

24 K. Eda

- 171 K. Eda. On a Boolean power of a torsionfree abelian group, J. Algebra 82 (1983), 84-93.
- [8] On a Boolean power and a direct product of abelian groups, Tsukuba J. Math. 6 (1982), 187-194.
- [9] Almost slender groups and Fuchs-44-groups, Comment. Math. Univ. St. Pauli 32 (1983), 131-135
- [10] A generalized direct product of abelian groups, J. Algebra 92 (1985). 33-43.
- [11] K. Eda and K. Hibino, On Boolean powers of the group Z and (ω, ω)-weak distributivity, I. Math. Soc. Japan 36 (1984), 619-628.
- [12] K. Eda and Y. Abe, Compact cardinals and abelian groups, Tsukuba J. Math. 11 (1987), 353-360.
- [13] K. Eda, T. Kiyosawa and H. Ohta, N-compactness and its applications, in Topics in General Topology, ed. by K. Morita - J. Nagata, North-Holland, Amsterdam-New York 1989.
- [14] K. Eda, Cardinality restrictions of preradicals, in Abelian group theory, Proceedings of the Perth conference in 1987, pp. 277-283, Contemp. Math. 87, A. M. S., 1989.
- [15] A characterization of N₁-free abelian groups and its application to the Chase radical, Israel J. Math. 60 (1987), 22-30.
- [16] P. Eklof and A. Mekler, Almost-free modules; Set-theoretic methods, preprint.
- [17] T. H. Fay, E. P. Oxford and G. L. Walls, Preradicals induced by homomorphisms, in Abelian group theory, pp. 660-670, Springer LMN 1006, 1983.
- [18] L. Fuchs, Infinite abelian groups, Vol. 2, Academic Press, New York 1973.
- [19] Note on certain subgroups of products of infinite cyclic groups, Comment. Math. Univ. St. Pauli 14 (1970), 51-54.
- [20] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New York-London 1960.
- [21] R. Goebel and B. Wald, Wachstumstypen und schlanke Gruppen, Symposia Mathematica 23 (1979), 201-239.
- [22] E. Hewitt, Rings of real valued functions, I. Trans. Amer. Math. Soc. 64 (1948), 54-99.
- [23] M. Huber. On reflexive modules and abelian groups, J. Algebra 82 (1983), 469-487.
- [24] T. Jech. Set theory. Academic Press. New York 1978.
- [25] L. Lady, Slender rings and modules, Pacific J. Math. 49 (1973), 377-406.
- [26] A. Mader, Groups and modules that are slender over their endomorphism rings, in Abelian groups and modules, Proceedings of the Udine conference in 1984, 315-327, Springer-Verlag, Wien-New York 1984.
- [27] J. O'Neil, On direct summands of R-modules of the form R^I, Comment. Math. Univ. St. Pauli 35 (1986), 322-334.
- [28] J. Silver, Some applications of model theory to set theory, Ann. Math. Logic 3 (1971), 45-110.
- [29] R. Sikorski, Boolean algebras, Springer, Berlin-Heidelberg 1969.
- [30] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. Math. 94 (1971), 201-245.
- [31] B. Stenström, Rings of quotients, Springer-Verlag, Berlin-New York 1975.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA Tsukuba, Ibaraki 305 Japan

> Received 10 March 1988; in revised form 3 October 1988

On partitioner-representability of Boolean algebras

by

R. Frankiewicz (Wrocław) and P. Zbierski (Warszawa)

Abstract. It is proved that — consistently with the Martin Axiom — the power-set algebra $P(\omega_r)$ may not be partitioner-representable.

0. Baumgartner and Weese in [B-W] introduced the notion of partitioner-representability of Boolean algebras: if E is m.a.d. (a maximal, almost disjoint family of subsets of ω) then a set $A \subseteq \omega$ is called a partitioner of E if for each $e \in E$ either $e \subseteq_* A$ or $e \cap A =_* \varnothing$ (i.e. $e \setminus A$ or $e \cap A$, respectively is finite); the union, intersection and difference of partitioners is again a partitioner, and hence the family Pt(E) of all the partitioners of E is a Boolean subfield of $P(\omega)$. A Boolean algebra is said to be partitioner-representable if for some m.a.d. E it is isomorphic to the factor algebra $Pt(E) \mod J$ where J is the ideal generated by fin (the finite sets) and E.

The finite sets and finite unions $e_1 \cup ... \cup e_n$ (and their complements) are called trivial partitioners. Thus, $Pt(E) \mod J$ may be called the algebra of non-trivial partitioners of E.

The fundamental theorem in [B-W] (see also $[F-Z_1]$) says that — under CH (the continuum hypothesis) — each algebra of cardinality $\leq c=2^{\omega}$ is partitioner-representable. A question arises if the same is true if CH is replaced by MA (Martin Axiom). In this note we prove that this is not the case:

THEOREM. There is a generic extension of the constructible universe in which MA holds and $c = \kappa$, for a given regular $\kappa > \omega_1$, and the algebra $P(\omega_1)$ is not partitioner-representable.

