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Assume the-{af : i < n} are disjoint outside a root (that is, assume that there is a finite
set 4 such that {4} —4: i < n} is a disjoint family) be applying the delta-system lemma
for finite sets and reindexing. We can ignore the root since it is finite. We can assume
that n is fixed and x is fixed and then we can apply Lemma 3 to find a closed un-
bounded set C, a string o, a behavior f and an uncountable 4 < w,. Let
weCnS(o,f, x) be such that there is an infinite Y= A such that {af: ae ¥}
Aincreases to. « (this requires intersection with another closed unbounded set). Now
{a%: € ¥} has code ¢ and behavior f hereditarily which implies that {a%: a e Y}

€ F*(o). This means that {ai: «e ¥} = {a§: ae Y}(o } i) & Fy;). By closure under
finite. unions {af: ¢ e ¥, ie x™*(j)} & F; and s0 p~ (1) N 4; eII(f) for some f'e F,.
By the definition of X, {[p,]: ¢ & ¥} has nonempty intersection with X.
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Abstract. We prove the following theorems introducing some new notions.

THEOREM A. The following (1)~(3) are equivalent: ) .

(1) For an arbirary infinite cardinal ;t, there exists an Ly~ compact cardinal; ) :

(2) For an arbitrary ring R and module Mg, tlxem exists a cardinal » such that RM = Rp x] ,
where Ry 4 = (\{Ker(k): he Homp(4, M)} and R4 = S {RyXr: Xr < Ag and §X1<x},

(3) For an arbitrary ring R and module MR, the ‘torsion class +M, R is singly generated, i.e.,
IMy = J‘(Aé) Sor some AR.

An abelian group A is endo-slender, if 4 is a slender module over its endomorphism ring. .

TreorReM B. Let A(= Iic14i) be a direct product of reduced torsion free groups A; of rank 1. *
Then, A is endo-slender iff for any infinite subset X of I there exists a j & I such that

{ie X: t(d) <t(4;)}
78 infinite. .
THEOREM C. Let B be an (w, wo)-distributive complete Boolean algebra and A a countabiel
reduced torsionfree abelian group. Then, the Boolean power AB) is endo-slender iff B satisfies («,),
I.e. For any family of nonzero elements {bn: n < w} there exist a nonzero b, an infinite subset I of o
and hn (ne€I) such that hy: [0, bal—10, 6] is a ¢ bly complete rphism and ha(by) = b
for each ne 1.

0. Introduction. There had been several studies about slender modules and rings
as generalizations of slender abelian groups even before the works of Huber [23]
and Mader [26]. However, they found a somewhat new situation, where slenderness -
occurs through consideration of abelian groups and modules as modules over their
endomorphism rings. On the other hand, the fundamental theorem about slender
groups due to J. Lo§ was generalized to arbitrary cardinalities by the author-[8, 10].-
This clarified why a measurable cardinal appears concerning abelian groups, Though
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there possibly exist many measurable cardinals [24], the only least measurable car-
dinal has concerned slender modules. Considering rings and endomorphism rings
of large cardinalities, we shall show that larger measurable cardinals concern slender
modules in Section 3. (Caution: Here, » is a measurable cardinal, if there exists
a x-complete nonprincipal ultrafilter on x. This usage is common in set theory,
but in abelian group theory or in General Topology it does not seem so.) To investi-
gate endo-slenderness, we shall introduce a new notion “primitive slenderness”.
Though primitive slenderness is strictly stronger than slenderness, many slender
modules are primitively slender. In Section 4 we shall study endo-slenderness of
infinite direct products of endo-slender modules and apply it to abelian groups, and
especially to direct products of torsion free groups of rank 1. In Section 5 we shall
study about endo-slenderness of Boolean powers of modules. There, we use Boolean
valued models ™ as in [7] and so we assume that the reader is familiar with Boolean
valued models [2, 30]. Since the topic and the methods of this paper are related to
a few different areas of mathematics, we shall use usual notions in each area and give
definitions as far as possible.

1. Preliminaries; x-slender modules and R-x-sheaves. In this paper a ring R
is an associative ring with 1 and all modules are unital R-modules. Right R-modules
are written as My and left modules appear as modules over their endomorphism rings
and are written as M. Sometimes we omit the subscripts R and E. Since right and
left properties are defined symmetrically, we define just one sided ones. In case no
confusion will occur, we do not mention right or left as usual.

DEFNITION 1.1. A right module My is x-slender, if Homg(R', My) ~ @ My
naturally for an index set I of cardinality less than x. More precisely, for any
he Homg(RY, My) there exist ip,..,i,_; €l and ag,..,a,_€ My such that
h(x) = Z’;;[‘, a,m,(x) where =, is the projection to the ith component.

The usual slenderness is the w4-slenderness according to this definition and so
we use the word “slender” but never use “w,-slender”, where w, is the least uncoun-
table ordinal. A standard method shows that My is slender if for any
h e Homg(R®, My) h(e,) = 0 for almost all n < w, where e, (1) = §,, and @ is the
least infinite. ordinal. For a right module My, let E = Endg(My), then M naturally
becomes a left E-module gM. My is x-endo-slender if the left E-module zM is
»-slender. A ring R is right slender if R is slender as a right module. R is x-slender
if Ris right and Teft »-slender. The well-known theorem due to Lo$ is the following:

TreoreM 1.2 (J. Lo$, cf. [25]). Let I be an index set of cardinality less than the
least measurable cardinal and A; (iel). R-modules. If My is slender, then
HomR(H,-H Ay Mp) ~ @y Homg(4,, My) naturally.

We shall prove a generalized form of this theorem in this section. For this
purpose we introduce an R-x-sheaf over a x-complete Boolean algebra. A quasi
sheaf over a countably complete Boolean algebra in [10] is a' Z-w,-sheaf over an
w;-complete Boolean algebra according to the present definition. Therefore this
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generalization is essentially same as that of [10]. However, neither in [10] nor in [8]
we did not explain the intuition behind the generalization and so let us do it here.

Point — Component —  Projection
i } i
%-complete — Ultraproduct —  Canonical
ultrafilter homomorphism

In the figure, “Point™ means an element of an index set J, “Component” means 4;
and “Projection™ means 7;. The conversion from “Point™ to “w-complete ultra-
filter” is fairly known in General Topology concerning the Stone-Cech compacii-
fication. The remaining parts may be somewhat unfamiliar. However, famous Hewitt’s
theorem [22, or 20, Chapter 8] “Any ring homomorphism from a continuous function
ring C(X, R) to the real number field R corresponds to a point of the realcorpacti-
fication of X implicitly uses this conversion. Let p be an element of the realcompacti-
fication of X and I, = { fe C(X, R): {x: f(x) = 0} € p}. (Recall that p is a maximal
filter of zero sets.) Then, 7, is an ideal of the ring C(X, R) and C(X, R)/I, is isomor-
phic to R. Since p is maximal, this quotient can be seen as a generalization of ultra-
products [4, Chapter 4]. Therefore, our next theorem can be seen as a kind of
Hewitt’s theorem and under this point of view we can connect Hewitt’s theorem and
Yo$’s thcorem. (See also [13].) Before defining R-z-shcaves, we state some pre-
requisites about Boolean algebras.

A Boolean algebra (abbreviated by Ba) Bis a complemented distributive lattice
with its largest element 1 and least element 0, where its order and operations are
denoted by <, v. A, 71 as usual 24, 29]. If 0 = 1, B is called trivial. B is x-complete
for a cardinal x, if for any subset X of B of cardinality less than « there exists a least
upper bound \/ X. B is a complete Boolean algebra (abbreviated by cBa), if B is
x-complete for any cardinal x. A family {,: 2 e} isapartition of b, if b, v by=0
for 2 # A’ and \/ . b, = b. A filter Fof Bis a subset of B which satisfies the follo-
wing:1 € F; b, ce F implies bAce F; be Fand b < c imply ce F. An ultrafilter is
a filter which is maximal among filters not containing 0. A filter is x -complete, if the
following holds: For any X = F of cardinality less than », b = AX implies be F.

