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On the Auslander—Reiten valued quiver of right peak rings
by

Bogumila Klemp and Daniel Simson (Torun)

Abstract. Let R be a right peak artinian ring (1.1). We prove that under suitable assumptions
(3.7) on R there exists a preprojective component of the Auslander-Reiten valued quiver I',(R) of
the category mod,,(R) of finitely generated socle projective. R-modules. If R admits a splitting
poset decomposition (5.0) a splitting structure of the category mod,,(R) is described in (5.12).

1. Introduction. We recall from [28] that a semiperfect ring R is a right pe;zk ring if
R is a generalized matrix ring of the form

Fy (M, ... M, M,
M, Fy oM, M,

(1.1) R=| &+ 1 " i
an nMZ Fn nM*
0 0 F

such that soc(Ry) is an essential right ideal in R isomorphic to a direct sum of finitely
many copies of P, (called the right peak of R). Here Fy, ..., F, are local rings, F = F is
a division ring, M, is an F-F -bimodule and the multiplication in R is given by F;-F;-
bimodule maps ¢,;: ;M,@ M, ~ M, satislying the natural associativity conditions. We
denote by P,, ..., P,, P, the right indecomposable row ideals of R. Throughout we
suppose that R is basic, ie. R/J(R) is a product of division rings, where J(R) is the
Jacobson radical of R. We denote by mod,, (R) the category of finitely generated socle
projective right R-modules. The ring R is called sp-representation-finite if the number of
isomorphism classes of indecomposable modules in mod,, (R) is finite.

We use the terminology and notation introduced in [28, 31].

Let us recall that if I is a finite posed and I* = JU{x}, where i < « for all i€, then
given a division ring F the incidence algebra FI* is a right peak ring and mod,, (FI*) is
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equivalent to the category I-sp of I-spaces over F [28, 30]. On the other hand, if A is an
R-order in a simple algebra C over the field of fractions of R then

AcC
“ls c]

is a noetherian right peak ring and the category latt(d) of right A-lattices [26] is
equivalent to the factor category mod,, (A¢)/[P,] = adj(A¢) [31]. Let us also recall
from [28] that if K, is a vector space category and Ry is the right peak ring of K 1 then
there is a full dense functor H: ¥ (Kp)—mod,, (Ry) preserving the representation type,
where 7~ (K;) is the factor space category of K ;. This functor is frequently applied in the
representation theory of algebras [25, 29]. .

One of the main aims of this paper is to show (Section 3) that under suitable
assumptions on R there is a preprojective component #,(R) in the Auslander-Reiten
valued quiver I';,(R) of mod,, (R) (see Sections 2 and 3, compare with [28; Remark 7).
In case R is sp-representation-finite this will provide a simple algorithm presented in
Section 4 for constructing all indecomposable modules in mod,, (R) in a way described
in [14] for mod(R).

In Section 5 we show that if R admits a splitting poset decomposition {5.0) of its
valued poset (I%, d) then I, (R) can be glued from I'y,td) and I'y (B) along a single
linear section, where 4 and B are right peak rings derived from R (5.3).

We say that R is a Pl-ring if R satisfies a polynomial identity, which in the casc of
R artinian means that the division rings F,/J(Fy), ..., F,/J(F,), F are [inite-dimen-

sional over their centers. In case R is artinian an important invariant of R is its value -

scheme (I, d) [28, 297, where I} = {1, ., n x=n+ 1} and there is an- arrow

@'y )
(1.2) P20

iff d;; = length (I.Mj)pj, dij = lengthpi (:M) are nonzero. If the bimodules My, M,
are simple and R is schurian (i.c. Fy, ..., F, are division rings) then (J %, d) is a valued
poset [28; Prop. 2.3], with respect to the relation i <Jje M;#0.