Originally, we had $c = \omega_2$ in our model.

We are grateful to the referee who pointed out how to get the more general case. In $[F-Z_1]$ it is proved that partitioner-representability of $P(\omega_1)$ implies the existence of Q-sets. From the theorem it follows that the converse is not true.

The idea of proof is, roughly, as follows. Extend V=L (the constructible sets) via a finite support, c.c.c.-iteration of length \varkappa and assume, for contradiction, that $P(\omega_1)$ is representable in V[G]. Each (ω_1, ω_1) -chain $C = \langle \{x_\alpha\}; \{y_\beta\} \rangle$, gives then rise to a species of a Hausdorff gap $H = \langle \{a_\alpha\}; \{b_\beta\} \rangle$, which — at a given stage of iteration — cannot be filled. Now, there are two forcing notions Q

and E, connected with H. We force with Q, which adjoins an uncountable antichain to E. Thus, in V[G], E does not have c.c.c. On the other hand, the chain C can be filled in $P(\omega_1)$, which in turn implies that E must have c.c.c., a contradiction. A similar idea was used by Kunen and others, see also [F].

1. Suppose that $P(\omega_1)$ is partitioner-representable. Thus, we have an isomorphism

$$f: P(\omega_1) \to Pt(E) \mod J$$
.

Each value f(x) is an equivalence class mod J. If $A \in f(x)$, we shall write shortly

If Aptx, Bpty and $x \subseteq y$, then $A \subseteq B \mod J$, i.e. $A \setminus B \in J$. Thus

$$A \setminus B = \bigcup F$$
, for some finite $F \subseteq E$.

Similarly, if $x \cap y = \emptyset$, then $A \cap B \in J$, and hence

$$A \cap B = \bigcup F$$
, for some finite $F \subseteq E$

Let us denote

$$E(A) = \{e \in E \colon e \subseteq_* A\}.$$

LEMMA 1. Assume that $P(\omega_1)$ is partitioner-representable on a m.a.d. E. If A ptx and x is infinite, then E(A) has cardinality c.

Proof. Let us divide $x = x_{\emptyset}$ into two infinite parts $x_{\emptyset} = x_{(0)} \cup x_{(1)}$ and repeat division up to obtaining a binary tree

$$\left\{x_s\colon s\in\bigcup_n\left\{0\,,\,1\right\}^n\right\}$$

such that

if
$$s \subseteq t$$
, then $x_s \supseteq x_s$

and

if
$$s(i) \neq t(i)$$
, then $x_{s|i+1} \cap x_{t|i+1} = \emptyset$.

Let us choose partitioners A_s : A_s pt x_s and $A_{\alpha} = A$. We have

$$s \subseteq t$$
 implies $A_t \subseteq A_s \mod J$

and

$$s(i) \neq t(i) \text{ implies } A_{s|i+1} \cap A_{t|i+1} = \emptyset \mod J.$$

Modifying the sets A_n by trivial partitioners (inductively, along the levels $\{0,1\}^n$), we may assume that

$$s \subseteq t$$
 implies $A_t \subseteq A_s$

and

$$s(i) \neq t(i)$$
 implies $A_{s(i+1)} \cap A_{t(i+1)} = \emptyset$.

For each branch $a \in \{0, 1\}^{\infty}$ we choose an infinite set B_a such that

$$B_q \subseteq_* A_{q|n}$$
, for each $n < \omega$.

Since E is maximal, there is an $e_g \in E$ such that $e_g \cap B_g$ is infinite. It follows that $e_g \subseteq_* A_{g|n}$, for each $n < \omega$, since $A_{g|n}$ are partitioners. In particular, for each g we have $e_g \subseteq_* A$, $e_{g_1} \subseteq_* A_{g_1|n}$, $e_{g_2} \subseteq_* A_{g_2|n}$ and hence $e_{g_1} \cap e_{g_2} \subseteq_* A_{g_1|n} \cap A_{g_2|n} = \emptyset$, which proves that all the e_g 's are different, which finishes the proof.

Now, we generalize the notion of a Hausdorff gap as follows. Let D be an almost disjoint family (not necessarily maximal) and let

$$H = \langle \{a_{\alpha}\}_{\alpha < \omega_1}; \{b_{\beta}\}_{\beta < \omega_1} \rangle$$

be a system of uncountable partitioners of D (i.e. the sets $D(a_{\alpha})$, $D(b_{\beta})$ are uncountable) satisfying the following conditions:

- (1) $a_{\alpha} \cap b_{\beta} = \emptyset$, for all $\alpha, \beta < \omega_1$ and $a_{\alpha} \cap b_{\alpha} = \emptyset$, for all $\alpha \leq \omega_1$;
- (2) $a_{\alpha} \subseteq_D a_{\beta}$ and $b_{\alpha} \subseteq_D b_{\beta}$, for all $\alpha \leq \beta$, where $a \subseteq_D b$ means that $D(a \setminus b)$ is a finite or countably infinite family.