A cardinal x is measurable, if there exists a non principal x-complete ultra-
filter on %. For a cardinal %, %™ is the successor cardinal of » and »*M is the least
measurable cardinal which is strictly greater than x. We identify a cardinal with an
initial ordinal. A cardinal » is regular, if sup (X) < »x holds for any subset X of x of
cardinality less than ». Otherwisc, » is called singular. Throughout this paper, % is
always an infinite cardinal. The next lemma is well known and the proof of the case
» = w can be found in [7].

Lemma 1.3 (folklore). Every x*-complete ultrafilter F of a y-complete Ba B is
-complete, where u< »*MC.

DErFINITION 1.4. Let B be a x-complete Ba. An R-x-sheaf over B is a pair
(&, o) satisfying the following: .

(1) #(b) is an R-module for every be B and &(0) = {0};


Artur


8 K. Eda -

(2) @: ¥ ()~ F () is an R-homomorphism, gf-0f = ¢f and gf the identity

for b<e<d.

P IEb= Ve<ib, (A<%) and gh(x) = 0 for a <, then x = 0.

@) I b = \/yes b, (h<x) and 05% \p,(x) = G} 5, (xp) for o, f< 2, then there
exists an x € & (b) such that g} (x) = x, for every ¢ < 1. We denote & (1) by F*.
If Bis a ¢Ba and (¥, @) is an R-x-sheaf over B for any », we say (&, ¢) is an R-sheaf
over B.

Let (&, ) be an R-x-sheaf over a sxc-complete Ba B and F a x-complete filter
of B. Then, the R-x-sheaf (¥/F, g/F) over a Ba BJF is defined by: &/F([b])
= FO){xeF®): i(x)=0 for some ceF}; oPYxl) = B85, where
[ 1r: BoB/F and [ Ty: & (b)— &/F([b]) are the canonical maps. It is straightfor-
ward to see that &/ F is well defined. If F is an ultrafilter, B/F~ {0, 1} and so we
denote &/F(1) by &/F.

Let (¥, 0) be an R-x-sheaf over a x-complete Ba B. If {b,: « <4} is a partition
of 1 and s;e & (B<p) satisfy oj(s;) = O for almost all § and each o, where
A, p<x, then there exists a unique s € &* such that g;,(s) = ¥ <,01.(ss). We denote
this 5 by Y g<.sp and say that s, (8 < ) is a proper sequence.

THEOREM 1.5 (generalized Lo§ theorem). Let B be a p-complete Ba and My
a x-slender R-module, where © <x < u< %™, For an R-p-sheaf (&, @) over B,
Homy(&", Mg) = @r.s Homg(¥[F, My) naturally, where F is the set of all
u-complete ultrafilters of B.

Proof. Since the proof is essentially the same as that of [10, Theorem 1], we
only take care of u-completeness. Clearly @ sgHomg(¥/F, M) < Homy(F*, My)
and hence we show the other inclusion. Let A: &* - My be a nonzero R-homo-
morphism and F, = {b: gi(x) = 0 implies 4(x) = 0 for any xe &* }. Then, F, is
a filter of B and 0¢F. To show the x-completeness of F,, suppose that
b,eF, (<), A<n, No<ib, & F and 2 is the least cardinal among such cardinals.
Then, there exists a pairwise disjoint family {c,: ¢ <1} such that —l¢,e F, and
Va<i16= €) € F,. Since & # 0, there exists an x* € #* such that g}(x*) = 0 and’
h(x*) # 0. Let ¢: R'>%" be the map which is naturally defined by: o} (¢(e,)
= i (x*) and Qﬂc“((p (e))) = 0 for each a <A, where e,(f) = 845 Then, ¢ is an
R-homomorphism and /¢ (e,) = 0 and hence /i-¢ = 0 by the x-slenderness of My,
which contradicts to 2(x*) = (Y .<s6) # 0.

Suppose that BJF is mﬁmte then there exist a partition {b,: n<w} and
X, € " (n < ) such that Q—W x,) = 0 and h(x,) = 0. Again, define an R-homo-
morphism @: R®— %* such that ¢(e,) = x, (n<w) and get a contradiction.
Therefore, there exist finite distinct x-complete ultrafilters Fy, ..., F,.., which ge-
nerate F, i.e. be Fiff be F; for some 1 <i<n—1. By Lemma 1.3, F,0<i<n—1)
are p-complete. Let b; € F, (0<i<n—1), b;A b; # 0 (i # j) and \/}=3b, = 1. Since
beF, iff beF for b<b,, there exist R -homomorphisms 4;: .//F;—»M "
0<i<n—1) such that a(x) = h(x]t) if o—-l,,i(x) 0. Hence, & = Y25k [ 1},
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COROLLARY 1.6, If My is - slender, then My is x ™M - slender. If My is x-slender
and x is a singular cardinal, then My is *-slender.

‘Proof. Lét x* < < »x*™C. The power set P(u) is a cBa and R* has a sheaf
structure over P(u) naturally. Every u-complete ultrafilter of a cBa is »*™“-com-
plete and the cardinality of P(4) is less than %*™C. Therefore, every x +*MC-complete
ultrafilter of P(u) is principal. By Theotem 1.5, Homg(R", M) = @, My naturally
and hence My is x*M-slender. To prove the next proposition, let p<x and
{I, < p} a partition of % so that |I,| <. Then, R* = [],<,R™. By Theorem 1.5
and x-slenderness Homg(R*, Mp) = @<, Homg(R"™, Mp) = Ba<p Dpere Mz
= @xMR

_ ExamPLE 1.7. Let Bbe a x- complete Ba and My and R-module of cardmahty
less than x. The Boolean power M® is the R-module consisting of all f such that

fi Mo B, \/yeraf(@) =1 and f(@)A f(v) = Ofor u # v. The operations are defined

as follows: (f+0)®) = Vumoiw SOAGW): (1)@ = \Vumu S () for u,ve M
and reR. Let (B = {fe MP: b <fO)}, a2(f)@) = f)A ¢ and g(f)(0)
> e, Then, (¥,0) is an R-x-sheaf over B. Another example will appear in
Section 5.

. 2. Primitively slender modules and related concepts. First we define x-approxi-
mation property and primitively slender modules.

DeFiNITION 2.1. A right R-module My satisfies x-approximation property,
if there exist finitely generated left ideals I, (¢ < x) of R and subsets K, (a < %) of My
which satisfy the following:

(1) MR = Ux<sz9 Ku =
(@< p<n); ‘

(2) For each a<x and xe My there exists a f <x such that x+ K, < Kp;

(3) For any a<x and x& My x I, = {0} implies x = 0.

If My satisfies’ w-approximation property, we say My is primitively slender.
My is primitively endo-slender, if the left module gM is primitively slender, where
E = Endg(Mpy).

" Note. Let ry, ..., /x—; be generators of a left ideal I and My a right module.
Then, M-I(= {Yizam;s: me M, s;e I, n<w})= {Yizgm;r;: m;e M} holds. The-
refore, I” = R®-Iholds. M-I is a subgroup of M, but not always an R-submodule.

LemmA 2.2. If My satisfies the x-approximation property for a regular car-
dinal %, then, for every he Hompg(R*, My), there exists an o<x such that
h(R*™*) = {0}.

Proof. First we show (a): If m ¢ K, then there exists § such that (m+M:-Ip)n
NK, = O. There exists A <x such that me K, and therefore & <A.

.Choose f so that K,—m < Kj. This is the desired f, for if there is an m’e M-I,
and m+m’ e K,, then m' = (m+m')—me K, and hence m’' = 0. But, this con-
tradicts m ¢ K,; hence, (a) holds. Next we show (b): There existx e R and &, fi, A <x

-k, {3cK,cKp, I;<l, and Myg-L,nK, = {0}
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such that A(x+R*™* I} c K,. Under the negation of the conclusion, we construct x,
and f, (@< x) in the following way. Let x5 = 0 and §, = 0.