In [20, 21] sp-representation-finite schurian right peak PI-rings R are characterized
in terms of (I%, d) and it is proved that every indecomposable module X = (X i jpy) in
mod,, (R) over such a ring R is uniquely determined by its dimension vector

(13) CodimX = (xg,., x, x,)

where X; = Xe,, x; = dim (X, de,and e, ..., e, ¢, are the standard matrix idempotents,
The algorithm presented in Section 3 based on the construction (3.1) of #,(R) allows us
to caleulate dim X in terms of the matrices (d.)), (dy) Tor every indecomposable X in
mod,, (R), where R is as above.

2. Preliminaries and notation. Let us recall that mod,, (R) is closed under direct sums,

summands, kernels, extensions and has enough projectives beeause P, ..., P, P, are
; e 1 ]
mm mod,, (R). ’
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Ife=e+...+e, A=eRe, M =eR(1—e) then

R[4 M
=lo F

and the ring [28]

F M*
RV = [0 4 jl, M* = HomF(MF, F)
is a left peak PI-ring. If R is an artinian PI-ring then there is a reflection duality [28;
Corollary 2.7], [33; 2.6]

(2.0 D® =DV mod,, (R)—mod,, (R®)
where R® = (R”)" and R” is the ring Morita dual to R,

It follows that mod,,(R) has enough sp-injective modules [28; Cor. 2.7]. Let us
recall from [28] that Q in mod,,(R) is sp-injective if Q is injective with respect to
monomorphisms ¢: X'—X in mod,,(R) such that Cokerg is also in mod,,(R).

We shall need the following result.

LemMA 2.1. Let R be an artinian schurian upper triangular right peak PI-ring of the
Sorm (1.1) and let ;M% = Homy,, (M;, F), where t =i, j. Then

(a) T =R® is an artinian schurian right peak Pl-ring and the valued posed (I3, d)
of T is obtained from (I, d) by reversing direction of all arrows between elements in
Ip = If—{}.

(b) The injective envelope EY of top (P;) in mod(R) has the form
(2.2) EW = (M, .., ;o ML FL0,..,0; )

where Wi Mi® M~ M} is such that its F ~dual corresponds via the isomorphism
Hoij(,,M{,:, M) = Homp, (M, M) to the map €; adjoint to cy;. Moreover,
dir v djag;, 1,0, 0)

(c) The modules

QU=E(P,), QU=VT'EY, j=1,..n,
Jorm a complete list of isoclasses of indecomposable sp-injective modules in mod,, (R) and
(2.3) dim QY = (d, dige—drjs ovor dpg e —dnjs djy),s

where dy; = diy, doj = dy, and dig = dig =0 for i > 1.

Proof. (a) follows from [28; Proposition 2.5] and Proposition 2.4 below. (b) and the
first part of (c) follow immediately from [28; Propositions 2.5 and 2.6]. For (2.3) first
compule the forms (2.2) by applying the functor 7 ~* to E? in the category of finitely
generated top injective right R”-modules (denoted by mod,;(R")) and then compute the
corresponding dimensions keeping in mind the following result proved in [13].

PropoSITION 2.4. If F; and F, are division rings finite-dimensional over their centers
and (N, is a finite-dimensional F-F -bimodule then

dimp, (N = dim(N)s, and  dim (N}, = dimy,(N)-
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In the study of mod,,(R) it is very convenient to use almost split sequences and
irreducible maps.

We recall from [3, 4] that a homomorphism f: X —Y in mod,, (R) js irreducible if
f is neither a splittable monomorphism nor a splittable epimorphism and in any
factorization f = hg in mod,,(R) either g is a splittable monomorphism or & is
a splittable epimorphism. It is easy to check that for X, Y indecomposable over an
artinian ring R the map f: X — Y is irreducible if and only if feJ(X, Y)—J*(X, Y),
where J (X, Y) consists of all feHomp (X, Y) such that idy—gf is invertible for all
geHomy(Y, X) and J*(X,Y) comsists of f=ff"eJ(X,Y) with
J'eJ(Z,Y),f"eJ(X, Z) for some Z. We note that (see [23; 2.5])

