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On reduction theorems in the problem of composition of functions
by

Andrzej Kisielewicz (Wroctaw)

Abstract. The sequence {pn) of non-negative integers is represented by a clone (algebra) 4 if
the number pn(4) of essentially n-ary functions (polynomials) in 4 is equal to p, for all #20, In
his paper Composition of functions G. Grijtzer proposed to prove the following “reduction theorems”:

Each sequence represented by an algebra of type a can be represented by an algebra of type f.

In particular, he asked wether this is true for ¢ = <2, 2> and f = <2>.In spite of many results
on representable sequences no reduction theorem was proved so far. In this paper we show that
actually, except trivial and cectain peculiar cases, no reduction theorem holds. Tn fact, some variants
of reduction theorems are considered, and as a by-product, the characterizations of sequences
represented by clones of unary functions for all possible types are obtained.

The problem mentioned above, suggested by G. Griitzer in [4], § 10, concerns
actually the complexity of gencrating sets for clones. General problems in this area
liec on borderlines between such disciplines as multi-valued logic, universal algebra
and synthesis of automata (cf. [1, 2, 3, 8, 10]), our results having natural interpreta~
lions in all these disciplines. In this paper we use the terminology of [9] (rather than
that of [4]) combined with some universal algebra concepts [4]. In proofs also basic
concepts of graph theory are applied.

The paper is divided into five sections. In § 1 definitions and motations are given.
§ 2 contains a preliminary analysis of the problem showing that some very different
cases have to be distinguished here, Then, in § 3, our main results are presented.
Lemmas and proofs are given in §§4 and 5.

1. Definitions, A clone is a composition closed set of finitary functions (on
4 fixed universe U) containing all projections. For a set of functions F (on U) the
least clone containing / is denoted by [F] (thus [F] is the set of polynomials of the
algebra (U, FY). We write [fy, ., fy] for [{fy,..,/;}]. Denoting functions we
abbreviate f'(xy, ..., x,) by fr, .. %, whenever possible.

If the algebra U, F) is of (similarity) type «, then the clone |F] is said to have
2 generating set of type o. In this paper we deal with finitely generated clones: by
Lypes we mean finite sequences of non-negative integers (of length n > 1). The class
of all clones with generating sets of type o (on arbitrary universes of cardinality > 1)
is denoted by T'().
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Taking into account a point of view of multi-valued logic and synthesis of

automata a special attention is given to clones on finite sets and without nullary
operations, i.e. to types without zeros. In this connection, a clone is said to be
essential if it is not a pointed set, i.e. contains a nonconstant function different from
projections.

Given a clone 4, for n 2 1, by p,(4) we denote the number of essentially n-ary
functions in 4, while by po(4) — the number of constant unary functions. The
sequence {p,(4)) is called the p,-sequence of 4 (the sequence represented by A).
For results concerning p,-sequences cf. [1, 2, 4, 6, 7] and [5] for further referencos.
The basic concepts of graph theory are assumed to be familiar for the reader.

2. Preliminary discussion. Following Gritzer [4] we consider the following re-
duction theorem-schema:

R(x, B): For every clone 4eT(x) there exists a clone BeT(f) such that
P(B) = p,(4) for all 0.

At first note that if we ask e.g. whether R(o, §) is true for o = {2,2) and B = {2),
the answer is “no” because of rather a trivial reason: for the clone A =[f1./1],
where fix = ¢; and fyx = ¢, are constant unary functions, the p,-sequence of A is
<2,1,0,0,...> (just two constant unary functions and the unary projection), while
for each clone B e T({2)) we have either Po(B) <1 (whenever B is not cssential)
or pi(B)>1 or PdB) >0 for some k> 2 (whenever B is essential). Of course, we
wish for such trivial examples not to affect our solution and that is why we consider
simultaneously the following weakened version of reduction theorems (for types.
x #<0,0,..,0)):

RE(x, B): For every essential clone A eT(«) there cxists a clone Be T'(f)
such that p,(B) = p(4) for all n0. i

Another special case is when « is a type without zeros, while f§ contains 0 among
its elements. For any « with the property above there exists a clone A in T'(e) without
constant functions, while for any clone B in T(B) it has to be necessarily Po(B) > 0.
Hence, for such « and p neither R(a, f) nor RE(q, ) holds. Moreover, T(o) = T(h)
does not hold either. (Note, that T(«) < T'(f) means that cach clone generated by
aset of type o has a generating set of type f, and so, can be considercd as the strongest
ve_rsion of the reduction theorem,) Simply, 0 in a type, unlike other numbers, forces
existence of a non-projection function, That is why types without zeros and those
With zeros must be. treated separately.