(Successor. case.) Since h(x,+R*7* I )& K, ., there exists an x,., such that
Xyry € X, AR5y and A(x,y () ¢ K,+y. By (2) there exists f,,,>f, such that
() +M Iy, )N Ky = O,

(Limit case.) Let f* = sup f,, x*(y) = x,(y) for y <« and x*(y) = 0 for y > a.

y<a

Then, according to the construction x* € x,+R*7" I (y <o) and
R+ BRI &K,

by the assumption. There exists an x, & x*+R*7*- I, such that i(x,) ¢ K,. By (a)
there exists f§, > f* such that (h(x)+M Iy )N K, = @. Finally, let x(2) = x,(2)
for « < x; as before, x, € x,+R*"* Iy (o' <x). Then, k(x,) € K, for some « and so
h(x) e (h(x)+ M-I, )N K,, which is a contradiction

The statement (b) implies the existence of x and « such that A(x) + 2(R* ™% I)= K,
and A(x)e K,. On the other hand, there exists a* >« such that K,—A(X) c K.
Consequently, A(R*™*-I,) < K,, which implies A(R*™®)-I. = h(R* *-I.) = 0
and A(R*™*) = 0.

THEOREM 2.3. If an R-module My is primitively slender, then My is slender.
In addition if My satisfies the % -approximation pioperty for every measurable cardinal

or regular limit of measurable cardinals x <y, then My is u*VC-slender.

Proof. The first proposition follows from the case x = w of Lemma 2.2. We
prove A*-slenderness for A < ™€ by induction. If A is neither measurable nor
regular limit of measurable cardinals, A*-slenderness follows from Corollary 1.6.
The remaining case follows from Lemma 2.2 by the assumption.

ExaMpLEs and Remarks 2.4. (1) The group of integers Z is primitively slender
and moreover every countable reduced torsionfree group 4 is primitively slender.
To show the latter, we define finite subsets K, and m,<w by induction. Let
A = {a,: n<o}, Ky = {0} and n, = 0. In the (k+ 1)th step, let K, ., be the minimal
finite subset of 4 such that g € K,,.,,, K, + K, <K,,, and K,,,, = ~Kiyyy and
Mesy be the least number such that m,,!AnK,,, = {0}. Let X, = K, for
m i<y 1. Then, K, I, = nlZ (n<w) are the desired entities.

(2) Lady [25] showed that a countable commutative domain which is not a field
is slender. It is enough that the cardinality of the domain is less than 2%°. Here, we
show that a countable left Ore domain which is not a division ring is primitively-
slender as a right module. First recall that a ring R is a left Ore domain, if the follow-
ing hold: (a) a-b = 0 implies that.@ = 0 or b = 0; (b) Ran Rb = {0} implies that
a =0 or b = 0. Observe that for nonzero a and b there exists a nonzero ¢ such
that Re < Ran Rb. Let r* be a nonzero element which has no right inverse, then
1 ¢ Rr*. Since R is a domain, x ¢ Rr*x for all nonzero x. Now, we construct K,
and principal left ideals J, = R‘x, (# <) as in Example (1). Let R = {r.o n<a},
Ky = {0} and xo = 1. In the (n+ )th step, let K, be the minimal finite subset
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of R such that r,e K,,;, K,+K, <K,y and K,y = —K, 4 . Next, let x,,; be
a nonzero element such that R-x, ., <{V{Rr*x: 0 # x¢e K,;y}. Then, K, and
I, = R-x, (n< o) have the desired properties.

(3) A submodule of a primitively slender module is clearly primitively slender.
If (Mg (A€ A)areprimitively slender and if, in addition, we can take M; = Un<oKi
and I, (n < @) uniformly (i.e. I, are independent of 1), then the direct sum @, 1M
is primitively slender. Consequently, subgroups of the direct sum of countable torsion
free reduced groups are primitively slender. To show the former statement, "let
K, =YKy, = {oa+.. X5, %€ Ky and A # 4 (0 #)}. For m<w and
X = X, +t3, € DreaM;, where x,, €Ky, there exists n<w such that
%3, 4 Kyym © Ky for 1<i<k. Since K, <K, (A€4l), x+X, =K, holds. Other
properties clearly hold. .

(4) O’Neil [27] has shown that the polynomial ring R[X] over any ring R is
right and left slender. One can easily see that R[X] is primitively slender. To show
the existence of x-slender ring for an arbitrary cardinal x, we prove x-approximation
property of modified semigroup rings, which also implies that any polynomial ring
is primitively slender. Let R be a ring and G a semigrouwp with 1. Then, the semf~
group ring R[G] is an R-free module @ {g: g€ G) generated by G and the multi-
plication is defincd by the operations on R and G naturally where elements of R
commute with those of G. In case G has 0, the cyclic R-submodule <0} forms a two-
sided ideal. We denote the factor ring R[G)/{0) by R[G]* and hence we may identify
R[GI* with @ {g: g # 0).

PROPOSITION 2.4 (4). Let G be a semigroup with 0, 1 and let {u,: & <x} be
its subset such that:

(@) If «< B, then g-u, = u, for some g,

() Ne<x G-, = {0};

(c) g-G-u, = {0} implies g = 0 for each a<zx. ‘

Then, the ring R[G1* satisfies x-approximation property as a right R [GY*-~module.

Proof. Let I, = R[G]*-u, and K, = @ {g: x'u, # g for any x), then it
is easy to check the x-approximation property.

Now, let Mg = @®,4s for a nonzero S-module ds and E = Ends(M;). For
any cardinal 1< x, there exists a decomposition M = @, < M, such that M, # {0}.
Let p: M- @ s2«M; be the projection. Then, E as a semigroup satisfies the property
of the proposition and moreover with the same { pr w < 2} E also satisfies the sym-
metric one. Therefore, R[ET* satisfies 1-approximation property as a right and left
module for each A < % by Proposition 2.4 (4). Consequently, R[E]* is a »™-slender
ring. Moreover, taking a subring E’ of E containing Ph (e <A <x), wegeta x*-slen-
der ring R[E']* of cardinality x.

(5) M. Huber [23, Theorem 3.3] proved that any module of the form @,Mpg is
endo-slender. It is also primitively endo-slender. Let E = Endg(®,.My). For any
1 < x, there exists a decomposition @, My = @,<i(A)r, Where 4, ~ A forallaand .
Let p: @ My~ ®pzods, I, = p, E and K, = @iy Then, it is easy to see
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that x(@,Mpy) satisfies A-approximation property for any A< x and consequently
(@, My) is a x*-slender E-module. '

(6) We prove Mader’s theorem as a corollary of Theorem 2.3 and so modules
whose endo-slenderness follows from [26, 2.8 Theorem] are primitively slendor.
First we state the proposition: Let My = @y, <o(M,)z and E = Endp(Mz). If @< M,
contains no nonzero E-submodule of ;M, then M is slender [26, 2.8 Theorem)].

