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~g(E, E) » ¢(Cy, D)= ¢(F, %) * q(G, E) * g(F™, %) % q(Cy, D)=q(Cy, H * D),
i.e. the points x, y are in the same class. B

I would like to express my gratitude to Zdzistaw Dzedzej who associated the
proof of the above proposition with the subject of [1].

The Nielsen theory. In 1983, N. Rallis developed a fixed point index theory for
symmetric product maps of compact euclidean neighbourhood retracts (ENRs).
Using this index we follow S. Masih [2] and define the Nielsen number of /1 X— X,
as the number of essential fixed point classes (a class is an essential class if its index
does not equal Zzero).

Now, let X be a compact connected ENR space. It follows from the Proposition
that there exists at most one fixed point class of /1 X— X, By [4], the index of the
unique fixed point class equals the Lefschetz number of f.

COROLLARY. The Nielsen number N(f) of the symmetric product map f: X— X,
equals 0 if the Lefschetz number equals O and it equals 1 otherwise. @

Remark. In 1988, H. Schirmer [5] and [6] proved that if X is a triangulable
manifold of dimension not less than 3, then for any map f: X — X, there cxists
a map homotopic to f having exactly N(f) fixed points.

I would like to express my gratitude to Professor H. Schirmer and to the referee
for their suggestions and to Professor L. Gérniewicz for his kind encouragement
during the preparation of this paper.
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Normal subgroups of measurable automorphisms

by

R. M. Shortt (Middletown)

Abstract. Given X < R, let F(X) be the group of all Borel-isomorphisms of X onto itself and
let CO(X) be the normal subgroup comprising all f with {x: f(x) # x} countable. Then
G(X) = F(X)/CO(X) is the “reduced automorphism group™ of X. Using a techmique of
R. D. Anderson (Lemma 2.1), we explore the normal subgroup structure of G(X). For certain sets X,
there is a simple relationship between this structure and the poset of Borel-isomorphism types of
measurable subsets of X (Proposition 2.6). As a consequence of this result, one sees that G(X)
is a simple group when X is a Borel subset of R (Corollary 2.8).

Whether G (4) can be simple for 4 analytic and non-Borel is not known. Under analytic deter-
minacy and even weaker assumptions, the answer is no. If there is such as et 4, then there is a topo-
logically rigid, zero-dimensional A’ < R Borel-isomorphic with 4 (Proposition 3.3). Such rigid sets
have been considered by van Engelen, Miller, and Steel.

1. Preliminary notions. We deal exclusively with subsets of the real line, although
all our results are easily transferable to the context of any complete, separable,
metric space. A subset X of R is analytic if it is a continuous image of the space
of irrational numbers (or is empty). A set X < R is co-analytic if R~ X is analytic.
Souslin showed that X is a Borel subset of R if and only if X is both analytic and
co-analytic [7; pp. 485-6]. Given X < R, define

B(X) = {BnX: B is a Borel subset of R}.

Then #(X) is a o-field whose elements are the measurable subsets of X. A function
/i X— Y is a (Borel) isomorphism if f is a one-one correspondence of X with Y,
and B e #(X)if and only if £ (B) e B(Y). If X = ¥, then fis a (Borel) automorphism.
If f is an automorphism of X, define its support as

supp(f) = {xe X: f(x) # x}.

The collection F(X) of all automorphisms of X forms a group under composition.
Note that if £ and g are automorphisms of X, then supp(g o/ g™ = g(supp(f))-

Let CO(X) be the set of all fe F(X) such that supp(Sf ) is countable. Then
CO(X)is a normal subgroup of F(X), and we call the quotient G(X) = F(X)/CO(X)
the reduced automorphism group of X. If f€ F(X), then fis its coset in. G(X). A set X'
is measurably rigid if G(X) is trivial. Uncountable measurably rigid sets exist (ZFC),
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‘but they can contain no uncountable Borel subsets of R. Since every uncountable
analytic set contains such a Borel set [7; p. 4447, no uncountable apalytic set can be
measurably rigid. Whether nature will allow the existence of an uncountable, co-
-analytic, measurably rigid set is not known. We shall return to this question in
Proposition 3.3 infra. More detailed information about measurable rigidity and G(X)
lies in [2], {51, [10].

Let X be a subset of R. We define the isomorphism type of X by
{Y<R: X and Y isomorphic} if X is uncountable

Hx) = {o if X is countable.