We say that a set $S \subseteq \omega$ separates (or fills) the gap H if $a_{\alpha} \subseteq *S$ and $b_{\beta} \cap S = *\emptyset$, for all $\alpha, \beta < \omega_1$.

More generally, we say that S D-separates H if $a_{\alpha} \subseteq_{D} S$ and $b_{\beta} \subseteq_{D} \omega \setminus S$, for all $\alpha, \beta < \omega$.

There are two forcing notions, introduced by Kunen, associated with a gap H. The first one, denoted by E, consists of pairs $p = \langle s_p, t_p \rangle$, where s_p , t_p are finite functions from ω , into ω satisfying the property

$$\bigcup_{\alpha \in \mathrm{dm}(s_p)} a_{\alpha} \setminus s_p(\alpha) \cap \bigcup_{\beta \in \mathrm{dm}(t_p)} b_{\beta} \setminus t_p(\beta) = \emptyset.$$

The ordering on E is defined thus

$$p \leqslant q$$
 iff $s_p \supseteq s_q$ and $t_p \supseteq t_q$.

LEMMA 2. If H can be filled, then E has c.c.c.

Proof. Suppose, on the contrary, that there is an uncountable antichain $\{p_{\xi}: \xi < \omega_1\}$ in E. Using the Δ -system lemma, we may assume that $\max \dim(s_{p_{\xi}})$ $< \min \dim(s_{p_{\eta}})$, for $\xi < \eta$ and similarly — for $\dim(t_p)$. If

$$k_{\xi} = \bigcup_{\alpha \in \operatorname{dm}(s_{p_{\xi}})} a_{\alpha} \setminus s_{p_{\xi}}(\alpha) \quad \text{and} \quad l_{\xi} = \bigcup_{\beta \in \operatorname{dm}(t_{p_{\xi}})} b_{\beta} \setminus t_{p_{\xi}}(\beta)$$

then incompatibility means that the set

$$p_{\xi} * p_{\eta} = (k_{\xi} \cap l_{\eta}) \cup (l_{\xi} \cap k_{\eta})$$

is nonempty, cf. $[F-Z_2]$. By assumption, there is a set S which separates H, and hence we can find an $m < \omega$ such that

$$k_{\xi} \backslash m \subseteq S$$
 and $(S \backslash m) \cap l_{\xi} = \emptyset$,

for $\xi \in X_0$, where $X_0 \subseteq \omega_1$ is uncountable. Let $\xi_0 = \min X_0$ and find an uncountable $X_1 \subseteq X_0$ such that $p_{\xi_0} * p_{\eta}$ is constant for $\eta \in X_1$. Again, if $\xi_1 = \min X_1$, then we can find an uncountable $X_2 \subseteq X_1$, such that $p_{\xi_1} * p_{\eta}$ is constant on X_2 etc. Thus, for each $n < \omega$ we have an uncountable X_n , such that if $\xi_n = \min X_n$, then the nonempty sets

$$p_{\xi_0} * p_{\xi_n}, \ldots, p_{\xi_{n-1}} * p_{\xi_n}$$

are pairwise disjoint and lie below m, which is impossible and the proof is finished. The other forcing, denoted by Q, consists of finite sets $q \subseteq \omega_1$ such that:

for all
$$\alpha \neq \beta \in q$$
, $a_{\alpha} \cap b_{\beta} \neq \emptyset$ or $a_{\beta} \cap b_{\alpha} \neq \emptyset$.

Q is ordered by the reverse inclusion.

Each function $g: \omega_1 \rightarrow \omega_1$, with $g(\alpha) \geqslant \alpha$, determines a subgap H(g) of H, where

$$H(g) = \langle \{a_{\alpha} \cap a_{g(\alpha)}\}; \{b_{\beta} \cap b_{g(\beta)}\} \rangle.$$

Let Q(g) and E(g) denote the forcings Q and E, respectively associated with H(g). Finally, let Q^* be the finite support product:

$$Q^* = \prod_{g} Q(g).$$

LEMMA 3. If no set D-separates H, then Q^* has the c.c.c. and for each $g \in V$:

$$Q^* \Vdash E(g)$$
 has an uncountable antichain.

Proof. For the countable chain condition, it is sufficient to prove that each finite subproduct

$$Q(g_1) \times ... \times Q(g_n)$$

has this property. Assume, for contradiction, that

$$q^{\xi} = \langle q_1^{\xi}, ..., q_n^{\xi} \rangle, \quad \xi < \omega_1$$

is an uncountable antichain. Applying the Δ -system Lemma n times we may assume that

$$\max q_i^{\xi} < \min q_i^{\eta}$$
, for $\xi < \eta$ and $i = 1, ..., n$.