Irr(X, V)= J(X, Y)/J*(X, Y)

isan F(Y)-F (X)-bimodule where F (Z) = End (Z)/J (End (Z)). Following Auslander [2]
and Ringel [24] we define the Auslander-Reiten valued quiver (I, (R), d) of mod,, (R) as
the set of isoclasses [X] of indecomposable modules X in mod,,(R) connected by
oriented valued arrows

2.5) [x) ardxn) | Fy

when X & Y and the dimensions
dyy = dimIrr(X, ¥y,  diy = dimpy Ier (X, Y)
are nonzero (see also [18, 19, 237). This means that there are irreducible maps
X — Ydxr, Xixr_,y

in mod,, (R). We note that (I’ s (R), d) has a unique maximal element [E(P,)] and
a unique minimal element [P.J.

We recall from [3, 4] that an exact sequence 0— X Lyszoo in mod,, (R) is said
to be almost split if it does not split, X, Y are indecomposable and in addition it has the
following equivalent properties:

. (a) 1 is left almost split in the sense that given any map h: X — ¥V in mod,, (R) which
is not a splittable monomorphism, there is a map ¢ Y-V such that ¢f'= h.

(b) g is right almost split in the sense that given h: U—Z in mod,, (R) which is not
a splittable epimorphism, there is a map t: U—Y such that gt = h.

Note that left almost split maps as well as right almost split maps are irreducible.

The reader is referred to [4, 25] for elementary facts about almost split sequences
and irreducible maps in mod,, (R).

Let us recall that P,J(R) & P, is irreducible and right almost split. Moreover, if R is

an artinian Pl-ring and QY = F~! B® is the indecomposable sp-injective module (2.2)
then the induced map

(2.6) A QW — 7= (EWsoc (EW))

is left almost split in mod,,(R) because. EW ~EYsoc(EW) is left almost split in
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mod,,(R"). Note also that if P, —X is irreducible in mod,,(R) and X is indecom-
posable then X is projective (see [27; Lemma 1.3]).

We say that R has almost split sp-sequences if every indecomposable non-sp-injective
socle projective module X admits a right almost split sequence

27 0-X>Y-24"X-0

in mod,, (R) and any non-projective indecomposable socle projective module Z admits
a left almost split sequence

(2.8) 04X —>Y-Z-0

in mod,, (R). The terms are determined uniquely up to isomorphism.

We know from [4, 5, 26] that any right peak artin algebra R has almost split
sp-sequences (sece also [28; Corollary 3.7]). Although this is not true for arbitrary
artinian PI-rings (see [23; 2.5]) it is true for sp-representation-finite right peak ones
([21; Prop. 6.3]) It is also known that if R~ FI* or Ro A, (defined in the
Introduction) then R has almost split sp-sequences [25, 26, 30].

3. A preprojective component in the valued translation quiver I';,(R). Throughout this
section we suppose that R is an artinian right peak ring having almost split
sp-sequences. In particular we can take for R a right peak artin algebra, or an incidence
ring FI* of a finite poset I*, or an sp-representation-finite right peak PI-ring.

Following Auslander [2] a full valued subquiver € of (I,,(R), d) is called
a connected component if % is closed under taking neighbours and for any [X], [Y] in
% there is a sequence [X] = [X,], [X,],..., [X,] =[Y]in % where X; and X, are
connected by an irreducible map for i=0, 1, ..., p—1. Following [4, 17] we call
a component % in (I .o (R), d) preprojective (resp. preinjective) if % has no oriented cycles
and any [X] in 4 has the form [47'P] (resp. [4'Q]) for some ¢>0 and some
indecomposable projective module P (resp. sp-injective- module Q). The module N in
mod,, (R) is said to be hereditary projective (resp. hereditary sp-injective) if every
submodule of N is projective (resp. every socle projective indecomposable module
Y such that Homy (N, ¥) # 0 is sp-injective).