Put S = {¢(X): X< R}. Given #, and 1, in §, choose X; =(0, 1) and X, =(1,2)
such that #; = #(X;) and 1, = #(X,). Then define

ti+t, = X UXy).
It is not hard to check that t; +1, is well-defined. Depumerable sums #; +#;+... are
defined analogously. We use the notations

nt = t+..+t (n times), of = t+t+..

Define a relation < on S by putting 5 <t whenever ¢ = s+a for some a. Then
#(X) < #(Y) just in case X is isomorphic with a measurable subset of Y. A Schrdder—
Bernstein argument shows that < is a partial order on S: see [4; Theorem 2.5].
Tt seems that Tarski was first to notice that such isomorphism types have an algebraic
behaviour quite similar to that of cardinal numbers. In fact, we have

1.1. LeMMA. The system (S, +, <) is a partially ordered commutative monoid
with identity element 0. Indeed, S is a cardinal algebra in the sense of Tarski [11].

Indication. The commutative, associative, and identity element postulates are
rather immediate. It remains to check the refinement and remainder axioms:

Refinement. Suppose that a, b, c, are elements of S such that a+b = ¢o+¢4+.--
We produce elements a, and b, such that

a=ayta;+... b=20by+by .. a+b,=c,.
Let X=(0,1), Y=(1,2) and Z,s(n,n+1) be sets with a = ¢(X), b= #(Y),
and ¢, = t(Z,). By hypothesis, there is an isomorphism f mapping XU Y onto
ZywZu... Put a, = t(Z,nf (X)) and b, = {(Z,0f(Y)).
Remainder. Suppose that a, and b, are elements of § such that a, = b,-+d,+

forn =0, 1, ... We exhibit an element u such that a, = u+b,+b,4, +... for each 7.
Let X, and ¥, be subsets of R such that

Xn= YnUXn+1i Ynan+1:Q:
Y;,E.@(Xn), Xn+l eg&'(X,,),
(X) = a,, 1(%;) = b,.

Put u=1(N X,). W ‘
For further details concerning the algebraic structure of S, vide [9].
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Given t€ S, define sec(t) = {se §: s<¢}. There is an analytic subset U of R
such that X' < R is analytic if and only if #(X) < #(U). Such are the so-called “uni-
versal” analytic sets [7; p. 459]. Given Borel subsets B, and B, of R, a well-known
result of Kuratowski asserts that ¢(By) = #(B,) if and only if B, and B, have the
same cardinality [7; p. 451]. It follows that w?(B) = #(B) for each Borel B<R.
Also, t(B) <t(4) whenever 4 and B are uncountable with 4 analytic and B Borel.
Thus there ate only two types for Borel sets: #(B) = O for B countable, and
¢(B) = t(R) for Buncountable. No such clear structure result is available for analytic
sets in general. The postulate that all analytic games are determined is equivalent
to the statement that for each anmalytic set A4, either 7(4) = 0 (4 countable),
2(4) = t(R) (4 uncountable Borel), #(4) = #(U) (universal type). This is true e.g. if
measurable cardinals exist [8]. The situation is quite different under constructibility
{V = L): see [3].

1.2. LemMA. Let ASR be analytic and non-Borel. Then t(A) = t(R)-+s implies
that s = t(4).

Proof. First note [7; p. 444] that every uncountable analytic subset D of R
contains a homeomorph B of the Cantor set. Thus

1(D)+1(R) = t(D— B)+t(B)+t(R)
= {(D—B)+1(B)+1(B)
= t(D-B)+1(B) = (D).

Given A analytic and non-Borel with t(4) = ¢(R)+s, take B € & (A4) with #(B) = t(R)
and t(A—By=s Then A-B is uncountable and analytic. Thus #(4)
=t(R)+s =5 N

An isomorphism type te S is countably compact if whenever f; <f, <...<t
‘with sup,(#,) = 1, then ty = t for some N.

1.3. LeMMA. Let X be a subset of R such that t(X) is countably compact, and
suppose that A, S 4, < ... are elements of #(X) whose union is X. Then there is some N
with t(4y) = t(X). :

This lemma follows immediately from the definition of countably compact
types, and to some degree justifies the use of the term.

1.4. LemMMA. Let te S be countably compact. Then t = ot.

Proof. Let X be a subset of (0, 1) with #(X) = ¢. For countable ordinals ¢,
we define real numbers a(x) and the isomorphism types s, as follows. Given «,
assume that a(f) and s, are defined for f<a so that a(0) =1, 55 =0, and

O<a(fy<a(y) fory<p
sp = t((a(h), 1)nX),
‘These are two cases to consider.