Since q^{ξ} , q^{η} are incompatible,

$$q^{\xi} \perp q^{\eta}$$
, for $\xi \neq \eta$.

we have that $q_i^{\varepsilon} \perp q_i^{\eta}$, for some i and hence there are $\alpha \in q_i^{\varepsilon}$ and $\beta \in q_i^{\eta}$ such that

$$(a_{\alpha} \cap a_{g_i(\alpha)}) \cap (b_{\beta} \cap b_{g_i(\beta)}) = \emptyset$$
 and $(a_{\beta} \cap a_{g_i(\beta)}) \cap (b_{\alpha} \cap b_{g_i(\alpha)}) = \emptyset$.

Thus, if

$$S_{\xi} = \bigcap \{a_{\alpha} \cap a_{g_{\xi}(\alpha)} : \alpha \in q_{i}^{\xi} \text{ and } i = 1, ..., n\}$$

and

$$T_n = \bigcap \{b_{\beta} \cap b_{a(\beta)} : \beta \in q_i^n \text{ and } i = 1, ..., n\},$$

then $S_{\xi} \cap T_{\eta} = \emptyset$, for $\xi \neq \eta$, and $S_{\xi} \cap T_{\xi} = \emptyset$ as well, since $a_{\alpha} \cap b_{\alpha} = \emptyset$, for each $\alpha < \omega_1$.

For $\alpha \leq \min q_1^{\xi}$,..., $\min q_n^{\xi}$ we have $a_{\alpha} \subseteq_D S_{\xi}$, and hence, if $S = \bigcup \{S_{\xi} : \xi < \omega_1\}$, then $a_{\alpha} \subseteq_D S$, for each $\alpha < \omega_1$. Symmetrically, if $T = \bigcup \{T_{\eta} : \eta < \omega_1\}$, then $b_{\beta} \subseteq_D T$, for each $\beta < \omega_1$ and since $S \cap T \neq 0$, we see that the set S D-separates H, a contradiction.

In particular, each Q(g) has c.c.c. and consequently we may assume that for each $q \in Q(g)$ the set

$$\{\alpha < \omega_1 : g \cup \{\alpha\} \in Q(g)\}$$

is uncountable. Let $G \subseteq Q^*$ be a generic filter. The projection G(g) onto gth coordinate is then generic in O(g) and the sets

$$\{q: \exists \beta \mid \beta \geqslant \alpha \text{ and } \beta \in q \}$$

are dense. It follows that G(g) contains uncountably many singletons $\{\alpha\}$. For each such α define $p_{\alpha} = \langle s_{\alpha}, t_{\alpha} \rangle \in E(g)$ as follows:

$$dm(s_{\alpha}) = dm(t_{\alpha}) = {\alpha}$$
 and $s_{\alpha}(\alpha) = t_{\alpha}(\alpha) = 0$.

Now, p_{α} and p_{β} are incompatible in E(g), since $\{\alpha\}$ and $\{\beta\}$ are compatible in Q(g) as elements of G(g). Thus $\{p_{\alpha}: \alpha < \omega_1\}$ is an uncountable antichain and the proof is complete.

2. In this section we show how to construct a particular gap H from a "partial" representation of $P(\omega_1)$. It is more convenient to deal with $P(\omega_1 \times \omega_1)$, rather than with $P(\omega_1)$.

For an uncountable set $X \subseteq \omega_1$, let $(X)_{\alpha}$ denote its initial segment of order type α . Suppose that also $\omega_1 \setminus X$ is uncountable and define

$$x_\alpha = \bigcup \left\{ \left\{ \xi \right\} \times \omega_1 \colon \, \xi \in (X)_\alpha \right\}, \quad y_\beta = \bigcup \left\{ \left\{ \eta \right\} \times \omega_1 \colon \, \eta \in (\omega_1 \backslash X)_\beta \right\}.$$

Let B(X) be the subalgebra containing the sets x_{α} , y_{β} , for α , $\beta < \omega_1$ and $\{\xi\} \times \omega_1$, all $\xi < \omega_1$.

DEFINITION. If D is an a.d. family, then a D-representation of an (ω_1, ω_1) -chain

$$k(X) = \langle \{x_{\alpha}\}; \{y_{\beta}\} \rangle$$

is a function $r: B(X) \rightarrow P(\omega)$ such that;

- (1) For each $x \in B(X)$, r(x) is a partitioner of D and for $x \neq \emptyset$ the set $D(r(x)) = \{e \in D: e \subseteq *r(x)\}$ is uncountable.
- (2) r is congruent with Boolean operations, in particular conditions $x \subseteq y$ and $x \cap y = \emptyset$ imply that the sets $D(r(x) \setminus r(y))$ and $D(r(x) \cap r(y))$ are finite respectively.

