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On partitioner-representability of Boolean algebras
by

R. Frankiewicz (Wroctaw) and P. Zbierski (Warszawa)

Abstract. Tt is proved that — consistently with the Martin Axiom — the power-set algebra
P(w,) may not be partitioner-representable.

0. Baumgartner and Weese in [B-W] introduced the notion of partitioner-
representability of Boolean algebras: if E is m.a.d. (a maximal, almost disjoint family
of subsets of ) then a set 4 < w is called a partitioner of E if for each ¢ € E either
ecyd or end =, (i.e. exd or en 4, respectively is finite); the union, inter-
section and difference of partitioners is again a partitioner, and hence the family
Pt(E) of all the partitioners of E is a Boolean subfield of P(w). A Boolean algebra
is said to be partitioner-representable if for some m.a.d. E it is isomorphic to the
factor algebra Pt(E)modJ where J is the ideal generated by fin (the finite sets) and E.

The finite sets and finite unions e, U...ue, (and their complements) are called
trivial partitioners. Thus, Pt(E)modJ may be called the algebra of non-trivial parti-
tioners of E.

The fundamental theorem in [B-W] (see also [F-Z,]) says that — under CH
(the continuum hypothesisy — each algebra of cardinality < ¢ = 2° is partitioner-
representable. A question arises if the same is true if CH is replaced by MA (Martin:
Axiom). In this note we prove that this is not the case:

TrroreM. There is a generic extension of the constructible universe in which MA
holds and ¢ = x, for a given regular % > w,, and the algebra P(w,) is not partitionet-
representable.

Originally, we had ¢ = w, in our model.

We are grateful to the referee who pointed out how to get the more general case.

In [F-Z,] it is proved that partitioner-representability of P(w,) implies the
existence of Q-sets. From the theorem it follows that the converse is not true.

The idea of proof is, roughly, as follows. Extend ¥ = L (the constructible sets)
via a finite support, c.c.c.-iteration of length % and assume, for contradiction,
that P (w,) is representable in V[G]. Bach (o,, 0;)-chain C = {{X.}; {ye}), gives
then rise to a species of a Hausdorff gap H = {{a,}; {bs}), Which — ata given’
stage of iteration — cannot be filled. Now, there are two forcing notions Q
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and E, connected with H. We force with Q, which adjoins an uncountable antichain
to E. Thus, in V[G], E does not have c.c.c. On the other hand, the chain C can be
filled in P (v,), which in turn implies that E must have c.c.c., a contradiction. A si-
milar idea was used by Kunen and others, sce also [F].

1. Suppose that P(w,) is partitioner-representable. Thus, we have an iso-
morphism

St P(w) ~»Pt(E)modJ .
Each value f (x) is an equivalence class modJ. If 4 & f(x), we shall write shortly
Aptx (4 is a partitioner of E corresponding to x).
If Aptx, Bpty and x <y, then A€ Bmod/J, i.e. ANBeJ. Thus
ANB =, F, for some finite FS E.
Similarly, if xny = @, then AnBeJ, and hence

; AnB =, F, for some finite FS E.
Let us denote
E(4) ={ecE:ec, A},

LEMMA 1. Assume that P(w,) is partitioner-representable on a m.a.d. E. If
Aptx and x is infinite, then E(A) has cardinality c.

Proof. Let us divide x = x4 into two infinite parts xy = X¢0y W X¢yy and repeat
division up to obtaining a binary tree

{x;: seU {0, 1}

such that

if s€t, then x2x,
and

if s() o t(7), then xg4q Nxgisy =@,
Let us choose partitioners 4;: A;ptx, and Ay = 4. We have
s< ¢ implies 4,< A, modJ
and
s(i) # t(i) implies Agiv1N Ay = @ modJ .

I\:Iodifying the sets' 4, by trivial partitioners (inductively, along the levels
{0, 13", we may assume that

st implies 4, < 4,
and

s() # t(i) implies Agir1O0Agis; = 9.
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For each branch g € {0, 1}” we choose an infinite set B, such that

B,cy Ay, foreachn<o.