Case 1. & = f+1, a successor ordinal.
3 — Fundamenta Mathematicae 135.3

W<t
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In this case, consider the sequence b, = (a(By—1/m)v 0 for n=1,2,3,.

For each n, put
B, =[(0,5)u(a(B), DInX.

These sets form an increasing sequence whose union is (within a singleton) X. From
the general theory of cardinal algebras [11: Theorem 3.19], we know that z(X)
= sup,#(B,). By Lemma 1.3, there is some » with b,>0 and = #(X) = #(B,).
Define a(el) = b,. Then 0<a(x) <a(p). Since t = #(B,), we have

t=t+t(X~B), t=1t+n(X-B),
whence it follows that w#(X—B,) <t If 5, = t((a(@), 1)n X), then
ws, = wt(X—B,)+wss = [wt(X—B,)Vv os]<t
as desired. We have used [11; Theorem 4.7].

Case 2. o is a limit ordinal.
In this case, put a(d) = inf{a(f): f<a}, and set
= t((a(®), )0 X) = sup{s;: B<a}.

Tt follows that ws, <t. Note that if a(e) = 0, then s, = ¢, the construction halts,
and the lemma is proved.

In fact, the countable chain condition forces this construction to halt at some
countable limit ordinal o. Then a(x) = 0, and ¢ = wt as desired. B

1.5. LemMA. Let t, andt, be countably compact types in S. Then their supremum
exists and equals 11V 1 = 1 +15.
’ Proc»fa This follows from 'I’heorem 4.7 of [11]. ®. .

1.6. LEMMA. Let te S be such that sec(t) is finite. Then t is countably- compact.

. Asmentioned above, the number of analytic types is finite if analytic determinary
holds. In this case, every analytic type is countably compact. Under ¥V = L, thisis
not true: ¢ = wt does not always obtain [3; Lemma 4.4].

A type te S is a cover of 0 if sec(?) has exactly two elements. Otherwise sa1d
t(X ) is a cover of 0 if and only if X is uncountable and Borel isomorphic with each
of its uncountable measurable subsets. Clearly, #(R) is a cover of 0, and each cover
of 0 is countably compact. In [9], a large family of such types was constructed.

These covers of 0 can be used to construct “successors” to a type #. A successor
to ¢ is a type s > ¢ such that 5 > u > ¢ implies either u = s or u = ¢, (See [9] for the
details.) Every successor type is countably compact (cf. compactness of ordmal
spaces).

2. Factorization of automorphisms. The nuts and bolts part of our method is
a technique used by R. D. Anderson in [1], whereby he proved that, under certain
conditions, a given homeomorphism of a space onto itself could be factored as the
composition product of four conjugates of another such homeomorphism (or its,
inverse). The technique is easily adapted to the measurable context, and 1t 1s used
to prove

L
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2.1. Basic LEMMA. Let f and g be Borel automorphisms of a subset X of R. Suppose
that ...A_, Ay A, ... is a sequence of disjoint, isomorphic, measurable subsets of some
Be @(X) such that supp(f) S 4, and Bng~*(B) = @. Then f is a product (under
composition) of two conjugates of g with two conjugatesof g~ . 1. In particular, § belongs
to the normal closure of § in G(X).

Proof. Let r: X— X be a Borel antomorphism such that supp(r) € B and
r(4,) = A,4, for each n. Now supp(rofor M cr(do) = A, for n=0,1,...
Define k: X— X by putting

k() = {r"(f(r”’(x))) for xe d, (n=0),
x for xe X— U 4,.

nZ0

Then % is an automorphism of X with supp(k) € B. Hence supp(re k™o r ') =B,
and likewise supp(g~tokeg)usupp(g ok o g) =g !(B). Thus, each of the
pairs

rok Yor tand g7lok Tt oyg

rand g”tokog

commutes. We calculate .
(rg~‘kgk™'r '1)(g’1k 1gk)—- (rg'll’cgr'i)(r"lk'1 "Bk gk
= (g7 kgr (g R T G kT DK

o ==, '

Then : ' E
f= (rg 1kerk'1 '1)(9“k 1gk)"
= (rg ™ r kgl ™'r ‘1)(47'.1)(16‘ gk),
the product of four conJugates B ) P

2.2. LeMMA. Suppose that.f and g are Borel automorphisms of a subset X of R
such that .

(1) ot(supp(f)) < t(X— Supp(f))

(2) there is some B e B(X) with, g(B)mB 23 and t(E)>mt(supp (f ))
Then § is in the normal closure of § in G(X).