Given a right peak ring R as above we put (cf. [6, 7, 8])

w

J

@) 2,R) = 27 2,R =) 2"
=0

j=0

where 9§ = {[P]er,,(R)| P is hereditary projective} and if " is defined we put
POy =4 PPUP;,,, where [PleP;,., ifl there is a chain of irreducible maps

(3.2) o+Py ... PP =P
with [PyJed™ 2% and Pi,..., P;4, are indecomposable projective. We note that

[P,]e 2% and that #% is finite for all j. The sets 25", j > 0, are defined dually starting

from E(P,) and hereditary sp-injective modules using 4.
Throughout for the sake of simplicity we shall identify X with its isomorphism
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class [X] and we shall write J(P;) instead of P;J (R). We shall write I', (R) instead of

(F(R), d).

ch know from [24; 3.4] (see also [12, 18, 19]) that there are natural ring
isomorphisms t,: F(Y)—F(4Y), where F(Z) = End(Z)/J End(Z), and a nondegene-
rate bilinear form

(3.3) Ixy: It (4Y, X)@py, Iir (X, Y) - F(X)
which induces an F(Y)-F (X)-bimodule isomorphism
(34 Irr (X, Y) = Hompp (Irr (47, X), F(X))
for any indecomposable modules X, Y in mod,, (R), 4Y # 0. Moreover, if 4X s 0 then
4 induces an F(Y)-F(X)-bimodule isomorphism
(3.5 Irr(X,Y) = Irr(4X, 4Y)
over ring isomorphisms 7, and ty.
We shall show below that (I (R), d, 4, y) is a valued translation quiver in the sense
of [15, 24, 18]; we call it the valued translation quiver of mod,, (R).
We notice that if we suppose that R is a PI-ring then F (X) and F(Y) are division
PI-rings and in view of Proposition 2.4 the isomorphism (3.4) yields
(3'6)‘ . (dxy, dyy) = (dayx, darx).

Now we are able to prove one of the main results of this paper. It generalizes some
of the results in [9, 117.

THeorem 3.7. Let R be a schurian artinian right peak ring having almost split
sp-sequences. Moreover, suppose that for every j there are an indecomposable module T;

and g; = O such that J(Pj) = Tf". Then P, =P (R) is a preprojective component of

I'wR). If, in addition, R® has 'a Morita duality then ' the functor
D®: mod,(R)-(mod,, (R®)* (2.0) carries 2., (R) to the preinjective ‘component
2,,(R®).

Proof We follow an idea of Bautista~Larrion [7]. We proceed in several steps.

1° PENPY is empty for u<v. We apply induction on . Let u=0 and let
XePPnPP, It follows that X ¢4~ 2%, and therefore X €?,. Then therc exists
a sequence (3.2) with Phed™ #2,. Since X is hereditary projective, P,, ..., P} are
projective and therefore Po¢ 4™ #% ,; a contradiction.

Suppose that 1° is proved for &' < u and let X e 2 A4, If X is not projective then
AXeFr PP and we get a contradiction. If X is projective then X e P, P, and
there are two chains of irreducible maps

Po—=+Pi~... PP =X, P"—+P” PPl =X,

where P, P{eP,nP, are indecomposable projective for j>0 and Poed™ &%,
Pged™ #3.,. By our assumption, J(P}) = T’gf and J(P}) = Tf for j > 0, where T} and
T, are indecomposable. Since Pj—Pj,, and Py—P}., are irreducible, P}z 'EH.