Letp,: Mg~ @y»vM, bethe projection, I, = p,-E and K, = @p<nM;. We only
check the property (3). Suppose that I,-x = {0} for a nonzero x e My. Then,
X € @renMy. By the assumption E-xd @<, M, and hence p,-E-x # {0}, which
is a contradiction. ) ‘

(7) Here, we remark that primitive slenderness is strictly stronger than. slender-
ness. For that purpose we refer the reader to [19, or 21] for T-slenderness for a mono-
tone subgroup 7" of Z¥. A monotone subgroup T itself is not T-slender, of course,
and if T'is different from 27, then T is slender [19, Theorem 1]. On the other hand,
a primitively slender group is T-slender for any monotone subgroup T which is
different from the subgroup consisting of all bounded functions. Therefore, there
exist slender, but not primitively slender groups. We prove the previous sentence.
Let M be a primitively slender group and M = {J, <Xy, I, = nlZ and other properties
in Definition 2.1 hold. There exists 2 monotone increasing unbounded sequence
M (k<o) such that 1 <ny and Yy<,mle, € 7. Suppose that A(e,) # 0 for infinitely
many k. We define a strictly monotone increasing sequence k; (i < ) by induction.
Let k, be the least number so that h(e, ) # 0 and k,,( be the least number such
that k; <ky,q, h(e,,,) # 0 and K —h(Ej=om,les) G K, . Then, there exists
an isuch that A(Y ;< ,m le) € K,,,. Form = i+1, Ry mitey €)= (Y j<otti,! €2,) —
—h(iSomle) e K, and hence h(Y ;5 .m,le,) = 0. Now,

h(nkul!eku-l) = h(zj?l'k lnkj!ekj)fh(z.f?inkj! ekj) =0,

which. is a contradiction, . . » .
{8) Recently, P. Eklof and A. Mekler [16] have proved that a principal ideal
domain R is slender iff R is not a complete valuation domain.

"' 3. Large cardinals'and cardinality restrictions of radicals. We hiave shown in [12]

that the existence of an L,,,-compact cardinal is equivalent to the cardinality condi-:

tion of the radical R,. In this section we shall prove a relative property which con-
cerns R-modules for all rings R. To state the theorem some definitions from infini~
tary logic and theory of radicals are necessary.

For infinite cardinals g and v, L,, is an infinitary language which admits
-sequences of disjunctions and conjunctions and f-sequences of quantifiers for
a<pand B <v. We refer the reader to [4] for a precise definition. A cardinal x
is A-L,,-compact, if the following hold for a set of L,,-sentences I~ of cardinality A:
If any subset & of 7 of cardinality less than x has a model, then 7 itself has a model,
If % is.A-L,,-compact for every A,then  is said to be an Ly-compact cardinal. For
cardinals » and 4, P, = {x < i; || < %} and A™* = |P, ]|, where {x} is the cardi-

icm

Slender modules 13

nality of v. Let Uy = {y: xcyeP,i} foreachxe P} and F,; = {X: U_c X for
some x € P, 4}. Then, F,; is a x-complete filter on P, 1 and a x-complete Boolean
algebra P(P,A)/F,; is denoted by B,;. A x-representable, x-complete Boolean
algebra is the quotient Boolean algebra of a x-complete field modulo a x-complete
filter {29, § 29].

For an R-module My, radicals Ry and Ry are defined by:

Ry X = () {Ker(h): he Homgp(X, Mp)}
and
R X = 3 {Yp: Ya<X,Homu(Y, M) = {0}}

for each R-module X. For a cardinal » and a preradical T (i.e. a subfunctor of the
identity) for R-modules, T is defined by:

T™MY = Y {TY;: Ya<X and Y is “x-generated},

where Y is “x-generated if Yy has a set of generators of cardinality less than .
T satisfies the cardinality condition, if there exists a cardinal » suchthat T = T,
For a class of R-modules X “X = {¥5: Homg(Yg, Xz) = {0} for all Xze X}
and X* = {¥g: Homg(Xz, Yz) = {0} for all XzeX}. If X is a singleton {Xg},
then we write “Xy and Xy instead of “{Xy} and {Xg}* respectively. A torsion
class X is singly generated, if there exists an Xy such that 1(Xz) = X. We refer
the reader to [31, § 1 and 2 of Chapter VI] for a general theory of radicals and torsion
theory and to [35, 6, 12, 14, 15, 17] for related topics.

Now, we can state the main theorem of this section.

THEOREM 3.1. Let x, y, A be infinite cardinals such that p* <x, A = 1°* and 5 is
regular. Then, the following are equivalent:

(1) % is @ A-L,+,+~compact cardinal;

(2) % is a A-L,+,~compact cardinal;

G) If IRI <y, Mgl < and |Ag| <2, then Ry d = RS'A holds;

@ I IR <y, |Mel<poand |Ag| <2, then RigA = (Ri)™ 4 holds;

) IF RIS, Myl <p, |4l <A and Homp(Adg, My) = {0}, then A belongs
to* C*. (Here, C = @ [Xg: | Xal <x and Homp(Xg, Mz) = {0} and [Xg: | Xg] <% ...]
means the set of all isomorphism types of such modules.)

B) If |IRI<p and |Ag) <A, then Ry A = RYVA holds;

@) If |RI< p and |Agl <A, then RY A = RE™A holds;

(5) I IRI< 11, |dpl < A and Homg(Ag, Rg) = {0}, then A belongs to (*CY),
where C = @ [Xg: |Xg|l <% and Homp(Xg, Rg) = {0}];

6) If IRI<p and |dgl <A, then RY'4 = {0} implies RzA = {0};

(7) Let RISy and B be a x-representable, x- complete Ba of cardinality less
than or equal to A, then Ry(R®) = {0}; ‘

) If |Ri<p and S is a nonzero submodule of RB=3) yith |SI< A, then
Homg(S, Ry) # {0} :
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Levma 3.2 [29, 29.3). Let B be a »-representable, x-complete Ba. If b # 0
and \/,3< Wb =1 for a<v, where p,v<us, then there exists an fe'u such that
{b, by o < v} satisfies the finite intersection property.

Proof of Theorem 3.1. (1)—(2): Clear.

(2)—+ (3): Suppose that a* ¢ Ry 4. Let 7~ be the following set of L+ ,-sentences:

(@) a#a for a#d,a,decd;a+b=¢c ar=>hforatrb=c ar=2»,
a,b,cec 4 and re R;

(b) The axioms of R-modules;

(C) VX \/usM(Hu(x)& /\m#u,ueM—lHu(x));

Vx, y \/u,u, weM,u+ u=w(Hu(x)& Hu(y)& Hw(x '}'y));
Vx \u,vert,pr= ol Hu(X) & H,(x'1)) for all re R;
) \/uuM,u#OI{u(g*) .

For a subset & of 7~ of cardinality less than x, there exists an R-submodule X,
of 4, with the following: Xy is of cardinality less than »; a* belongs to Xg; If a appears
in &, then a belongs to X;. By the dssumption, there exists an R-homomorphism
h: Xp— My with h(a*) # 0 and hence (Xg, h) is a model of &. By (2), 4 has
a model 4* Then, 4* is an R-module and A is an R-submodule of 4* and
a* ¢ Ry A*. Hence, a* ¢ Ry A.

(3) - (4): As is well known, Ry can be obtained by iterated apphcatlons of Ry,
ie. Ryd = Ryd, Rif'd= Ry(Ryd), Ry= ﬂ,qRMA for a limit « and
R3A = R4 A = R4 for some o Therefore, it is easy to see that (RE)™A

= (R¥N™ 4 by the regularity of x [14, Theorem 1.2). If | 4] < A, then (Ri)™4 = RizA
by (3).
(4) = (5): By the assumption and (4),

A=Rgd=RH™MA4 =7 {X<4: HomR(X, M) = {0}, |1 X| <x}.

This implies that A4 is a homomorphic image of a direct sum of copies of C and hence A
belongs to *(CH).

(3)—(4) and (4')—>(5"): The proofs are special cases of above proofs. (5') is
a specia} case of (5).

(5")—(8): Suppose that Homg(S, Rp) = {0}, then S belongs to “(C*) by (5).
Let X be a submodule of R of cardinality less than ». We show that Ry X = {0}.
Let x* be a nonzero element of X, then there exists r* # 0 such that x*(r*) # 0.
By Lemma 3.2, there exists an f: X~ R such that {x*(*), x(f(x)): x & X} satisfies
the finite intersection property. By the finite intersection property we get:
S =r*#£0; xr(fx)r)=x(f(x)#0, and hence f(x)r=f(xr);

E+N(F @D+ M) = x(F@)AY(S() #0;
EENFE+FONA E+N(fE+1) #0,

and hence f(x+») = f(x)+/ (). Now, we get a desired homomorphism and so
R X = {0}. Therefore, Homg(Y, Mg) = {0} and | ¥| < » imply Homz(¥, S) = {0}
and so Homg(C, S) = {0}, which contradicts Se*(Ch.
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(3" = (6): Clear.