Let r be a given D-representation of k(X). If $A_{\alpha} = r(x_{\alpha})$, $B_{\beta} = r(y_{\beta})$ then we have a corresponding system

$$K(X) = \langle \{A_{\alpha}\}; \{B_{\beta}\} \rangle$$

which need not be a *D*-gap, since the intersections $A_{\alpha} \cap B_{\beta}$ are, in general, infinite. We say that a *D*-gap $H = \langle \{a_{\alpha}\}; \{b_{\beta}\} \rangle$ is contained in K(X) if

$$A_{\sigma} \subseteq p a_{\sigma} \subseteq A_{\sigma}, \quad a_{\sigma} \cap B_{\theta} = \emptyset$$

and

$$B_{\theta} \subseteq_{D} b_{\theta} \subseteq_{*} B_{\theta}, \quad b_{\theta} \cap A_{\alpha} =_{*} \emptyset$$

for all α , $\beta < \omega_1$; H is said to be regular if

$$a_{\alpha} \cap a_{\gamma} \subseteq * a_{\alpha} \cap a_{\beta}$$
 and $b_{\alpha} \cap b_{\gamma} \subseteq * b_{\alpha} \cap b_{\beta}$

for all $\alpha < \beta < \gamma < \omega_1$.

If there are enough Cohen reals and dominating functions, then we can always find a regular, unfilled D-gap H, contained in K(X), for some X. Recall the dominating forcing D: the conditions are pairs $P = \langle s_p, F_p \rangle$, where s_p is a finite sequence of natural numbers and F_p is a finite set of functions $f: \omega \to \omega$. The ordering on D is defined as follows: $p \leq q$ iff $s_p \supseteq s_q$ and $F_p \supseteq F_q$ and $s_p(i) > f(i)$, for each $i \in dm(s_p) \setminus dm(s_q)$ and $f \in F_q$.

If $G \subseteq D$ is a generic filter, then the function $g = \bigcup \{s_p : p \in G\}$ dominates each function f from the ground model: g(i) > f(i), for all but finitely many i's. Moreover, D always has the c.c.c.

LEMMA 4. Let $D \in V$ and $P_{\gamma} = \sum_{\alpha < \gamma} P_{\alpha}$, where $\mathrm{cf}(\gamma) = \omega_1$, be a finite support iteration such that each P_{α} has the c.c.c. and for some cofinal in γ sequences $\langle \alpha_{\xi} \colon \zeta < \omega_1 \rangle$, $\langle \beta_{\xi} \colon \zeta < \omega_1 \rangle$ we have $P_{\alpha_{\xi}+1} = P_{\alpha_{\xi}} * C$ (the Cohen forcing), and $P_{\beta_{\xi}+1} = P_{\beta_{\xi}} * D$. Then, in V[G], there is an X such that for an arbitrary D-representation r of k(X) there is a regular, D-unfilled gap H contained in K(X).

Proof. Let c_{ξ} be the Cohen real added at the stage $\alpha_{\xi}+1$. Define $X\subseteq\omega_{1}$ as the Cohen subset determined by the sequence $\langle c_{\xi}: \xi < \omega_{1} \rangle$:

$$X = \left\{ \omega \cdot \xi + i \colon c_{\xi}(i) = 1 \right\}.$$

Thus, $X \in V[G]$ but, for no $\alpha < \gamma$, X is in the submodel $V[G_{\alpha}]$. Consequently, any D-gap

$$H=\langle \{a_{\alpha}\};\ \{b_{\beta}\}\rangle$$

contained in K(X) must be D-unfilled.

Indeed, suppose that a set T D-separates H and let $C_{\xi} = r(\{\xi\} + \omega_1)$. Then we have that $\xi \in X$ implies $C_{\xi} \subseteq_D a_{\alpha}$ for some α and

$$\xi \notin X$$
 implies $C_{\xi} \subseteq_{\mathcal{D}} b_{\beta}$, for some β .

It follows that

$$X = \{ \xi < \omega_1 \colon C_{\xi} \subseteq_D T \} ,$$

and hence $X \in V[G_{\alpha}]$, for some $\alpha < \gamma$, which is impossible.

