (E', E"') = E (if n = 2 then the second
coordinate should be omitted). Let F be a path from x to x', G = F Y+« ExF,
H=(GxE',x"+E"). Then ¢(G,E)=~q((G,%) *(x,E)) = q(x',H) and f¢Cy
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~g(E, E) » ¢(Cy, D)= ¢(F, %) * q(G, E) * g(F™, %) % q(Cy, D)=q(Cy, H * D),
i.e. the points x, y are in the same class. B

I would like to express my gratitude to Zdzistaw Dzedzej who associated the
proof of the above proposition with the subject of [1].

The Nielsen theory. In 1983, N. Rallis developed a fixed point index theory for
symmetric product maps of compact euclidean neighbourhood retracts (ENRs).
Using this index we follow S. Masih [2] and define the Nielsen number of /1 X— X,
as the number of essential fixed point classes (a class is an essential class if its index
does not equal Zzero).

Now, let X be a compact connected ENR space. It follows from the Proposition
that there exists at most one fixed point class of /1 X— X, By [4], the index of the
unique fixed point class equals the Lefschetz number of f.

COROLLARY. The Nielsen number N(f) of the symmetric product map f: X— X,
equals 0 if the Lefschetz number equals O and it equals 1 otherwise. @

Remark. In 1988, H. Schirmer [5] and [6] proved that if X is a triangulable
manifold of dimension not less than 3, then for any map f: X — X, there cxists
a map homotopic to f having exactly N(f) fixed points.

I would like to express my gratitude to Professor H. Schirmer and to the referee
for their suggestions and to Professor L. Gérniewicz for his kind encouragement
during the preparation of this paper.
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Normal subgroups of measurable automorphisms

by

R. M. Shortt (Middletown)

Abstract. Given X < R, let F(X) be the group of all Borel-isomorphisms of X onto itself and
let CO(X) be the normal subgroup comprising all f with {x: f(x) # x} countable. Then
G(X) = F(X)/CO(X) is the “reduced automorphism group™ of X. Using a techmique of
R. D. Anderson (Lemma 2.1), we explore the normal subgroup structure of G(X). For certain sets X,
there is a simple relationship between this structure and the poset of Borel-isomorphism types of
measurable subsets of X (Proposition 2.6). As a consequence of this result, one sees that G(X)
is a simple group when X is a Borel subset of R (Corollary 2.8).

Whether G (4) can be simple for 4 analytic and non-Borel is not known. Under analytic deter-
minacy and even weaker assumptions, the answer is no. If there is such as et 4, then there is a topo-
logically rigid, zero-dimensional A’ < R Borel-isomorphic with 4 (Proposition 3.3). Such rigid sets
have been considered by van Engelen, Miller, and Steel.

1. Preliminary notions. We deal exclusively with subsets of the real line, although
all our results are easily transferable to the context of any complete, separable,
metric space. A subset X of R is analytic if it is a continuous image of the space
of irrational numbers (or is empty). A set X < R is co-analytic if R~ X is analytic.
Souslin showed that X is a Borel subset of R if and only if X is both analytic and
co-analytic [7; pp. 485-6]. Given X < R, define

B(X) = {BnX: B is a Borel subset of R}.

Then #(X) is a o-field whose elements are the measurable subsets of X. A function
/i X— Y is a (Borel) isomorphism if f is a one-one correspondence of X with Y,
and B e #(X)if and only if £ (B) e B(Y). If X = ¥, then fis a (Borel) automorphism.
If f is an automorphism of X, define its support as

supp(f) = {xe X: f(x) # x}.

The collection F(X) of all automorphisms of X forms a group under composition.
Note that if £ and g are automorphisms of X, then supp(g o/ g™ = g(supp(f))-

Let CO(X) be the set of all fe F(X) such that supp(Sf ) is countable. Then
CO(X)is a normal subgroup of F(X), and we call the quotient G(X) = F(X)/CO(X)
the reduced automorphism group of X. If f€ F(X), then fis its coset in. G(X). A set X'
is measurably rigid if G(X) is trivial. Uncountable measurably rigid sets exist (ZFC),
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