(6)—(7): Since |R™| < 4* <A™ = A, what we must show is: RFIR® = {0}.
For a submodule S of R of cardinality less than x and a nonzero x, we get a desired
homomorphism as in the proof of (5" —(8).

(M—(8): Let C be the sx-complete subalgebra of B,, generated by
{s(r): se §,re R}, then |C| < holds. Since C is also x-representable [29, 29.3],
Ry S< RRRO < {0} and hence (8) holds.

(&= (1): In the proof of the corresponding part in [12], we referred to
[28, or 3] and did not write down the whole proof and so here we present the whole
proof of (8) - (1). We use usual notions in model theory without precise definitions.
Let 7 be a set of L+, «-sentences of cardinality 1 whose any subset of cardinality
less than x has a model. Introducing infinitary Skolem functions, we may suppose
that 9 consists of universal sentences by the cardinality assumptions, i.e. 1 = 4%,
p* <. Let U, be 2 model of x for x & P,7 and B be a substructure of the direct
product [icp.s,. We can get B so that [B] <A For éach’ open formula
4o(v¢: {<w), a<x, of L,+,+ and each sequence f= (fi: £<d) from B. let

Xop={xeP,7: Uk o(fix): E<w)}. The x-complete subfield of P(P,7)
generated by all X, , and U, has the cardinality 2. We denote the subfield by &
and the quotient map from P(P,J) to B,; by o. Then, o(#)is a x-complete sub-
algebra of B,;. By Example 2.4 (4), there exists a u™-slender ring R of cardinality x.
The Boolean power R* is an R-submodule of R®* of cardinality equal to or less
than 1. By (8), Homa(R“¥M, Ry) s {0}. Theorem 1.5 implies the existence of
u*-complete ultrafilter of a(#). Since o is x-complete, & has a u*-complete
ultrafilter F which contains all U, (x € P,.7). Define a modified ultraproduct B/F
by: f~pg if {x: f(x) = g(x)} € F, and the equivalence class is denoted by [fls;
BIFEP(f]: E<a)if {x: W, FP(fi(»): & <)} e F for each predicate P of L,
and each sequence (f: & <o) from B with o < x. Since F is u*-complete, this de-
finition is correct and moreover B/FF ¢ ([ f:]: ¢ <u) iff

{x: Wk p(f(): E<a)}eF

for each open formula of L,+,s. If ¢ is a sentence in &, then there exists an open
formula ¥ (vs: £ < @) such that ¢ is the universal closure of V(v &< o) with respect
to variables v, (§ <«). If ¢ belongs to ¥ for an x € P, then %, k ¢ and hence
B/FEY([fils: £ <o) for every sequence (fy: £ <o) from B, ie. BFEkep for
every pe 7,

Using Boolean powers Mg instead of R® in the proof, we get

COROLLARY 3.3. Let %, u, A be infinite cardinals such that p* <x, 2= i°* and » is
regular and let R be a ring with |R| < p and My, a slender R-module with |My| < p.
Then, the following are equivalent:

(1) % is @ A-Ly+,+-compact cardinal;

(2) x is a A-L,+,-compact cardinal,

(3) For an R-module Ay with |Ag] <), RyAd = R5PA holds;
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(4) For an R-module Ay with |Ap] <1, REA = RS™A holds;

(5) If an R-module Ay satisfies |Ag| < A and Hompg(Ay, My) = {0}, then Ay
‘belongs to-*(CY), where C = @ [Xg: |Xg| < & Hom x(Xg, Mz) = {0}];

(6) For an R-module Ap with |Apl <2, Ry'A = {0} implies Ry 4 = {0}.

In the following corollary the equivalence of (1) and (2) is well known and can
be proved by a standard method.

COROLLARY 3.4. The following propositions are equivalent:

(1) For an arbitrary infinite cardinal p, there exist an Ly,-compact cardinal;

(2) For an arbitrary infinite cardinal i, there exists a cardinal » such that any
x-complete filter on an arbitrary set can be extended to a u-complete ultrafilter;

(3) For any ring R and R-module My, the radical Ry (Ry;) satisfies the cardinality
condition; )

(4) For any ring R, the radical Ry (Ry) satisfies the cardinality condition:

(5) For any ring R and R-module My, the torsion class *My is singly generated;

(6) For any ring R, the torsion class “Ry is singly generated. ‘

The equivalence of (2) and (5) of Corollary 3.3 in the case that R = Z, My = Z,

% = o, and i = o implies that the existence of L, ,-compact cardinal is equivalent
to the singly generatedness of the torsion class *Z, which answers a question in [5].

4, Endo-slenderness of direct products. First we state ‘some preliminary facts
about endo-slenderness.

PROPOSITION 4.1. If R is a commutative ring and an R-module My, is slender, then
My, is endo-slender. ‘

The proposition is clear, since there exists a ting homomorphism from R to
Endp(Mpy) which preserves 1. We remark that in a noncommutative case slenderness
does not always imply endo-slenderness.

PrOPOSITION 4.2 [26, 3.2 Lemma). If Ay is a fully invariant submodule of
My, i.e. h(AR) < Ay for all he BEndg(My), and Ay is not endo-slender, then My is
also not endo-slender.

Prorosrrion 4.3, Let A be a nonzero divisible abelian group of finite rank.

If A is either a p-group or a torsionfree group, then A is not endo-slender.

The former case is [26, 3.7 Proposition]. (A correct statement there should be
“If 4 is a nonreduced p-group and the divisible part of 4 is of finite rank, then 4 is
not endo-slender.”) The latter case holds, because 4 is a finite dimensional vector
space over Q. '

ProrosiTioN 4.4. Let Ay be endo-slender. If My is isomorphic to a submadule
of A for some I, i.e. Ry M = {0}, and My, contains a summand which is isomorphic
to Ay, then My is endo-slender. :

Proof. Suppose that ¢: E”—;M is an E-homomorphism with ¢(e,) # 0
for any n <. Let My = A @ Bg and py: My— Ay and pg: My~ By be the pro-
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jections. Then, @|p E”: pyE®—p, My (= Ap) is an Endg(4g)-homomorphism.
By the assumption, there exists an m <o such that ¢(p4E®™™) = {0}. Since
paole,) =0, ppole,) # 0. There exists an he Homg(Bg, 4z) such that
h-ppo(en) # 0. Now, ¢(ps-hps-e,) = pa-h-ppo(en) = h'ppo(e,) # 0, which is
a contradiction.

PROPOSITION 4.5. If (A)x (ieI) are endo-slender R-modules, then @, A is
also endo-slender. '

Proof. Let E = Endy(®.14;) and suppose that the conclusion is false. Then,
there exists an E-homomorphism h: E“ - @;.14; such that he,) % 0 for n<w.
Let p;: @;c14;— A, be the projection and for x € @;.;4; supp x = {i: p(x) # 0}.
According to the endo-slenderness of A’s, we get natural numbers i, <i,., and
finite subsets 7, =I,,.; = (n < w) by induction so that {suppe(e,): 0<k<n) I,
and p,@(E® "*!) = {0} for every icI,. Now, there exists m<w such that
SUPP @ (Y n<w i) N Un<eo &y © Iy. Lot p*: @yy4;— @ieun,1.4; be the projection.
By the property of the above construction, p*@(Yn<on) = Yie1nP1®(Ln<ots)
= 0 k=0¢), i.6. P*@Crmmr1€;) = 0. By the same reasoning, p*@(Cizm+2€5)
=0 and hence ¢(e,,,,) = 0, which is a contradiction.