The gap H will be defined inductively. Assume that we have already sets a_{ξ} , b_{ξ} , for $\xi < \alpha$ and define a_{x} , b_{x} as follows. The family

$$D_{\xi} = \{e \in D : \exists_{\eta} [\xi < \eta < \alpha \text{ and } e \subseteq_{\star} a_{\xi} \setminus a_{\eta}] \}$$

is at most countable, since $a_{\xi} \subseteq_D a_{\eta}$. Using a dominating function, we can find a partitioner S_{ξ} of D such that

$$a_{\varepsilon} \setminus a_{\eta} \subseteq * S_{\varepsilon}$$
, for each $\zeta < \eta < \alpha$

and

$$e \cap S_{\varepsilon} = *\emptyset$$
, for each $e \in D \setminus D_{\varepsilon}$

in a usual way: the family

$$R_{\varepsilon} = \{a_{\varepsilon} \cap (a_n \setminus a_{n+1}) \colon \xi \leqslant \eta < \alpha\}$$

is disjoint and countable. Changing its elements, if necessary, on a finite set, we may assume that $\bigcup R_{\xi} = \omega$. Choose a 1-1 onto function $j \colon \omega \to \omega \times \omega$ such that the images of the elements of R_{ξ} are the vertical axes $\{n\} \times \omega$. Then, the sets j[e] for $e \in D \setminus D_{\xi}$ are finite on each axis, and hence the functions

$$f_e(n) = \max\{j[e] \cap (\{n\} \times \omega)\}$$

are well defined. All this takes place in some submodel $V[G_{\beta}]$ and therefore we have a function g dominating each f_{α} . Now, if

$$F = \{\langle n, i \rangle \colon i \leqslant g(n)\}$$

then $S_{\xi} = \omega \sqrt{j^{-1}}[F]$ is as required.

In a similar way we find an S such that

$$S_* \subseteq S$$
, for each $\xi < \alpha$

and

$$e \cap S = {}_{*} \emptyset$$
, for each $e \in D \setminus \bigcup_{\xi < \alpha} D_{\xi}$.

Finally, let

$$D_{\alpha} = \{ e \in D \colon \exists_{\eta < \alpha} [e \subseteq A_{\alpha} \cap B_{\eta}] \}.$$

There is a partitioner T such that

$$A_{\alpha} \cap B_{\eta} \subseteq T$$
, for each $\eta < \alpha$

and

$$e \cap T = *\emptyset$$
, for each $e \in D \setminus D_{\alpha}$.

On partitioner-representability

It is easy to see that $a_{\alpha} = A_{\alpha} \setminus (S \cup T)$ is as required. The set b_{α} is defined symmetrically and the proof is complete.

3. Let us assume that $P(\omega_1)$ is partitioner-representable on some m.a.d. E. If $\langle \{x_{\alpha}\}; \{y_{\beta}\} \rangle$ is an (ω_1, ω_1) -chain in $P(\omega_1)$, i.e. the sequences $\{x_{\alpha}: \alpha < \omega_1\}$, $\{y_{\beta}: \beta < \omega_1\}$ are strictly increasing and $x_{\alpha} \cap y_{\beta} = \emptyset$, for all $\alpha, \beta < \omega_1$, then we can choose a corresponding system of partitioners

$$K = \langle \{A_n\}; \{B_n\} \rangle$$

and since there are no gaps in $P(\omega_1)$, there is a partitioner S (e.g. S corresponds to the union of the x_n 's), such that

$$A_{\alpha} \setminus S = \bigcup U_{\alpha}$$
, for some finite $U_{\alpha} \subseteq E$

and

$$B_{\beta} \cap S = \bigcup W_{\beta}$$
, for some finite $W_{\beta} \subseteq E$.

LEMMA 5. In the notation as above, there are finite sets U, $W \subseteq E$ and, for each $\alpha < \omega_1$, finite sets u_α , $w_\alpha \subseteq \omega_1$, with $\alpha = \min u_\alpha = \min w_\alpha$, and such that

$$\bigcap_{\xi \in \Psi} A_{\xi} \subseteq *S \cup \bigcup U, \quad \text{for each } \alpha < \omega_1$$

and

$$\bigcap_{n \in W_{\theta}} B_n \cap S \subseteq_* \bigcup W, \quad \text{for each } \beta < \omega_1$$

Proof. Each intersection

$$p(\alpha) = \bigcap \{U_{\beta} \colon \alpha \leqslant \beta < \omega_1\}$$

reduces to a finite one

$$p(\alpha) = U_{\alpha} \cap U_{\alpha_1} \cap ... \cap U_{\alpha_n}$$

and we take $u_{\alpha} = \{\alpha, \alpha_1, ..., \alpha_n\}$. On the other hand, since the function $p(\alpha)$ is non-decreasing and its values are finite sets, there can be only finitely many jumps, and hence for some $\alpha_m < \alpha_1$ we have

$$p(\alpha) \subseteq p(\alpha_m)$$
, for each $\alpha < \omega_1$.

Define $U = p(\alpha_m)$. Now, since the elements of E are almost disjoint, we have

$$\bigcap_{\xi\in u_\alpha}A_\xi \backslash S = \underset{\xi\in u_\alpha}{\wedge}WU_\xi = \underset{\xi\in u_\alpha}{\wedge}U_\xi = \underset{\ast}{\vee}\bigcup p(\alpha)\subseteq_{\ast}Wp(\alpha_m) = \underset{\ast}{\wedge}U$$

which proves the first part of the lemma.

The sets W and w_{θ} are defined in a similar way.