Since E is maximal, there is an e, € E such that e, n B, is infinite. It follows
that e, S 4, for each n < w, since A, are partitioners. In particular, for each g
we have e,Sud, €5 Sadyu €pSadgyy and hence e, ney, Swdyn
N Agyn = 9, which proves that all the e,’s are different, which finishes the proof.
Now, we generalize the notion of a Hausdorff gap as follows. Let D be an
almost disjoint family (not necessarily maximal) and let

H= <{az}a<co|; {bﬁ}li<w1>
be a system of uncountable partitioners of D (i.e. the sets D(a,), D(by) are uncousn-
table) satisfying the following conditions:
(1)  aynby =D, for all «, f< o, and a,nb, =@, for all a< wy;
(2) a,Spasand b, S pby, forallu< f, where e pb means that D(a~p) is a finite

“or countably infinite family. -

We say that a set S S o separates (or fills) thegap Hifa, =4 Sand byn S =, &
for all o, f < w;.

More generally, we say that § D-separates H if @, =p 8 and by < po\S, for
all o, B < wy.

There are two forcing notions, introduced by Kunen, associated with a gap H.
The first one, denoted by E, consists of pairs p = s, t,), where s,, f, are finite
functions from , into o satisfying the property

U axs@n U bNtf) =@

aedm(sp) £ sdm(tp)
The ordering on E is defined thus
- p<g iff  s2s and t,21,.
LemMA 2. If H can be filled, then E has c.c.c.
- Proof. Suppose, on the contrary, that there is an uncountable antichain

{ps: £<w,} in E. Using the 4-system lemma, we may assume that maxdm(s,,)
<mindm(s,), for £ <n and similarly — for dm(t,). If

ke= U a)\s(®) and L= U b\l

3 edm(s,g) I srdm(r,,!)
then incompatibility means that the set
pexpy = (kynlyulznky)

is nonempty, cf. [F-Z,]. By assumption, there is a set .S which separates H, and
hence we can find an m < @ such that

kpameS and  (SIMnk =0,
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for € e X,, where X, S w; is uncountable. Let &, = minX, and find an uncountable
X, € X, such that p;, * p, is constant for n € X,. Again, if ¢, = min X, then we
can find an uncountable X, = X, such that p,, % Py is constant on X, etc. Thus, for
each n < ® we have an uncountable X, such that if £, = min X,, then the nonempty
sets

Dao ¥ Dy 05 Pnay * Din

are pairwise disjoint and lie below m, which is impossible and the proof is finished.

The other forcing, denoted by Q, consists of finite sets q <y such that:
for all « % fagq, a,"by # B or azrb, # D,

Q is ordered by the reverse inclusion.

Each function g: w,~w,, with g(a) > a, determines a subgap H(g) of H,
where .

H(g) = <{a,n ag(z;}; {bﬂ n by(ﬂ)]’) .

Lft Q(g) and E(g) denote the forcings Q and E, respectively associated with H(g).
Fipally, let Q* be the finite support product:

2*=110G@).
g
LemMA 3. If no set D-separates H, then Q* has the c.c.c. and for each g e V:
Wy
Q%+ E(g) has an uncountable antichain.

. Proof. For the countable chain condition, it is sufficient to prove that each
finite subproduct

Qg x...x Q(g,)
has this property. Assume, for contradiction, that
qé = <qi§’ tery q1$> 3

i; an uncountable antichain. Applying the 4-system Lemma n times we may assume
that '

maxgf < ming],

€<m1:

for (<pandi=1,..,n.
Since ¢% ¢" are incompatible,
*Lg" foré#y,
we have that gf 1 g7, for some j and hence there are « e gf and f e g} such that
(3N G) OBy b)) = B and @ ayup) N (banbyw) = 3.
Thus, if ’

S; =N {admaw(,): ozeqf and 7 = 1, .., n}
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and . .
T, =\ {bgnbyg: Begland i =1...,n},

then S;nT, = &, for £ # 1, and ST, = B as well, since q,nb, = G, for each
o <.