By Propositions 4.2, 4.3, 4.4 and 4.5, we can see that a problem of endo-slen-
derness of nonreduced torsionfree or torsion groups is splitted to those of reduced
groups and divisible groups, where endo-slenderness of divisible groups can be
easily determined. Proposition 4.4 has some corollaries, which we next state.

COROLLARY 4.6. Let R be a right principal ideal domain. If R is left slender, then
every torsionless right R-module (i.e. a submodule of R® for some I) is endo-slender.
Consequently, all torsionless abelian groups and torsionless D [X1-modules for di-
vision rings D are endo-slender.

Proof. Let My be a nonzero torsionless R-module, then there exists a nonzero
homomorphism A: Mz— R. Since R is a right principal domain, there exist an
meM and re R such that A(m) =r and A(M) = rR and so the cyclic right
module {m) is isomorphic to Ry and is a summand of M. Now, the first proposition
follows from Proposition 4.4. Slenderness of the ring Z and D[X] is well known
and follows from Example 2.4 (1) and (4) and hence the second claim holds.

COROLLARY 4.7. If A is a torsion endo-slender group, then t(A"), i.e. the torsion
subgroup of A', is endo-slender for every I.

The proof follows directly from Proposition 4.4. Next we prove a theorem about
endo-slenderness of submodules of direct products, by which we will easily determine
endo-slenderness of direct products of torsion free groups of rank 1.

THEOREM 4.8. Let (A))g be an endo-slender R-module for each i€ I and My an
R-module such that ®;e1A; = Mg< [Lic1di, where @14, = {x € [[1erd;: suppx is
Sinite}. If the following condition (1) holds, then My is endo-slender. In case that
(A)g -are slender and the condition /(_2).\1‘7:!10w holds, then (1) holds iff My is
endo-slender. S * :
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(1) For any infinite X < I and nonzero x;e A; (i€ X), there exists a jeI .vuch
that x; ¢ () Ker(h): h e Homg(4;, 4;)} for mﬁnztely many ie X.

(2) There exists a countably complete subfield B of P(I) satisfying the following:

(a) The singleton {i} belongs to B for each i€l

() suppu(= {i: u(i) # 0}) belongs to B for each ue My;

(c) For any pairwise disjoint subfamily {X,: n<aw} of B and u, e My, there
exists a we My such that w| X, = u,|X, for every n<w.

Proof. By the assumption there exist projections p; € Endg(My) (= E) (1 € I’)
such that p(M) = A,. Suppose that there exists an E-homomorphism ¢@: E® -, M
such that ¢(e,) # 0 for any n<o. Then, there exist 4, (ne N) and j such that
Pi,¢(e,) # 0and p, (e,) ¢ N {Ker(h): h e Homg(A,,, 4;)} for infinitely many n < w.
In that case, hp;,¢(e,) # 0 and so @(p;hp,) = pihp, @(e,) = hp,,¢(e,) # 0 for
some ke Hom(d,;,, 4)). However, ¢|p;E® is an Endg(4;)-homomorphism to A;
and hence ¢|p; E®™™ = {0} for some m. This is a contradiction.

Ne;;t we prove the converse under the additional assumptions. Suppose that (1)
does not hold. Then, there exists an infinite subfamily {7,: n < w} of I (where i, # i,
for m # n) and x, €4;, (n<w) such that if je7 and &, e Homg(4,,, 4,) (i< o)
then k,(x,) = 0 for almost all n <w. Let %,(i,) = x, and %,(i) = 0 for i # i, for
each n < o, then X, belongs to My by the property (2). Also by (2), there exists an
R-w;-sheaf (&, o) over B such that &#* &~ My. (We identify &* with My.) For
feE®and i€l p,f(n)e @peslh my: heHomg(P|F, A)) by Theorem 1.5. (Here F
is the set of all countably complete ultrafilters of B. nx(X,) # O iff F is the principal
ultrafilter generated by the singleton {i,}. Hence, p,f(n)(%,) = h;p; (%,) for some
hyeHomp(4,;,, 4;) and 50 p, f (n)(X,) = O for almost all , by the slenderness of 4;.
Since supp f () (x,) € B (n < w) and B is a countably complete subalgebra of P(D),
there exists a partition {b,,: m <} of I such that g3, (f(n)(%,)) = 0 for almost all
n <. Therefore, ¥ ne,, f (1) (%,) € (= Mpg). Now, we can define ¢: E®— ;M by:
o(f) = Z,,<,,, f(m)(X,). Smee ¢(e,) # 0 for all n, it is enough to show that ¢ is an
E-homomorphism for gettlng the conclusion. ¢(f+¢) = ¢(f)+¢(g) clearly holds.
ForaceE, let pjo= Y= ohkan where 1y, € Homp(¥/F,, A;)and F, # F;for k # j.
For an fe E®, let {b,: m < w} bea partition as above. There exists a unique m such
that b, € F, for each 0 <k <n—1. Hence, p;6(Yucof (%) = Yacapio(f(1)(%,)

= Py e ( £()(5,) for every i. This implies 7(reef )= Trceo(F5)
= 2n<w 0 F (), L. a-0(f) = @(o:f).

COROLLARY 4.9. Let A, (iel) be slender. groups and

1lier4; = {xe[Lics4;: suppx is countable} ,

Then, [1ie1 4, is endo-slender iff ]ji, 14, is endo-slender iff for any infinite X < Iand
nonzero x,€ A; (ie X) there exists a jelI such that x,¢ () {Ker(h): he Homy,
(A;, A)} for infinitely many ie X.

Let B = {X<=1I: X or I-X is countable}, then Hig 14, and B satisfy the con-
ditions of Theorem 4.8. Now, the corollary follows from ’Iheorem 4. 8
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A torsion free group A of rank I is isomorphic to a subgroup of Q and identified
by its type t(4). We refer the reader to [18, § 85] for the definition of type. We only
remark that, for torsion free groups of rank 1 A and 4', t(4)<t(4) iff
Homy(4, A") # {0} iff 4 is isomorphic to a subgroup of 4’

CoRrOLLARY 4.10. Let A be a direct product [ ;1A of torsion free groups A; (i€ I)
of rank 1. Then:

(1) If the set {i: A; is isomorphic to Q} is nonempty and finite, then A is not
endo-slender.

(2) If the set {i: A, is isomorphic to Q} is nonempty and infinite, then A is endo-
slender.

(3) Suppose that A4 is reduced, i.e. the set {i: A, is isomorphic to Q} is empty
Then, 4 is endo-slender iff for any infinite subset X of I there exists a j e I such that
{fe X: t(4) <t(dp} is infinite.

Proof. Propositions 4.2, 4.3 and 4.4 imply (1) and (2). Since a reduced torsion
free group of rank 1 is slender and endo-slender by Proposition 1, (3) follows from
Theorem 4.8.

Let R, be a torsion free group of rank 1 of type ¢, To = {#: R, is reduced} and-
T, = {t: R, is p-reduced for every prime p}, where 4 is p-reduced if (), <,0"4 = {0}
Considering characteristics of the form. (w0, ..., @,0, 0 ...), we can see that TTerR: is
not endo-slender. On the other hand, T, consists of all types which contain the
characteristics f € "o, where p, = 2, p; = 3 and so on. Denote the type containing f
by [f]for fe ®w. Then, for £, g € “w, [f 1< [g] holds iff f(?) < g () for almost all i.
Since for any countable family {f, € “w: n <} there exists an fe "o such that
FD) S @) for almost all i (n < w) (see [24, p. 260]), [Ler, Ry is endo-slender.

5, Endo-slenderness of Boolean powers. Since the content of this section is re-
lated to properties of Boolean algebras (abbreviated by Ba), we first introduce some
notions concerning Ba’s.