Proof. Using condition 2, choose disjoint. measurable subsets...4_; 4g A1 4;...
of B such that #(d,) = t(supp(f)) for each n. By condition 1, there are disjoint
measurable sets C; Cy... of X—supp(f) with #(C) = t(supp(f)) for each nm.
Then

2

1(U G+ 1(X—supp(f)—U G,)
wt(supp (1)) +H(X—supp(f)-U G)
t(supp( )L U G)+1(X—supp(S)-U C))
1(X) = t(U ) +1(X—U 4,)
wt(supp(f))—l—t(X—U A4)

=1 4 W+ (X—-U A,.) = 1(X—4o).

t(X— supp.( )

i

I

i

I
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Thus there is an automorphism A of X such that A(supp(f)) = Ao. Then
supp(hofo h™Y) = h(supp(f)) = 4o. Without loss of generality, therefore, we
may and do assume that supp( f)< 4o. Now apply Lemma 2.1. M

In the next group of lemmas, we explore conditions that facilitate the appli-
cation of these basic results.

2.3. LeMMA. Let g be an automorphism of a subset X of R and let s be such that
t(supp(g)) = 5, where every r<sis countably compact. Then there is some B e B(X)
such that t(B)>s and g(B)nB = @.

Proof. Let S be a measurable subset of supp(g) with #(S) = 5. Define
S, = {xe8: |g(®)—x|>1/n} for n=1,2,.. Then S is the ascending union of
the sets S,, so that by Lemma 1.5, #(Sy) = s for some N. Define

Ay = [k/N, k+1)/N)n Sy for k=0, £1, £2, ...,
noting that 4, ng(4y) = . Re-index the sets 4, as By B,... Define C; = B, and
Cn+1 = (cnUBn—i- 1)—g(cn)_g—1(cn)
for every n21. Then C; £ C, < ... and g(C)nC, = B.

CLAM. For each n, we have t(C) = t(ByU...UB,).

Proof of claim. We induct on n. The case for n = 1 being trivial, we assume
the result for »n and establish it for n+1. Clearly #(C,.,) <#(B;v...uB,). Also
G419 (CYUg HC)2C,U B, y, sO that

t(cn+ 1) + t(g (Cn)) + t(g—l(cn)) = t(.Cn v Bn+ 1)
t<Cn+1)+t(Cn)+t(Cn) > t(Cu)+(Bn+ 1) = t(B!. ... UBn UBn+ 1)
H(Cpt )HH(Cor )+ 1(Cra ) 2 (B L. UB, ) .
Since r = or for each r<s (Lemma 1.4), we see that 31(C,i) = t(Cysy)
>t(B;V...uB,,,), proving the claim.

Theorem 3.19 in [11] implies that #(U C,) = t(By)+... = t(Sy) = 5. Put
B={C,. 1

2.4. LEMMA. Let f be an automorphism of a subset X of R and suppose that every
r < t(supp(f)) is countably compact. Then f = fi o f, o fa, where supp(f,) < supp(f)
and t(supp(f,)) < t(X—supp(f)) for n =1,2,3.

Proof. Apply Lemma 2.3 to find a measurable subset B of X such that
1(B) = t(supp( f)) and f(B)nB = @. Define an automorphism h of X by

F @) xeB,
h(x)=f7(x) xef(B),
x xe X—(Buf(B)),

setting f; = fo h. Then supp(fy) < supp(f)—f(B), so that
1(supp (f1)) < t(supp (f)) = #(B) = t(f(B) < t(X—supp(fy) -
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Since #(B) is countably compact, we may write (Lemma 1.4y B = B, U B,, where B,
and B, are disjoint measurable sets with #(B,) = t(B,) = ¢(B). Define automor-
phisms f, and f3 of X by putting

f(x) xeB,,
Sa(x) = f—l(x) xef(By),
X otherwise ,
S xeB,,
fix) =) xef(Bd),
x otherwise .

Then supp(f2) = B, Uf(By) and supp(fz) = B, Uf (B,). Also,
t(supp(f3)) = #(B, VS (By)) = t(B, Uf (B,)) < t(X—supp(f2),

and likewise #(supp(f3)) <t(X—supp(fs)). Then f=fjof;of; as desired. M

2.5. LeMMA. Let X be a subset of R with the property that every type s< t(X)
is countably compact. Let f and g be automorphisms of X. Then f belongs to the normal
closure of § if and only if t(supp(f)) < t(supp(g)).