For ¢ <ming$, .., ming; we have a, <, S, and hence, if §= | {Sy: €<w,},
then a, S, S, for each a <w,. Symmetrically, if T = U {T,: 5 <o}, then b, S, 7,
for each f <w; and since SN T 5 0, we see that the set S D-separates H, a con-
tradiction.

In particular, cach Q(g) has c.c.c. and consequently we may assume that for
each ge Q(g) the set

{e<w: gufale 99}

is uncountable. Let G < O* be a generic filter. The projection G(g) onto gth coordi-
nate is then generic in Q(g) and the sets

{g: [ B>a and peq]}

are dense. It follows that G(g) contains uncountably many singletons {«}. For each
such o define p, = <s,, %, € E(g) as follows:

“dm(s) = dm(t) = {¢} and s(0) = 1() =0.

Now, p, and p, are incompatible in E(g), since {a} and {#} are compatible
in Q(g) as elements of G(g). Thus {p,: @ < w,} is an uncountable antichain and
the proof is complete.

2. In this section we show how to construct a particular gap H from a “partial”
representation of P(w,). It is more convenient to deal with P(w, x ®,), rather than
with P(wy).

For an uncountable set X cw,, let (X), denote its jnitial segment of order
type a. Suppose that also w,\X is uncountable and define

xz= U{{E}X(Dll CE(X)1}9 yp: U{{r’}xwl: ﬂe(ﬂh\x)p}- )
Let B(X) be the subalgebra containing the sets x,, y;, for «, f <w, and {£} x ey,

all ¢ <w,.

DeriNrrioN. If Dis an a.d. family, then a D-representation of an (w, , w,)-chain

k(X) = {x}; (b

is a function r: B(X)— P(w) such that;

(1) For each x € B(X), r(x) is a partitioner of D and for x # @ the set D(r(x))
= {ee D: ec,r(x)} is uncountable.

(2) r is congruent with: Boolean operations, in particular conditions xSy
and xny = & imply that the sets D(r(x)\7(»)) and D(r(x)nr(»)) are finite respec-
tively. ‘ .
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Let r be a given D-representation of k(X). If 4, = r(x,), By = r(y,) then we
have a corresponding system

K(X) = {4.}; {Bp})

which need not be a D-gap, since the intersections 4,0 By are, in general, infinite.
We say that a D-gap H = ({a,}; {b,}) is contained in K(X) if

Augpaa.g*/lm a«('\Bp =*Q
and

BySpbySyBy, bynd, =0

for all o, f<w,; H is said to be regular if

ana,Sya,na  and  bnb, Sybynbg

for all a < f<y <w;.

If there are enough Cohen reals and dominating functions, then we can always
find a regular, unfilled D-gap H, contained in K(X), for some X. Recall the domi-
nating forcing D the conditions are pairs P = {s,, F,», where s, is a finite sequence
of natural numbers and F, is a finite set of functions f: @ - . The ordering on D is
defined as follows: p<gq iff 5,25, and F,2F and s,()>f (), for each
iedm(s)\dm(s,) and fe F,.

If Ge D is a geperic filter, then the function ¢ = U {s,: p € G} dominates
each function f from the ground model: g()) > (i), for all but finitely many i’s.
Moreover, D always has the c.c.c.

Lemva 4. Let DeV and P, = 3. P,, where ¢f(y) = w,, be a finite support
x<y

iteration such that each P, has the c.c.c. and for some cofinal in y sequences
{ogr E<w,), {Bet E< ) we have P, ..y =P, % C (the Cohen Sforcing), and
Py = Py x D. Then, in V[G], there is an X such that for an arbitrary D-repre-
sentation r of k(X) there is a reqular, D-unfilled gap H contained in K(X)}.

Proof. Let c; be the Cohen real added at the stage a,+1. Define X = o, as
the Cohen subset determined by the sequence {c;: £ <@):

X = {@-&+i: c(i) = 1}.

Thus, X € V[G] but, for no &<y, X is in the submodel ¥[G,]. Consequently, any
D-gap

H = {{a}; {6}
contained in K(X) must be D-unfilled.