A map h: B— B’ is a homomorphism for Ba’s B and B, if #(0) = 0, A(bA ©)
= h(B)A h(c) and k(b v ¢) = h(b) v h(c) for b, c € B. (Note that we do not require
h(l) = 1.) In addition if \/ X = b implies \/ #(X) = h(b) for each be Band X = B
of cardinality less than x, % is said to be »-complete. (We use the word “countably
complete” instead of “w,~coniplete™.) A is complete, if & is %-complete for any ».
1t should be noted that there exists a complete homomorphism from a noncomplete
Ba. For a nonzero b e B, [0, b] = {ce B: ¢< b} is also a nontrivial Ba. B is homo-
geneous, if [0, 5] is isomorphic to B for every nonzero b € B. B is weakly homogeneous,
if 0 and 1 are the only elements which are fixed under all automorphisms of B:
Ba’s B and C are totally different, if for any nonzero be B and ce C [0, b] and
[0, ¢] are not isomorphic. B is rigid, if the identity is the only automorphism of B.
In other words, B is rigid, if [0, 5] and [0,¢] are totally different for any
pairwise disjoint nonzero elements b and c. B satisfies (u, v)-distributivity, if
Vet Na<sBagy = 1 holds for any systems {bys: & < g, f < v} 50 that \/p<ybyp = 1
2!
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(¢ < 1). The canonical completion B of a Ba BisacBa such that B includes 8 as
a subalgebra and for any nonzero ce B there exists a nonzero b€ B with b<e.

Let My be an R-module and x a cardinal greater than both the cardinalities
of My and R. For a x-complete Ba B, the Boolean power M consists of all f’s
such that /: Mp—B, \/yenS/ (@) = 1 and fu)A f(v)= 0 for u 5 v, where (f+9) W
= Vizoswl @) A gw) and (f+r)@) = \/pr=uf(v) for re R. We also denote f by
Y uenti 1oy It is easy to see that there exists an R-x-sheaf (&, o) over B such that
S MP. Let {f,: a<l}c MP be a family such that A< and there exists
a partition {by: B < u} of 1 with the following: p < x and b, < f£,(0) for almost all «
and edach f. Then, the given condition corresponds to that after Definition 1.4 and
hence we get an element Y .<;f, of M.

The first theorem shows that endo-slenderness occurs without any relationship
to either slenderness of abelian groups or infinite direct sums.

THEOREM 5.1. Let A be a reduced torsion free abelian group and B a homoge-
neous Ba which is not (v, 2)-distributive. Let S be a subgroup of A® that satisfies
the following: For any complete homomorphism h: B—B and > readily, €S,
Laealalnws) € S holds, where B is the canonical completion of B and {b,: A e A} (= B)
is @ partition of 1. Then, S is endo-slender. Consequently, if B is x-complete and
|4 <%, then A® is endo-slender.

Proof. Since B does not satisfy (w, 2)- dlstrxbutlvxty, there exists a system
1Bt m<w, m<2} such that b,o V by = 1, bog A b,y = 0 and Ni<obugm =0
for all fe “2 by the homogeneity of B. Suppose that on the contrary an E-homo-
morphism ¢: E”— S satisfies ¢(e,) # 0 for any n<w. Choose j, < w so that
Jntlo(e,) but (,+ D! ¥ ¢(e,). Next pick a v, € 4 56 that b< o (e,,)(v,) for some
nonzero b and j,!|v, but (j,+1) ¥ v,. By the homogeneity of B there exist ky,<w
and o, € E such that ¢,,¢(&,)(0) = b,o, 0,,¢(e,)(©,) = byy, 2k, +1< ki1 and
Jm <k Now,

P Eom<akn!Tnen) = @(Tncokn! O e+ Y nsnky! open)
= Yokl 0 (O en) 4Kyl 9 (00 + K1 110 (Tmakinl/iyl O
Let aeS and fe"2(= """"140 1}) such that
@ En<akn! One) @A N\uZbbpponm # 0.

We claim
1)z kla=YnZo fmkalv, but K1k a-Yhhgmk,lv, for any g¢"2
with g $ f.
In case n = 0, kq!|a, hence the claim holds. Assume the claim is tiue for 7.
kyiylla=Ymao f(m)k,!v, holds. Let g(i) % (i) for some i<n. By the inductive
hypothesis, k,! ¥ a— =og(m)k v, and k,!|g(n)k,!v, and hence

kn+1! *a'“z:n=og(m)kmlvm '
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On the other hand, if g(n) #f(#) and g(i) =1
n+1,*a Zn Og(m)k ™ fOI kn+1'*k ’l)

The claim () implies (p(Zm<mk 10,6, (@) < AmwzoBumsmy - Since this holds for
every n<®, @OQm<oknmlone)(@ =0 for any aeS, which contradicts
O Fm<oknlone) € S A®,

COROLLARY 5.2. Let J, be the group of p-adic integers and B a homogeneous
2%9*_ complete Ba. Then, the Boolean power J® is endo-slender, iff B satisfies
(@, 2)-distributivity.

Proof. Let E = End,(J®). If B satisfies (w, 2)-distributivity, then J(m is
algebraically compact [1, or 10, Proposition 4]. J¢¥ is torsionfree and reduced and
hence any Cauchy sequence converges in Z-adic topology. As is well known, J® is
not endo-slender, i.e. ¢(f) = Y ,<on! f(n) (%) (Where u(1) = 1) defines an E-homo-
morphism from E® to JI® and ¢(e,) # 0 (n < w), where the infinite sum is taken
in the Z-adic topology. The converse immediately follows from Theorem 5.1.

(@ for every i<m, then

TuEOREM 5.3. Let B be a x-complete Ba with the property (xx) below and My
a primitively endo-slender module of cardinality less than x. Then, MY is also endo-
slender.

(xx) For any family of nonzero elements {b,: n< w} there exist b # 0, an infinite
subset I of w and h, (n € I') such that h,: [0, b,}— [0, b] is a - complete homomorphism
and hy(b,) = b.

Lemma 5.4. Let B be a x-complete Ba, My a primitively slender module of cardi-
nality less than » and h: R® — M an R-homomorphism. Then, for any non-zero
be B the set {n: h(e,) is a non-zero constant on b} is finite, where x € M is said
to be a non-zero constant on B if there exists a nonzero u e My such that b < x(1).

Proof. Suppose the negation of the conclusion. Without any loss of generality
we may assume /1(e,)(u,) = 1 and u, # 0 for all n < . We define k, <w and s, € I,
by induction. Let ky = 0 and 55 €fy, 5o that uys, #0. There exists k,,4 such
that k <k,.; and K, ~3i-ows; =K, . Next, choose $y+;€l;,,, 50 that
Uyy1Sarr 7 0. There exist 0 # ce Band u € K, _, such that A(Y a<e,5) (@)= ¢ # 0.
Fornzm, c <A sue;s)(u—Y 12gus;) holds, because A(Y 1, e,5) = h(zkme;s,)—

Z’{,&h(e s) On the other h'md /1(Zi>,,e sye MPL e u—Y1Tsuse M- L.
Since u—Z, ouis;e Ky, u— ZI o 4;5; = 0. The same proposition holds for n and
hence u,s, = 0, which is a contradiction.

Proof of Theorem 5.3. Let E = Endp(M{) and h: E®5gM® be an
E-homomorphism such that /(e}) # 0 for all n < w. Then, h(el) is nonzero constant
on some nonzero b,. Since a x-complete homomorphism from B to B naturally
induces an endomorphism of My, (*x) implies the existence of an infinite subset
Icw, b#0, 0,eE (nel) such that o,h(ef) is nonzero constant on b.
Endg(Mp)(= E) is naturally a- subring of E. Define ¢: E*—E® by:
O(f)= Yuerf(Wo.ef (nel), then ¢ is an E-homomorphism and hg(e,) = h(a ¥y
= g,h(ey) (nel), which contradicts Lemma 5.4.
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THEOREM 5.5. (Assume the nonexistence of an inner model with a measurable
cardinal) Let B be an (®, co)-distributive ¢Ba and My a primitively slender and
primitively endo-slender module. Then, MP is endo-slender iff B satisfies (xx) for
an arbitrary % in Theorem 5.3.