On the other hand, observe that if e.g., o = {2) and f8 == <3, 3), then both
R(x, B) and RE(x, f) trivially hold, since cach clone in T'(x) belongs also to T'(f).
(If e.g., /= fxp, then putting gxyz = fixy and hxyz = x (a projection), we have
obviously [ /] = [g, A]). In order to describe all such trivial cases we introduce the
following:

DerNITION.  For two types o = @y, .., a,) and B = (by, ..., b,> We write
a < f whenever there exists a -1 mapping ¢ of {1,..,n} to {I,..., m} such that
a;<by; for all i =1, vy M.
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Using arguments as that above we obtain.easily

Lemma 1. If « < f, then T(0) < T(B), provided that if « is without zeros, then
so is . ‘

In particular, in such a case both R(a, B) and RE(x, ) trivially hold.

3. Results. Our result presented below concern arbitrary clones, i.e. also those
on infinite universes with infinite p,’s. It should be mentioned however that all these
results hold as well when merely clones on finite universes are taken into account
(this can be  checked easily by examining our proofs and is left to the reader).

Our main result is the following (we write «® for the type obtained from
@ = {0y, .en a,p by deleting all those a; with a, < 2): ‘ ‘ :

TanorEM 1. Let o be a type other than 0,0, ..., 0>. If (i) &* < B does not hold,
or (if) the length of 8 is less than that of o, then there exists an essential clone A in T(%),
on a finire universe, such that the p,sequénce of A is different from any p,-sequence
of a clone B in T(}). |

Using this result we obtain the following:

TueoreM 2. For any two types o and p, T(a) < T'(B) iff the following conditions
hold:

@) e<p,

(i) if « is without zeros, then so is . o

TueoreM 3. For o and [} without zeros the following are equivalent:

() T(@) TP, o

(i) R, f1), :

(iit) RE(m, f),

(iv) a<f.

These results mean that actually no intéresting reduction theorem holds, and
generally, the characterization of p,-sequences for algebras of .a given type'cannot
be reduced to o simpler type (thus shedding a light on complexity of generating sets

for clones). ‘ ‘ ollon

The equivalences in Theorem 3 do not hold in general case, as the following
general result shows: '

TUHOREM 4. Lot & =ty y vrs @), Where ag = 0 or 1 fo.r all i. T/wn,'the sequence
Pos Pis Pay oy ix represented by a clone belonging to T'() iff the following conditions
are satisfiod: :

@) p, = 0 for all nz2,

(i) 0 < p, €, .

(i) py == 1 whenever a, = 0 for all b

(iv) po > 0 whenever a, = 0 for some i,
and

) po < (n—1)ps+1.

Now, if e.g, o« = ¢1,1,0% and § = (1,0,0), then by Theorem 4 R(z, £)

holds, while &< is obviously not satisfied.
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For natural interpretations of our results in multi-valued logic, synthesis of
automata, and equational logic (in terms of free spectra of varieties) cf. [3, 8].

4. Lemmas. At first, some general remarks should be made.

Since in the definition of p,(4) we do not exclude the unary projection (like
in [3], but unlike in [4]), for any clone 4 (on a universe of cardinality > 1) py(4) > 1.
Thus, p;(4) = 1 means that the only essentially unary function in 4 is just the unary
projcctior;.

For simplicity, constant unary functions are called briefly constants and denoted
like nullary functions just by their values. Note, that if ¢ is avalue of a nullary function
in 4 or of an n-ary constant function for any », then ¢ is a constant in 4, i.c. the
value of a constant upary function.