Indeed, suppose that a set T D-separates H and let C; = r({{}+ ). Then
we have that £e X implies C;<pa, for some o and

§¢ X implies C;spby, for some f.
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It follows that
X ={t<wy: C,cpT},

and hence X e V[G,], for some a <y, which is impossible.
The gap H will be defined inductively. Assume that we have already sets a;, by,
for £ <o and define a,, b, as follows. The family

D; = f{ee D: [ <n<a and eS ana,)}

is at most countable, since a; S pa,. Using a dominating function, we can find a parti-
tioner S; of D such that

NG, S Sy, for each {<n<a

and

enS;=,9, for each ee D\D;

in a usual way: the family
Ry = {a;n(apnay:1): E<n<a}

is disjoint and countable. Changing its elements, if necessary, on a finite set, we may
assume that {) R; = w. Choose a 1-1 onto function j: @ —w x @ such that the images
of the elements of Ry are the vertical axes {n} x w. Then, the sets j[e] for e e D\D;
are finite on each axis, and hence the functions

fun) = max{j[e]n ({n} x o)}

are well defined. All this takes place in some submodel V' [G,] and therefore we have
a function g dominating each f,. Now, if

F={(n,i): i<g@®m)}

then S; = w\j™'[F] is as required.
In a similar way we find an $ such that
S: =4S, foreach {<a
and ‘ .
enS =,0, for each ee D\ | D;.

<x

Finally, let
D, = {eeD: 3 ,leSs4,nB,1}.

There is a partitioner T such that

A4,nB, T, for each n<a
and

enT =,0, for each ee D\D,.
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It is easy to see that a, = 4, \(SUT) is as required. The set b, is defined symmetri-
cally and the proof is complete.

3. Let us assume that P(w,) is partitioner-representable on some m.a.d. E.

If {{x.}; {¥}) s an (@, wy)-chain in P(w,), i.c. the sequences {x,: ¢ <w,},
{yp: B < s} are strictly increasing and x, Ny, = @, for all &, f < w,, then we can
choose a corresponding system of partitioners

K= ({4} {B})

and since there are no gaps in P(w,), there is a partitioner § (e.g. S corresponds to
the union of the x,’s), such that

ANS =, UU,, for some finite U, E
and

BynS =, UW,,

Levmva 5. In the notation as above, there are finite sets U, W< E and, for
each o< «y, finite sets u,, w, S oy, with o« = minu, = minw,, and such that

Nd:sxSUU U, for each a<w,

feus

for some finite Wy < E.

and
N B,nSc UW, foreach p<w,

1ewg
Proof. Bach intersection
P = N {U;: a<f< o}
reduces to a finite one
@) =U,nU,n..nU,,

and we take u, = {u,ay, ..., o,}. On the other hand, since the function p(a) is non-
decreasing and its values are finite sets, there can be only finitely many jumps, and
hence for some o, <w; we have

r@®<sp@,
Define U = p{a,). Now, since the elements of E are almost disjoint, we have

0 A¢\5=*’{Q‘GWU: = U{ﬂ Us =% Up@ SsWp(m) =« U U

§&ux

for each ¢« < w, .

which proves the first part of the lemma.
The sets W and w, are defined in a similar way.
Consider now a regular D-gap

H=<{{a}; {b})
contained in K. Then, since

anNBy=4F and bnd,=,0
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for all e, f <w,, we obtain
NanUU=,8 and NboUW=,0
Seux newg
for all «, f < @,.
Thus, since U and Q are disjoint, we infer that the partitioner 7' = SUUNU W
separates the subgap

A Nak {0 6.
Eeuy newg
The regularity property implies

N a; = a,na;, ), where fi(d) = maxuy,

"™
and
() by = bynby, where f,(B) = maxw,.
nebg

If f= max{f,f,}, then a,Nnay, and by by are even smaller and hence we
have the following.

COROLLARY. If P(w,) is partitioner-representable and K, H are as above, then
there is an f. wy—wy, with (o) >, such that the subgap

H(f) = {anapw}; {bsnbsp})
can be filled.