P{ =Ty for all i and Ty = Tj4,. Hence, if t > then Pi= P/, ..., P, = P} and
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therefore ¢ = I because otherwise AP =0 and Ph¢ 4~ P21, a contradiction. Con-
sequently, £ =1, Py = Pied™ (9%, n&.,) and therefore P NP is not empty
contrary to the inductive assumption. This finishes the proof of 1°

2° For any j 2 0, 2 is a section in the sense of Bautista [6, 7, 8]. We will prove that

(i) If Xe#i" then AX ¢ oip,

(ii) If XY is an irreducible map, X, ¥ are indecomposable in mod,,(R) and
Xe#y then cither Ye#% or Y is not projective and 4Ye PP,

The claim is obvious for j = 0. Suppose it is proved for i < J. The claim is obvious for

Jj = 0. Suppose it is proved for i < j. The statement (1) for j+1 follows immediately from

1° In order to prove (if) for j+ 1 we suppose that X — Y is irreducible in mod,, (R) and
XedP,

Fxr‘;t suppose X is projective. If Y is projective we are done. Otherwise AY s 0 and
by (3.4) there is an irreducible map 4¥— X. By our assumption, J(X) = TY for some
indecomposable module 7. It then follows that AY = T. On the other hand, since X is
projective, X €2, | and therefore there is a sequence (3.2) with X = P. Since P, - X is
irreducible, P; = T = 4Y. Since Pie %P, we have Y= 4" PieZ¥.; and (ii) follows.

Next suppose that X is not projective. I Y is projective then Ye#;,, and we are
done. Otherwise, according to (3.5) there is an irreducible map 4X — AY with 4X ePP
and (ii) follows from the inductive assumption. This finishes the proof of 2°.

3% PP has no oriented cycles for j 2 0. This is obvious for j = 0 because otherwise
there is a proper monomorphism P; - P, for some iel > & contradiction. Let j > 0 and
suppose, on the contrary, that #% has an oriented cycle of irreducible maps

Q] Xo=X ==X, =X,

where X, ..., X, are indecomposable. Assume that j is minimal with respect to this
property. It follows that some X is projective because otherwise 4 (x) is an oriented
cycle of irreducible maps in 252, contrary to our choice of j. If X is projective then by
our assumption, J(X;) = T thh T indecomposable and therefore T = X;_ i modutok
because there is an irreducible map X, ; — X,. It follows from 2° (i) that X, L(modulok) 1S
projective because otherwise according to (3.4) there is an irreducible map 4X 4, — X,
and therefore 4X,;4, & T= X,.., € #¥; a contradiction with 2°(i). This proves that (%)
consists of proper monomorphisms between indecomposable projective modules. This
contradiction finishes the proof of 3°.

4° If XY is an irreducible map in modg, (R) and X, Y are indecomposable with
Yai# then either X e . For, if Y is projective then Ye#, and therefore there is
a chain (32) with Pped™ #%P. Since J(Y)=T¢ with T indecomposable,
X = T Ple ¥ as required. Il Y is not projective then Ye 4™ 2., and according to
(3.4) there is an irreducible map AY— X. Since AYe #5., by 2° (n) either X e %2, or
X is not projective and Xed™ #%., < #%¥. Thus 4° is proved.

5° @, is a preprojective component. It is easy to conclude from 1°, 3° and 4° that &,
has no oriented cycles. Further, if Ye# is not projective then the existence of a left
almost split sp-sequence ending with Y yields the existence of irreducible maps
4Y~Y'~ Ywith Y’ indecomposable and in view of 2° and 4°, 4Ye #¥® for some i < j.

3 ~ Fundamenta Mathematicae 1362
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Continuing this way we will find te N such that 4'Y is projective because otherwise we
get a contradiction with 2° .
The remaining part of the proposition easily follows from the duality (2.0).
Note that Theorem 3.7 applies to PI-rings satisfying the conditions (i), (i) below
because of the following result.
PROPOSITION 3.8. Let R be schurian basic artinian right peak PI-ring (1.1) such that
() dydie €3 for j=1,....m '
(ii) the valued poset (I%, d) does not contain as an upper valued subposet one of the
posets

. (3.1)

~ (1.3)
Gy 000 %, 5. 00 5 %,

Then R is isomorphic to an upper triangular form (L.1) and for every
P,=¢R,i=1,...,n there is an indecomposable module T,= T(P; such that
F(T) = End(T) is a division ring,

Iy =T
with g; = GCD(di;+1, ..., d;), and

(> diy) I dy = dyy diye for all k> j,

(dimy, Homg (T;, Py, dim Homy (T, Pecrs) = {(1, 1) otherwise.