Proof. Suppose first that #(supp(f)) < t(supp(g)). Lemma 2.4 allows us to
assume that #(supp (f)) < #(X—supp(f)). Also Lemma 2.3 guarantees the existence
of a set Be #(X) with ¢(B) > t(supp(f)) and ¢g(B)n B = @. Noting that s = ws
for all < #(X), we apply Lemma 2.2 to make the desired conclusion.

Conversely, suppose that f belongs to the normal closure of § in G(X). Every
conjugate of g has a support of type #(supp(g)), and the composition of two auto-
morphisms whose supports are of types bounded by #(supp(g)) will have the same
property. The result follows. I

Let ¢ be an isomorphism type in S. A set I = sec(t) is an ideal in sec(?) if (1) I'is
non-empty (2) s and r < s imply r € I (3) if 5 and 5" are elements of 1, so, too, is
s+&'. An ideal is principal if it is of the form I= sec(s) for some s with 5 = ws.

2.6. PROPOSITION. Let X be a subset of R such that for each t<t, = t(X)
there is some type s with t = 2s. For each ideal I in sec(to), define

H(D) = {7 6(X): t(supp()) e}

Then the mapping I— H(I) is one-one and order preserving from ideals of sec(ty) to
normal subgroups of G(X).
If each s <ty is countably compact, then 1— H(I) is surjective.

Proof. If I is an ideal in sec(ty), and f, g are automorphisms of X, then the
relations .
supp(fy)  supp(f) Usupp(g),  supp(afy ™) = g(supp(f)),

show that H(I) is 2 normal subgroup of G(X). Clearly, I, =1, implies that
H(I) < H(I,). ‘
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Now suppose that I, and I, are distinet ideals of sec(ty). Suppose, say, that
sel,—I,. By hypothesis, there are disjoint sets B; and B, in #(X) with
s = t(B,UB,), 1(By) = t(By). Let f: B; =B, be a Borel isomorphism and define
g: X—»X by

f(x) xEBiy
g =4/7'x) x€By,
x xe X—(B,uB,).

Then g is an automorphism with #(supp (@) =s and e H (I)—H(l,). Thus the
mapping I— H(J) is one-one. :
Now suppose that each s< 1o is countably compact and that H is a normal
subgroup of G(X). Define
I = {t(supp(g)): Je H}.

We show that I is an ideal and that H(I) = H. Suppose that 5< t(supp(g)) for
some §eH. As above, there is some Fe G(X) with #(supp(f )) = s. Apply
Lemma 2.5 and conclude that f is in the normal closure of §; hence, fe Hand se .
We have proved that I is order-hereditary. Next, given f and g in H with
5, = t(supp(f)) and s, = t(supp(9)), let h be an automorphism of X' with supp(h)
= supp(g)—supp(f). Again Lemma 2.5 implies that e H. Then supp(fh)
= supp(f)usupp(g), which is (Lemma 1.4) of isomorphism type 51 +8z = 51 V 5.
Iis an ideal. Obviously, H < H(I). Given fe H(I), we know that there is some § € H
with #(supp(f)) = #(supp (9))- Another application of Lemma 2.5 shows that
feH. Thus H=H(l). & .

2.7, COROLLARY. Let X be a subset of R such that sec(¢(X)) is finite, and N be
the poset of normal subgroups of G(X). Then & and sec(t(X)) are isomorphic complete,
distributive lattices.

Proof. Apply the proposition, noting that e_very ideal in sec(?(X)) is principal.
Then use [11; 3.30, 3.32] and the fact that the normal subgroups of a- group form
a lattice. W ‘ ' . ‘

As mentioned before, under anaiytic detg:ﬂlinhcy, the set of analytic types is
sec(t() = {0, t(R), (U}
for U< R universal analytic. Corollary 2.7 shows that in this case, G(U) has exactly
three normal subgroups. ‘ ‘ ‘
2.8. COROLLARY. Let X be a subset of R with t(X) a cover of 0. Then G(X) is
simple. In particular, G(X) is simple for X a Borel subset ‘of R.

3. Automorphisms of analytic sets. A subset X of R is topologically rigid if the
only homeomorphism of X onto itself is the identity map. In [6], it is was shown that
there are no zero-dimensional, topologically rigid Borel subsets of R other than
singletons. However, it was also shown that, under V = L, there is an uncountable,
zero-dimensional, topologically rigid, analytic subset of R. As we shall see, this
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matter is related to the question of whether G(4) can be simple for 4 analytic, non-
-Borel. It is also related to the problem of whether an uncountable co-analytic set
can be measurably rigid.