4. Now, using the results of the preceding section, we can finish the proof of our
theorem.

In the ground model V (the constructible universe), we fix a regular cardinal
% >y and write HC(x) = the sets hereditarily of cardinality <. Then, we have

HC(x) = | {HC,: a<x}
where HC, = {x e HC(3): rankx<a}.
We shall make use of the following version of Diamond: there is a sequence
{T,: «<x and of(¢) = w,}
such that for each F< HC(x), the set
{a<x: FAHC, = T,}
is stationary.
For each « <%, with cf(x) = w, we choose a cofinal in o sequence
L= {h: E<o}eV

such that cf(h,(¢) = o, for all {<w;.
Let us define a finite support iteration P= Y, P,, of length » (forcing notions

a<x
and forcing names for small sets are encoded as elements or subsets of HC(x)),
as follows.
3 — Fundamenta Mathematicae 135.1
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Direct limit are taken at all limit stages and
(1) if cf(e) = w, then we take

Popy=P,«C and P,,=P,,+xD;
(2) if cf(0) = @, and T, is a P,-name for a p.o. set and
P, T, has c.c.c.

then we take P, =P, *T,;

(@) if of(v) = 0, and T, js a P,oname such that for some D, P, I+ T, is
a D-representation of k(X,), where X, is a Cohen set produced by Cohen reals
added at stages h,(£)+1, then there is a P,-name Q, for

*=T1{Qw): gev}
where Q is associated with some D-unfilled gap H contained in K(X,). We take
Popy=PxQ,. :
In all the remaining cases let P,,, = P,.
- Thus, by Lemma 3, each P, and P have the c.c.c.

) Let G P be a generic filter. Thus, in V[G] the cardinality of the continuum
is % and Martin Axiom holds, by clause 2.

Let us suppose that P(w,) is partitioner-representable én a m.a.d. E and derive
a contradiction. First, let us fix partitioners C; corresponding to sets {£}xawy,
for 5<‘?1- By Lemma 1 each family :

E(C) = {ec E: ec,Cy}
has a subfamily E, with cardE; = w,. ‘ )

If D= ({E;: ¢t<w,}, then both {Cs: £ <w,} and D belong to a sﬁbmodei
VIG]= VI[G] and w.lo.g we may assume that V[G,] = V.

For each ¥ <#, with cf(y) = w;, we have a cofinal Cohen set X, e V[G,] and
the corresponding chain k(X,) = =} {7)}). Let B and B, denote subal-
gebras of P (w, x w,) generated by {k(X,): y <} (i.e. by X,(7), ¥(y) for «, f<w
andhy<x), and {k(X,): « <y}, respectively. Thus, B, = BnV[G,]. Nc;te tha::
card B, = w,, for y <w,. Define a function r: B —+P(w) so that r(x) i; o partitioner
of E corresponding to x and ri{é}xw,) = C;, for & <w,, and choose a nicé neiﬁmé
Ir<SHC(x) for r. If Iy = roV[G ], then standard reasonings show that the set

Ny ={r<u: of()) = @, and r,e V[G,]}

is nor_ma..l, i.e. .it is unbounded in % and closed under limits of cofinality w,.
Similarly, if r{y is the part of r in V%7, then the set
Ny={y<u: of(y) = w, and r|y = rnHC,}
is normal, and hence so. is N = NinN,. .
By Diamond, N intersects the set {y < x: f(y) =7 and rnHC() = T,}
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and hence there are arbitrarily large y <, with cf(y) = w,, for which T, is a Py
name for r, € V[G,] which is a D-representation of k(X,) in V[G,]. By Lemma 4,
there is a D-unfiiled, regular gap H contained in K(X,) and we have forced with oz,
associated with such an H, at this stage of iteration. By Lemma 3 and since P has
the c.c.c., each Eg(g) has an uncountable antichain in V[G].

On the other hand, Corollary of Section 3 shows that there is a function f'e V[G]
and a set S which separates H(f) in V[G]. Since P has the c.c.c., thereisa ge ¥,
with g () = f (), for each o < w;. Now, H(g) is even smaller, and hence can be
separated as well. By Lemma 2, Ex(g) has the c.c.c., a contradiction.
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