We note also that since we deal with finitely generated clones, p,(4) is countable
for any n. In proofs, at first, finite values of p,’s arc taken into account, remarks
concerning infinite values to be given in conclusions.

Lemma 2. Let A = [fy, .-
Po(d) < (m—1)py(4)+1

Proof. For the clone 4 we form an m-ary tree T(4) (m >
by unary functions of 4 in the following way:

(1) The root node of T(4) is labeled by the unary projection x.

(2) Ifa node is labeled by an essentially upary function gx of 4, then the branches
emanating from gx go to m nodes labeled successively by gf;x, gfax, ..., gfux,
unless gf;x = hx for some function Ax, which is already used as a label — then
the node is terminal and is left unlabeled.

(3) If node is labeled by a constant, then it is terminal.

As an example, Figure 1 is the tree T'(4) for the clone 4 =

,Jwul be a clone generated by unary functions. Then,

1) with nodes labeled

[f, g] where fand g

are unary functions on the set S={0,1,..,5} defined as follows:
fx = min{x+1, 5}, gx = min{x+3, 5}.
X
! g
7 19 5
3
"
Fig. 1
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Here, m = 2 and therefore the tree is binary. Since fgx = gfx = min{x+4 5}, the
node correspondmg to gfx is left unlabeled (according to (2)). Similarly, g%x = ggx
= 5, and also fgx = fgfx = 5, etc., corresponding nodes being left unlabeled. Note
that po(4) = 1 and py(4) = 7. This can be checked directly, but also can be seen in
Fig. 1.

In general case, the following three observ'mons are easy to make:

(@) each unary function in A is a label for one and only one node in T'(4),

(i) terminal nodes are labeled by constants or are unlabeled, while each inner
node is labeled by an cssentially unary function in 4,

(iif) for 1(4) — the number of terminal nodes in T(A), and i(4) — the number
of inner nodes in T(4), we have the equality

1(4) = (m—1)i(4)+1

(since T(A) is an m-ary tree).

By (i)~(iii) the lemma easily follows.

We note that for p;(4) = ¥, the result is trivial. The same concerns the result
in Lemma 3 below, which is a generalization of (and is based on) that just proved.

LemmA 3. If B = [fy,..../,] is a nullary-unary clone, i.e. each f, is a nullary
or unary function, then

Po(B) < (m—1)py(B)+1.

o> Cks 15 oo Sk WhEre ¢y, ..., ¢ are nullary functions,
and fy, .. unary ones, k+m = n.If m = 0, then B is a pointed set and the lemma
is trnvml So, assume that m3>1, and denote 4 = [fy, .../l Po(4) =r, and
pi(4) = 5. Let dy, ..., d, be the constants of 4, and g1 .5 g5 — essentially unary
functlons of 4. One of g1, say, gy, is the unary pro;ectlon, i.e. g3 x = x. Finally,
denote ¢} = i< fori=1,..,5 j=1,..,k (then cj = ¢;). We claim that each
constant in B is equal to one of ¢} or dj

Indeed, et ¢ be a constant in B. There are two possibilities: either e can be
obtained by composition of unary functions Fis eesSms OF € = fe; for some j and an
essentially unary function S of B. In the former, ¢ = d; for some i, as required.
In the latter, we note that since obwouely cssentially unary functions of B are those
of 4, f = g, for some i, and consequently ¢ = g;¢; = ¢}, as required. Also, in parti=
0“1‘11 Puld) = py(B).

Now, it follows that Do(B) S ks 1 = kpy(B) +po(4). But, in view of Lemma 2,
Po(4) S (m—1)py(A)-+1, and since i) = pi(B), we obtain finally,

Po(B) £ (k+m—1)py(4)+1,
which completes the proof.
Lemma 4. Let a = (1,. ., 0, where 1 occurs m > 1 times, and 0 occurs

k>0 times. Then, for any pomt/ve mtegers Dos P satisfying po< (k+m—1)py+1
there exists a clone A in T(a) on a finite universe such that po(4) = po andp ) = p1-

