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A note on bounded arithmetic
by

P. Pudlak (Praha)

Abstract. We prove that bounded arithmetic S, does not prove the bounded consistency of its
> fragment S3.

We consider bounded arithmetic S, and its fragments S introduced by Buss [1].
The language of these systems consists of the constant 0, function symbols S, +,
_1/2 x, x|, x # y and predicates =, <. The interpretation of |x| and x # y is

x| = "log,(x+1)7 and x#y=2x"VL
S, is axiomatized by a finite set S5 * of open formulas plus schema of induction PIND:
A(0) A VX (A(_1/2x )~ A(x)) » Yx A(x)

for all bounded formulas A, which is equivalent to the usual schema of induction for all
bounded formulas. Classes Z? of bounded formulas are defined so that in the standard
formula ¢, peX?, defines a set in X where ZF, i=0,1, ..., is the polynomial time
hierarchy. The fragments S, i > 1, are defined by restricting the schema PIND to
% formulas. ’

One of the most interesting problems in bounded arithmetic is whether the hierarchy
of theories Sb, i > 1, is strictly increasing. A positive answer to this question would give
us some evidence that the polynomial time hierarchy is strictly increasing (which is an
important open problem in complexity theory). The usual way of proving that a theory
containing a fragment of arithmetic is stronger than another theory fails here, since even
S, 1+ Cong:t, ¢f [5]. Buss considered weaker consistency statements BD Con which

refer to proofs that use only bounded formulas. However, these sentences are still too
strong, Buss [1] proved that S5"* - BD Cong; holds for at most one i. Here we show:
THEOREM. §, - BD Cong:.

For n>0 let n denote the term inductively defined by 2n+1= 2n+S(0),
2n+2 = §5(0)-n+1. Let y(p) denote the minimal Gédel number of a bounded proof of
@ in S} if there is such a proof and co otherwise. BD Cons: (x) is a formalization of

“p(T0 =17 > x”; thus
BD Cong: < Vx BD Cons: (x).
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For a formula ¢(a) we put
Ind,,(x) := Vy< x(@@ A Vz<ylp@>o+ )=o)

The proof of the Theorem is based on the following lemmas.

LemMA 1. For every term s(x) there exists a term r(x) such that for all but finitely
many n

7(BD Cong (r () > s(n).

LemmMa 2. For every bounded ¢ (a) and a term t (x) there exists a polynomial p(x) such
that for every n

y(Ind o (t () < p(n # n).

Lemma 3. If @(a) is a bounded formula and S, Vx ¢(x) then there exists
a polynomial p(x) such that for every n

(o) < pn#n).

First we derive our Theorem from Lemmas 1 and 3. Take a term r(x), given by
Lemma 1 for s(x):=x#x#x. By way of contradiction assume that
S, VxBD Congy (x). Then we have also S, - Vx BD Congj (r (x)). Now apply Lemma

3 to ¢(a):= BD Congj(r(a)). Thus we obtain, for some polynomial p and every n,

n#En#n<y(em) <ph#n).

But the function on the left-hand side grows faster than the function on the right-hand
side, which is a contradiction.
It remains to prove the lemmas.

Proof of Lemma 1. Let s(x) be a given term. Take a term ¢(x) such that for every
polynomial = p, p(s(n), n) <t(n) holds for all but finitely many #n’s (eg.
t{x):=s(x) # s(x)). Let D(x) be a formula such that
) Si D(x)<(y("D (Num(x)) ") > t(x)),
where Num (x) is a formalization of the function n— n. One can choose D to be bounded
and also the proof of the equivalence in S% can be bounded.

Cram 1. y(D () > t(n).

The proof of this claim is standard, cf. [2] (however, observe that in [2] we
considered the length of proofs instead of the Goédel numbers).

Cram 2. There exists a term r(x) such that y(BD Cons: (r (ﬂ)))—»D(yl))) < po(n), for
some polynomial py(x).

The proof of this claim is based on the formalization of Claim 1 in S4. By Theorem
74 [1] and since “1D(x) is 2%, there exists a term s(x) such that

$3122 71 D (x) = y{(" 71D (Num (x))7) < s(x).
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By the definition (1) of D(x) we have
S3E2 D (x) =y (7D (Num (x))) < 1(x).
Hence for some term r(x)
S3E2TD(x)—y(0 = 17) s r(x),
which is

S4 122 BD Cong: (r (%))~ D ().