3.1. LEMMA. Let A be an analytic subset of R and let N(4) be the subgroup
of G(A) comprising all F for which supp(f) is a Borel subset of R. Then N(4) is
a simple group.

Proof. The case where A4 is countable is trivial; for 4 uncountable and Borel,
Corollary 2.8 pertains. So suppose 4 analytic and non-Borel. Let f and g be auto-
morphisms of 4 with supp(g) uncountable and supp(f) Borel in R. Then:

t(supp(f)) = wt(supp(f)), #(supp(f)) < z(supp(s)) ,
t(supp(f)) < t(4—supp(f)) = #(4) .
Since each r < t(supp(f)) is countably compact, there is, by Lemma 2.3, some
Be B(4) such that t(B)>t(supp(f)) and g(B)nB = @. An application of
Lemma 2.2 shows that the normal closure of § contains f. There follows the simplicity
of N(4). m

3.2, COROLLARY. Let A <R be analytic. Then G(A) is simple if and only if
G(4) = N(A).

Proof. We may assume that 4 is uncountable. It is then easily checked that
N(4) is a normal subgroup of G(4) with more than one element. If G(A4) is simple,
then N(d4) = G(d). The proposition supplies the conyerse. |

Remark The earlier result (Corollary 2.8), that G(d) is simple for 4 Borel,
may be obtained from this proposition as well. :

3.3. PROPOSITION. Consider the following six statements:

(1) Any two analytic, non-Borel subsets of R are Borel-isomorphic.

(2) The isomorphism types of analytic sets are linearly ordered.

(3) The partial ordering of analytic isomorphism types is well-founded.

(4) Other than singleton sets, there are no topologically rigid, zero-dimensional
analytic subsets of R. i

(5) If A< R is analytic, then G(4) is simple if and only if A is Borel.

. (6) There is no uncountable, measurably rigid, co-analytic subset of R.
VAN

These implications obtain:

1 4 ——>5—>6

AN S
\\ /
3
Proof. 1=2 and 1=-3. Obvious.
75 and 3= 5 and 4=5. It was noted in Corollary 2.8 that G(4) is simple
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if A is Borel. Now assume that there is some analytic, non-Borel set A with G(4)
simple. By Corollary 3.2, G(4) = N(4). We show that conditions 2, 3 and 4 must fail.

Removing a countable dense subset of R if necessary, we may assume that A
is zero-dimensional. Let ¥~ be the collection of all open subsets ¥ of R such that
VA is Borel in R. Put 4, = A~ ¥". By the Lindelof theorem, we see that
An(U ) is Borel in R, so that 4, is not. In fact, 4, and 4 Borel-isomorphic. Thus
G(4y) = N(4,). We stake the

CLAM. Suppose that V, and V, are open subsets of R with Uy = Vyn 4, and'
U, = V,n A, non-void and disjoint. Then U, [resp. U,] is not Borel-isomorphic with
any set in B(U,) [resp. B(U,)]

Proof of claim. Suppose rather that f is a Borel-isomorphism mapping U,
onto some set Be & (U,). Define g: 4,— 4, by

f(x) XEUla
g =4f7'x) xe3B,
x xedy—(U,UB).

Then g is a Borel-isomorphism of 4, whose support contains U; and is thus not
Borel in R. This would contradict G(4,) = N(4,).

From the claim it follows that 4, is a topologically rigid set: condition 4 fails.
Also, with U, and U, as above, we see that the types #(Uy) and ¢(U,) are not com-
parable: condition 2 fails. Finally, let ¥; V... be a sequence of open subsets of R
such that the sets U, = V,n4, are disjoint and non-empty. Then the sets
4, = V,uV,4yU... are analytic, and 1(d4,) > t(4,) > ...: condition 3 fails.

5=>6. We prove the contrapositive. Let C be an uncountable, measurably rigid,
co-analytic subset of R. Of necessity, C and 4 = R— C are non-Borel. Now suppose
that f is a Borel-automorphism of 4. Then f extends to an automorphism g of R,
and the restriction h: C-» C of g to C is again an automorphism. Since C is measur-
ably rigid, it must be that supp(h) is countable, whence it follows that supp(f) is
Borel in R. We have shown that G(4) = N(4). From Corollary 3.2, we see that
G(4) is simple. Thus condition 5 fails. W

The author wishes to thank Manfred Droste and the referee, who intercepted
some earlier mistakes and whose suggestions and encouragement are most appreciated.
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