Proof. Let B = [cy, ...
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Proof. Denote n = k-+m (the length of &), po = s, and p; = p. Let T be
a directed tree with s+ p nodes labeled by elements of the set ' = {0,1,..,s+p=-1}
in the following way: The root node is labeled by 0. Coming out of the root are
r < npaths of the length not exceeding p-+ 1 with terminal nodes labeled by 1,2, ..., 1,
the Jength of the path connecting r and 0 to be just p+1. The remaining nodes are
labeled by r+1, ..., s+p— 1. The orientation of all edges is towards the root, i.e. the
outdegree of 0 is equal to 0, while for any node x # 0, the outdegree is equal to 1.
It is easy to check that for any s< (n—1)p+1 (s 1) there exists a tree T, which for
some r<n satisfies the above conditions. (Figure 2 is such a tree for n >3, p = 4,
and s = 6.)

Fig. 2

Now, we define an unary function f on S'as follows: f0 = 0, while if x # 0
and (x, y) is the (unique) edge of T directed from x towards y; then fx = y. Since
the path from r towards O is of the length p+1, the functions x, fx, f2x, ..., /7~ !x
are essentially unary and pairwise distinct. Moreover, f%x = 0 identically.

We use the function f and its properties ‘established above to construct the
clone 4 with a generating set of type « whose existence is to be proved. Namely,
let A4 =[f1,., m €155 €], Where fi = f, while f5, ..., arc constant unary
functions, and ¢y, ..., ¢, — nullary ones, the values of fy, <., fos C1» -oes C 1O be
choosen from the set {0, 1, ..., r—1} so that each of the numbers 1, ..., r—1 is the
value of at least one of the functions (this is possible, since r—1 < n—1 = k+m—1).
It follows that each of nodes in the subgraph of T comsisting of the paths
(1,0),(2.0), ..., (r—1,0) is a constant in 4, but none of the p nodes of the path
(r, 0) different from 0. Now, since the cardinality of S is p+s, Pold) = 5. In turn,
by properties of the function f, py(4) = p, which completes the proof.

Remark. The lemma also holds for p, = 8, except that the universe of the
clone 4 is now infinite. The proof is essentially the same, but the tree T has to be
infinite.

LEMMA 5. Given an integer k22, let B = [fy,...,f] be a clone such that
pi(B) = 1 and for all n>1 other than k, p,(B) = 0. If m is the number of functions
in the set {fy, ..., f;} depending on not less than k variables, then P(B) < mk!,
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Proof. Let f, ..., f,, be all those functions among Ji» «s fy that depend on
not less than & variables. Bach of these functions depends actually on exactly &
variables, since p,(B) = 0 for all 2> k. On the other hand, by further properties

-assumed for p,(B), each of the remaining functions f,.{, ..., f, (if s> m) is either

a projection or a constant function, We leave to the reader checking that by composi-
tion one can obtain merely projections, constant functions, or functions obtained
from f;x; ... x, by permuting of variables (i = 1, ..., m). From this the lemma easily
follows.

LemMA 6. For any a = Ck, ..., kD, where k 22 occurs m =1 times, there exisis

- clone A in T(w), on a finite universe, such that py(A) = p,(A) = 1, pfd) = mk!,

and p,(4) = 0, otherwise.

Proof. Put U= {0, 1, .., k+m}, fi(1,2,.... k) = k-+i (for i = 1,2, ey ),
and f;xy ... X, = 0, otherwise. We show that the clone A = [fi, ., fulis as required.
Indeed, since 1,2,...,k are not among images under the functions f;, any
substitution, and also obviously, any identification of variables, yields a constant

function equal to 0. The only nonconstant functions other than projections are

the fupctions fix; ... x, for i = 1,..., m and those obtained by permuting of va-
riables. Moreover, all these functions, obviously, are pairwise distinct. From these

facts the lemma easily follows.

5. Proofs of theorems. Now we prove our result stated in § 3.

Proof of Theorem 1. Let o = {4y, ..., 4,y and B = (b, ..., b,). Without
loss of generality we can assume that a4, >a, >...22a, and by > b, >... 2 b,.