Now substituting n for x we obtain a proof whose Godel number is linear in n.
We can now finish the proof of Lemma 1. Roughly speaking, the size of a proof of
BD Cons; (r(n)) is the size of a proof of D(n) minus the size of the proof of

BD Cons: (r(@)—D(n). As we use Gédel numbers instead of the length of proofs, we

must be a little more careful. We shall use the fact that (for a suitable coding which we
assume here) the Gédel number of the concatenation depends polynomially on the
Godel numbers of its parts. Thus we have for some polynomial p(x, y),

7(D (w)) < p(BD Cong: (r (), y (BD Cons (r (n)) = D (1)-

Hence by the claims

t(n) < q(y(BD Cong ()

for some polynomial ¢(x). Since £ (1) < g(s(n)) holds only for finitely many n’s, we have
proved the lemma. m i

Proof of Lemma 2. The idea is to consider two cases according to the truth of
Ind (£ (). Imagine that we are in S3. If Ind,q (t(n) is true, then we have finished, if
not, take the cut of those xs for which Ind, (x) holds. Then this cut is contained in the
interval [0, ¢ (1)]. Using shortenings of cuts we can find a subcut which is closed under
the functions of S,. But then there is a short proof that ¢(n) is in the cut, since ¢ () is
a term obtained from 0 by applying O (logn) times functions of S,. Hence Ind ) (t (1)
follows. The construction of such shortenings-is well known, however the defining
formulas are not bounded. The point here is that we may add t(n) as a bound to all
quantifiers in these definitions of cuts, since the cuts are below t(n).

Now we shall describe the proof in more detail. Let ¢(a) be a given bounded
formula. Put

Ji(x,y) 1= Vz<gy (Ind gy (z) = Ind ) (2 + X)),
<y (Jl(z,y)—-'Jl(Z'x,y)),
J(x,y) = Vz<y (,(z 0) -T2z #x, )

Ja(x,y) 1= V2

Let us note that if we left out the bounds at the quantifiers, we would have just the
well-known definitions of shortenings closed under +, -, and # respectively. One has to
check that with the bounds added, the closure properties are preserved.
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CLAM 1. The following sentences have bounded proofs in S

(1) Jx, )= Indye (x);

@ JO,

(B) Jx, &z x=J(z, ) .

@ Indy () v (J(x, ) &JT (X, y)=J (x # X, y).

We shall prove (1)~(4) only for J; and with # replacd by 4. Then we can prove the
same for J, with multiplication instead of # and eventually (1)-(4) as they stand. To
prove (1) for J, take z = 0 in the definition of J; (2) is also trivial; (3) is true because
Ind,(x) is closed downwards. To prove the modified (4) in Si, assume
Indy@ (1), J1 (¢, ¥) and J, (x', ). We want to prove J, (x-x', y). Thus assume also
Indg (2) for z < . Since J, (x, y) we have Ind ) (z-+x). Since ™1 Ind ., (v) and Ind , is
downward closed, we have z+x <y, hence we can use J,(x,y) to deduce
Ind ) (z+x+x'), which we needed.

CrLaM 2. For every term t(x),

SEE2 Ind iy () v (T(x, y) = J (L(x), ).

This follows from Claim 1, since it is provable in S4 that # grows faster than any
other function of the language of S,. ‘

Now we shall finish the proof of Lemma 2. By definition, numeral ¢t is constructed in
O(logn) steps from 0 using functions of S,, ie. :

n= Tk(tk"l('--fx(g)))’
where k = O(logn) and t;(x) is either SS (0)-x or SS(0)-x+S(0). Hence
Vndyiy ()7 (2, 9) |

follo_ws from Claim 1 (2) and from O(logn) applications of Claim 2. One more
application of Claim 2 gives us '

nd g (0) = J (@), ).

Each proof step has the Gédel number bounded by a polynomial in . Thus the Godel

number of the proof is bounded by p(n # n), for some polynomial p. Substituting ¢(n)
for y we obtain )

I gy (¢ ()~ J () ().

?By (1) of Claim I this gives Indg (t (@), and again the Gédel number of the proof
increases only polynomially, m

Proof of Lemma 3. Suppose S, - Vx i = { i
' [ . 8€ S, - Vx ¢ (x). Since T, = S, the formula is provabl
using ordinary induction. Hence ’ ’ ™ 3.15 provedl

. Sir /i\Vx, ¥ Ind, (X)=Vx ¢(x),

E/here in the conjunction we have finitely many formulas corresponding to some
ounded formulas @1, and J is a vector of variables containing all parameters of ¢;’s. By
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Parikh’s theorem there exists a term t(x) such that

S AVY <) Ind, (1(x)) = 0 (x).

Since the axioms of §% as well as the formula are bounded, we may assume that this
proof is bounded too (by cut climination). Now we can combine this proof with the
proofs of lnd,,,l(t (n)) constructed in Lemma 2. Since these proofs have Godel number
polynomial in a1 # n, the proof of ¢ (1) has also Gédel number bounded by a polynomial
inn#n m

It is very likely that the above proof can be extended to much weaker theories
instead of S5, e.g. to S, 1+ BD Consi- 1. The corresponding Lemma 2, however, would be

much more technical. For instance in S7! we cannot prove that # majorizes other
functions. Analysing our proof Takeuti [4] obtained an improvement. However, it
remains open whether S, BQ Cong, for i=1,2,...

This result has been presenied to the Congress LMPS 87 [3].
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