COROLLARY 5.6. Let B be an (w, wo)-distributive cBa and A a countable reduced
torsionfree abelian group. Then, the abelian group A® is endo-slender iff B satisfies
(*@,) of Theorem 5.3.

Since we use Boolean valued models V™ for cBa’s B [2, 24, 30] in the sequel,
we state some definitions and preliminaries.

For an element x,x¥ e F® is defined by: dom(x¥) = {y': yex} and
x¥(p¥) =1 for yex. We assume V® is separated, i.e. [x = 1P = 1 implies
x = y. We omit the superscript of [...J* if no confusion will occur. We say “..”
holds in ¥®, if [%...”] = 1 holds. For an element x & ¥, x* = {y: [yex] = 1}.
Suppose that T is an RY-module in V®. Let () = {xeT": Tb<[x = 0]}
and ¢%(x) be defined by: 1 ¢ < [¥(x) = 0] and ¢ < [ob(x) = x]. Then, (¥, 0) is an
R-sheaf over B. Conversely, for any R-sheaf over B there exists a T'e V® such
that T'is an RY -sheaf in ¥*® and the corresponding R-sheaf is isomorphic to (&, @).
Therefore, we identify T' and (&, 0) snd our notation “** is consistent since
T" ~ %", Especially if T = My, T" is i<omorphic to MP as an R-module. This
identification is important in the following argument. (We have used such an argu-
ment in [7, 11, 15] and such a presentation in [8, 9].) Under this identification, we
use the notion “proper sequence” of elements of M B, (See the definition before
Theorem 1.5.)

LEMMA 5.7. Assume the nonexistence of an inner model with a measurable cardi-
nal. If B is an (@, oo)-distributive c¢Ba, then any countably complete homomorphism
from B to B is complete.

it

Proof. Suppose that s: B— B is a countab.y complete homomorphism which
is not complete. Let » be the least cardinal such that % is not x-complete. By the
(@, oo)-distributiveness, 4 induces a mon-principal countably complete ultrafilter
of (Px)Y in V). Therefore, as in a usual case in [24, pp. 447-450] we get an inner
model with a measurable caidinal. :

Proof of Theorem 3.5. The if-part follows from Theorem 5.3. To show the
contrapositive, we investigate endomorphisms of M{”. Let ¢ € Endg(M{") (= E),
then there exists & such that &: (M ™)Y - My is an RY-homomorphism and
F(x¥) = o(x)in V® for x e M. Since My is primitively slender, My is also primi-
tively slender in V™. By the (o, co)-distributivity of B, B” is countably compleie
and (M)¥ has an RY-w;-sheaf structure & over BY in V. Therefore,
Homg-(M$P)", My') = ®resgHomp(#/F, M7y in V® by Theorem 1.5. If
c<[Fe &), define hp: B— B by: he(b) = cA [b" € F] for each be B. Then, hy
is a-countably complete homomorphism with fx(b) = c. Let {b,: n <w} be a family
of nonzero elements which mects the negation of (x3) for some ». Pick a nonzero
ae My and let a,e MY so that a,(b) = a and a,(715,) = 0. We claim that
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F)(a,) (n<w) is a proper sequence for any fe E°. We can take f so that
FmY) = (f®)” in v® for n< w. (Here, the symbol “~™ is used in a little bit
different meaning to the one in the above usage, but confusion is harmless.) What
we need to show is that {n < w: F(x)((a¥),) # 0} is finite in V. Suppose not. By
the (w, oo)-distributivity of B, there exists an infinite set 7 such that

[f((@"),) # 0 for nel¥] =5 £0.
By the above, there exists a partition P, of b for each n such that

PS [f(nv) = Z:”‘;thinF,i]]

for peP, with suitable m,<w, h, e (Homg (F/Fy;, M3))", Fpe F*. Since
p<\/izo[b) € F,], we getarefinement Q, of P, for each n e I such that there exists
a countably complete homomorphism A: [0, b,]— [0, g] with k(b,) = ¢, for each
ge Q,. Now, using (w, oo)-distributivity, we get a nonzero b* so that there exists
a countably complete homomorphism 4: [0, b,]— [0, b*], for each n € I. Lemma 5.7
implies that & is complete and hence we have a contradiction which proves the claim.
Therefore, we can define a map ¢: E°>M® by: ¢o(f) = Yu<o SD(a,). It is
straightforward to See o (f+g) = ¢(f)+0(g). Since o¢le,) = a, # 0 (n<w),
what we need to show is that ¢(af) = oo(f) for c e E. As we have shown,
{n: Tm)((a"),) # 0} is finite in V@ and hence To<p, F((@¥)) = Ynew f1)(@,).
Since Yo, 7 (1){(@"),) is just a finite sum, &(Fo <o f () ((@¥)) = Yu<of T () ((@")n)
in V® for g B. &-J(n") = (o-f)"(n") holds and so ¢(af) = o (f) for seE.
Now, we have shown the existence of an E-homomorphism ¢: E® =M ®. with
p(ey) # 0 (n<ow). ‘ '

Proof of Corollary 5.6, Since A is primitively slender and primitively endo-
slender by Examples and Remarks 2.4 (1) and Proposition 4.1, the if-part follows
from Theorem 5.3. The countable completeness can be proved without Lemma 5.7
as in the proof of Theorem 5.5 hence we get the claim. )

Acknowledgements. The author thanks R. Dimitri¢ for his reading the preprint
and detecting many linguistic errors. )
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On partitioner-representability of Boolean algebras
by

R. Frankiewicz (Wroctaw) and P. Zbierski (Warszawa)

Abstract. Tt is proved that — consistently with the Martin Axiom — the power-set algebra
P(w,) may not be partitioner-representable.

0. Baumgartner and Weese in [B-W] introduced the notion of partitioner-
representability of Boolean algebras: if E is m.a.d. (a maximal, almost disjoint family
of subsets of ) then a set 4 < w is called a partitioner of E if for each ¢ € E either
ecyd or end =, (i.e. exd or en 4, respectively is finite); the union, inter-
section and difference of partitioners is again a partitioner, and hence the family
Pt(E) of all the partitioners of E is a Boolean subfield of P(w). A Boolean algebra
is said to be partitioner-representable if for some m.a.d. E it is isomorphic to the
factor algebra Pt(E)modJ where J is the ideal generated by fin (the finite sets) and E.

The finite sets and finite unions e, U...ue, (and their complements) are called
trivial partitioners. Thus, Pt(E)modJ may be called the algebra of non-trivial parti-
tioners of E.

The fundamental theorem in [B-W] (see also [F-Z,]) says that — under CH
(the continuum hypothesisy — each algebra of cardinality < ¢ = 2° is partitioner-
representable. A question arises if the same is true if CH is replaced by MA (Martin:
Axiom). In this note we prove that this is not the case:

TrroreM. There is a generic extension of the constructible universe in which MA
holds and ¢ = x, for a given regular % > w,, and the algebra P(w,) is not partitionet-
representable.

Originally, we had ¢ = w, in our model.

We are grateful to the referee who pointed out how to get the more general case.

In [F-Z,] it is proved that partitioner-representability of P(w,) implies the
existence of Q-sets. From the theorem it follows that the converse is not true.

The idea of proof is, roughly, as follows. Extend ¥ = L (the constructible sets)
via a finite support, c.c.c.-iteration of length % and assume, for contradiction,
that P (w,) is representable in V[G]. Bach (o,, 0;)-chain C = {{X.}; {ye}), gives
then rise to a species of a Hausdorff gap H = {{a,}; {bs}), Which — ata given’
stage of iteration — cannot be filled. Now, there are two forcing notions Q
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