() If a* < 8 does not hold, then there exists m such that a,, >b,, and a,>2
(m <min{n, s}). Denote a,, = k, and let y = <k, ..., k> where k occurs m times.
Since a; 2 a; 2.2 a4, = k, y <. ByLemma 6 there exists a clone 4 in T(y), on
afinite unjverse, such that po(4) = pi(4) =1, pd) = mk!, and pfd)=0,
otherwise. Since m =1, k > 2, the clone 4 is essential. By Lemma 1,als0 4 belongs
to T(e). We show that there exists no clone B in T'(f) with the same p,-sequence.

Assume the contrary, i.e. that there is B = [fi,...,f;], where fi, .., f, are
by-, ..., byrary, respectively, and py(B) = p(4) for all i>0. Since k = a,>b,
2.2 b,, the number m, of functions in the set fi, ..., f; depending on not less
than k& variables is less than m. Whence, by Lemma 5, pe(B) < mokl<mk! = p(4),
a contradiction,

(i) By the assumption s<n. Since o 5 <0, ..., 03, there exists y = <1, ...,
1,0,..,0), where 1 occurs m>1 and 0 ocours k20 times, and m+k=n,
such that y € . By Lemma 4 there exists a clone 4 in T'(y), on a finite universe,
such that p,(4) = 2, and po(4) = 2(n~1)+1. Since p,(4)>1, 4 is essential. By
Lemma 1, 4 b;alongs to T'(e). Now, similarly as in the previous case, we show that
there exists no clone B in T(f) with the same p,-sequence. Here, we use the fact that
fhe length of j is less than », and apply Lemma 3. This completes the proof.

Proof of Theorem 2. If (i) and (ii) are satisfied, then T'(¢) < T'() by Lemma 1.
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If (i) does not hold, then T(¢) = T'(B) does not hold either (cf. §2). It remaius to
show that if (ii) does not hold, then neither T'(x) = T'(8) hLolds.

To this end, let « and B be as in the proof of Theorem 1. First, we consider
the case when o # €0, 0, ...,0>. Then, in view of Theorem 1 we can assume that
o< B and n<s. From the fact that (i) (i.e. a< f) does not hold, it follows that
there exists m < n such that a, > b, and a, <2 (otherwise, a® < f§ does not hold).
Consequently, a,, = 1, and b, = b,,1.; = ... = b, = 0.

We show that there exists a clone 4 in T'(e), not in T'(f). Let for i = 1, ..., m,
f; be an unary function on the set {0, 1, ..., m+1} defined as follows: fii = m+1,
and f;x = 0, otherwise. Then, for any 7, j, f; f;x = 0. Now, the cloned = [fi, .., ful,
by Lemma 1, is in T'(«), but not in T(f), since p;(4) = m--1 and 4 cannot be gene-
rated by less than m nonconstant functions. Consequently, T'(x) = T'(f) doecs not
hold, as required.

It remains to consider the case when a; = ... = g, = 0. Then, (ii) is equivalent
to s <n. Obviously, if 4 is now any clone generated by » distinct constants, then Ais
in T(x), but not in T'(B). This completes the proof.

Proof of Theorem 3. The implications ()= (ii), (ii)=>(iii), hold obviously
by definitions, for any o and . By Theorem 1, if RE(x, ) holds, then the length
of § is not less than that of o, and o* < B. Since § is without zeros, this means that
actually a < B, thus proving (iii) = (iv). Finally, for § without zeros the condition (ii)
in Theorem 2 trivially holds, and consequently (iv)=-(i), completing the proof of
Theorem 3.

Proofof Theorem 4. It is easy to check that the conditions (i—v) are necessary
for representability of the sequence {p,, py, P2, ... by a clone 4 belonging to T(a):
(D) for 4 is an unary-nullary clone, (i) for the unary projection is in 4, and 4 is
generated by a finite set of functions, (iii) for if a; = 0 for all i, then 4 is a nullary
clone, (iv) obviously, and (v) by virtue of Lemma 3.

Conversely, if (i—v) are satisfied and a; = 1 for some 7, then {Po»P1s P2y
is represented by a clone in T'(«) in view of Lemma 4 (and Remark following it).
To complete the proof, observe that if @, = 0 for all j, i.e. o is the sequence of n zeros,
then obviously each sequence {p,, 1,0, 0, ...) With p, < n is represented by a clone
in T'(x).
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