Consider now a regular D-gap

$$H=\langle \{a_{\alpha}\};\ \{b_{\beta}\}\rangle$$

contained in K. Then, since

$$a_{\alpha} \cap B_{\beta} = *\emptyset$$
 and $b_{\beta} \cap A_{\alpha} = *\emptyset$

for all α , $\beta < \omega_1$, we obtain

$$\bigcap_{\xi \in u_{\alpha}} a_{\xi} \cap \bigcup U = {}_{*} \emptyset \quad \text{and} \quad \bigcap_{\eta \in w_{\beta}} b_{\eta} \cap \bigcup W = {}_{*} \emptyset$$

for all α , $\beta < \omega_1$.

Thus, since U and Q are disjoint, we infer that the partitioner $T = S \cup U \setminus \bigcup W$ separates the subgap

$$\langle \{\bigcap_{\xi \in y_{n}} a_{\xi} \}; \{\bigcap_{\eta \in w_{n}} b_{\eta} \} \rangle$$
.

The regularity property implies

$$\bigcap_{\xi \in u_{\alpha}} a_{\xi} = a_{\alpha} \cap a_{f_{1}(\alpha)}, \text{ where } f_{1}(\alpha) = \max u_{\alpha}$$

and

$$\bigcap_{\eta \in b_{\beta}} b_{\eta} = b_{\beta} \cap b_{f_2(\beta)}, \text{ where } f_2(\beta) = \max w_{\beta}.$$

If $f = \max\{f_1, f_2\}$, then $a_{\alpha} \cap a_{f(\alpha)}$ and $b_{\beta} \cap b_{f(\beta)}$ are even smaller and hence we have the following.

COROLLARY. If $P(\omega_1)$ is partitioner-representable and K, H are as above, then there is an $f: \omega_1 \to \omega_1$, with $f(\alpha) \ge \alpha$, such that the subgap

$$H(f) = \langle \{a_{\alpha} \cap a_{f(\alpha)}\}; \{b_{\beta} \cap b_{f(\beta)}\} \rangle$$

can be filled.

4. Now, using the results of the preceding section, we can finish the proof of our theorem.

In the ground model V (the constructible universe), we fix a regular cardinal $\varkappa > \omega_1$ and write $HC(\varkappa) =$ the sets hereditarily of cardinality $< \varkappa$. Then, we have

$$HC(\varkappa) = \bigcup \{HC_{\alpha}: \alpha < \varkappa\}$$

where $HC_{\alpha} = \{x \in HC(\alpha) : rank \alpha < \alpha\}$.

We shall make use of the following version of Diamond: there is a sequence

$$\{T_{\alpha}: \alpha < \kappa \text{ and } cf(\alpha) = \omega_1\}$$

such that for each $F \subseteq HC(x)$, the set

$$\{\alpha < \varkappa \colon F \cap HC_{\alpha} = T_{\alpha}\}$$

is stationary.

For each $\alpha < \kappa$, with $cf(\alpha) = \omega_1$ we choose a cofinal in α sequence

$$\Gamma_{\alpha} = \{h_{\alpha}(\xi): \, \xi < \omega_1\} \in V$$

such that $cf(h_{\alpha}(\xi)) = \omega$, for all $\xi < \omega_1$.

Let us define a finite support iteration $P = \sum_{\alpha < \kappa} P_{\alpha}$, of length κ (forcing notions and forcing names for small sets are encoded as elements or subsets of $HC(\kappa)$), as follows.

^{3 -} Fundamenta Mathematicae 135.1

Direct limit are taken at all limit stages and

(1) if $cf(\alpha) = \omega$, then we take

$$P_{\alpha+1} = P_{\alpha} * C$$
 and $P_{\alpha+2} = P_{\alpha+1} * D$:

(2) if $cf(\alpha) = \omega_1$ and T_{α} is a P_{α} -name for a p.o. set and

$$P_{\alpha} \Vdash T_{\alpha}$$
 has c.c.c.

then we take $P_{\alpha+1} = P_{\alpha} * T_{\alpha}$;

(3) if $cf(\alpha) = \omega_1$ and T_{α} is a P_{α} -name such that for some D, $P_{\alpha} \Vdash T_{\alpha}$ is a D-representation of $k(X_{\alpha})$, where X_{α} is a Cohen set produced by Cohen reals added at stages $h_{\alpha}(\xi)+1$, then there is a P_{α} -name Q_{α} for

$$Q^* = \prod \{Q(g) \colon g \in V\}$$

where Q is associated with some D-unfilled gap H contained in $K(X_{\alpha})$. We take $P_{\alpha+1} = P_{\alpha} * Q_{\alpha}$.

In all the remaining cases let $P_{\alpha+1} = P_{\alpha}$.

Thus, by Lemma 3, each P_{α} and P have the c.c.c.

Let $G \subseteq P$ be a generic filter. Thus, in V[G] the cardinality of the continuum is \varkappa and Martin Axiom holds, by clause 2.

Let us suppose that $P(\omega_1)$ is partitioner-representable on a m.a.d. E and derive a contradiction. First, let us fix partitioners C_{ξ} corresponding to sets $\{\xi\} \times \omega_1$, for $\xi < \omega_1$. By Lemma 1 each family

$$E(C_{\xi}) = \{e \in E \colon e \subseteq_* C_{\xi}\}$$

has a subfamily E_{ξ} , with card $E_{\xi} = \omega_1$.

If $D = \bigcup \{E_{\xi}: \xi < \omega_1\}$, then both $\{C_{\xi}: \xi < \omega_1\}$ and D belong to a submodel $V[G_{\alpha}] \subseteq V[G]$ and w.l.o.g. we may assume that $V[G_{\alpha}] = V$.

For each $\gamma < \varkappa$, with $cf(\gamma) = \omega_1$, we have a cofinal Cohen set $X_{\gamma} \in V[G_{\xi}]$ and the corresponding chain $k(X_{\gamma}) = \langle \{x_{\alpha}(\gamma)\}; \{y_{\beta}(\gamma)\} \rangle$. Let **B** and **B**_{\gamma} denote subalgebras of $P(\omega_1 \times \omega_1)$ generated by $\{k(X_{\gamma}): \gamma < \varkappa\}$ (i.e. by $x_{\alpha}(\gamma), y_{\beta}(\gamma)$ for $\alpha, \beta < \omega_1$ and $\gamma < \varkappa$), and $\{k(X_{\alpha}): \alpha \leq \gamma\}$, respectively. Thus, $B_{\gamma} = B \cap V[G_{\gamma}]$. Note that card $B_{\gamma} = \omega_1$, for $\gamma < \omega_2$. Define a function $r: B \to P(\omega)$ so that r(x) is a partitioner of E corresponding to x and $r(\{\xi\} \times \omega_1) = C_{\xi}$, for $\xi < \omega_1$, and choose a nice name $r \subseteq HC(\varkappa)$ for r. If $r_{\gamma} = r \cap V[G]$, then standard reasonings show that the set

$$N_1 = \{ \gamma < \varkappa : \operatorname{cf}(\gamma) = \omega_1 \text{ and } r_{\gamma} \in V[G_{\gamma}] \}$$

is normal, i.e. it is unbounded in \varkappa and closed under limits of cofinality ω_1 . Similarly, if $r|\gamma$ is the part of r in $V^{(P_\gamma)}$, then the set

$$N_2 = \{ \gamma < \kappa : \operatorname{cf}(\gamma) = \omega_1 \text{ and } r | \gamma = r \cap \operatorname{HC}_r \}$$

is normal, and hence so is $N = N_1 \cap N_2$.

By Diamond, N intersects the set $\{\gamma < \kappa : cf(\gamma) = \gamma \text{ and } r \cap HC(\kappa) = T_j\}$,

and hence there are arbitrarily large $\gamma < \varkappa$, with $\operatorname{cf}(\gamma) = \omega_1$, for which T_{γ} is a P_{γ} -name for $r_{\gamma} \in V[G_{\gamma}]$ which is a D-representation of $k(X_{\gamma})$ in $V[G_{\gamma}]$. By Lemma 4, there is a D-unfilled, regular gap H contained in $K(X_{\gamma})$ and we have forced with Q_H^* , associated with such an H, at this stage of iteration. By Lemma 3 and since P has the c.c.c., each $E_{T}(\alpha)$ has an uncountable antichain in V[G].

On the other hand, Corollary of Section 3 shows that there is a function $f \in V[G]$ and a set S which separates H(f) in V[G]. Since P has the c.c.c., there is a $g \in V$, with $g(\alpha) \geqslant f(\alpha)$, for each $\alpha < \omega_1$. Now, H(g) is even smaller, and hence can be separated as well. By Lemma 2, $E_H(g)$ has the c.c.c., a contradiction.

References

[B-W] J. Baumgartner and M. Weese, Partition algebras for almost disjoint sets, Trans. Amer. Math. Soc. 274 (1982), 619-630.

[F] R. Frankiewicz, Some remarks on embeddings of Boolean algebras and topological spaces, II, Fund. Math. 126 (1985), 63-67.

[F-Z₁] R. Frankiewicz and P. Zbierski, On partitioner-representable algebras, Proc. Amer. Math. Soc. 103 (1988), 173-180.

 $[F-Z_2]$ — Strongly discrete subsets in ω^* , Fund. Math. 129 (1988), 173-180.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
Sniadeckich ?
00-950 Warszawa, Poland
DEPARTMENT OF MATHEMATICS
WARSAW UNIVERSITY
PKIN
00-901 Warszawa, Poland

Received 19 April 1988; in revised form 5 January 1989