For every Q, j =1, ..., n, there exists an indecomposable module ’f} such that F (’f}) is
a division ring and
V=1 (E9/soc EY) = T,
where
g;=GCDW,, di,—d\y, ..., djydje 15— djmyj, djy djy—djy+1,
i 1x— st - Ay — by, ;) (see 2.6),

J
o P - @r dja) 1 dyy=dy djy Jor all i<,
(d’mF(T;) Homg (@9, T), dim Homg (Q%, T)rou)) = {(11,*1) ) orherwise.*

Proof. The first statement follows from [21, Proposition 7.1] and its proof, The
second follows from the first in view of Lemma 2.1 (a) and the duality (2.0) which carries
the map (2.6) to the map J(P) < P; in mod,,(R").

By Theorem 3.7 and Proposition 3.8 we get ‘

CoroLLARY 3.9. If R is a schurian artinian right peak Pl-ring (1.1) satisfying
conditions (i), (i) above and having almost split sp-sequences then P,,(R) is a preprojective
component of I';,(R). In particular, this happens if R is an sp-representation-finite schurian
Pl-ring [21; 2.10].

From Theorem 3.7 and its proof immediately follows

CoRrROLLARY 3.10. Let R be as in Theorem 3.7. Then
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() Xe?,(R) if and only if X is sp-preprojective in the sense that the number of
nonisomorphic indecomposable modules Z in mod,, (R) with Homg(Z, X) # 0 is finite.

(b} Y belongs to a preinjective component of R if and only if Yis sp-preinjective in the
sense that the number of nonisomorphic indecomposable modules Z in mod,,(R) with
Homg (Y, Z) # 0 is finite.

Applying well-known arguments of Auslander [2] we get

COROLLARY 3.11. Let R be as in Theorem 3.7. Then the Jollowing conditions are
equivalent:

(a) R is sp-representation-finite.

(b) Iy, (R), d) = 2, (R).

(c) Every module in mod,, (R) is sp-preinjective.

(d) 2,,(R) is finite.

(e) E(P,) is sp-prepajective.

Remark 3.12. It follows from the corollaries above that if R is sp-represen-

tation-infinite having the duality (2.0) then I, (R) has the following shape (like in the
hereditary case [25]):

Fu PLoplR) 2R @lR) E(P)

where %, is a disjoint union of components and there are no maps from modules in
24, (R) (resp. in &) to modules in P (R)UZ, (resp. in 2, (R). In case R is
sp-representation-finite %5 is empty and 2 (R) = 2,,(R). '

Now we are able to prove an sp-counterpart of a result of Bautista~Larrion—
Salmeron [7, 8] (see also Ringel [25]).

ProposiTION 3.13. Let R be an artinian schurian basic right peak Pl-ring having
almost split sp-sequences and such that di, i <3 for all jely, and (I, d) does not
contain upper subposets G and G. Then 2, (R) is a preprojective component of I, (R)
and has the following properties:

(a) Exth(X, X) =0 and End(X) is a division ring for all X in 2 (R).

(b) For any arrow

X (xrdxy)
in 2, (R) there exists an indecomposable projective module P with J (P) = T?, T indecom-
posable, such that (dyy, dyy) or (dyy, dyy) is equal to (dyp, dpp) and dypdyp < 3.

(©) (#,,(R), d, 4, y) is a symmetrizable valued translation quiver (ie. it has no valued
loops <o and no minimal arrows oiﬂ)o with d > 2 [10, 24, 18]) with trivial fundamental
group in the sense of Bongartz—Gabriel [10, 15] (see also [24, 19]).

(d) F(X) = End(X) is a division ring for every X in 2, (R) and Homy (X, Y) is
finite-dimensional over F (X) as well as over F(Y) for every X, Y in 2, (R).
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Proof We know from Corollary 3.9 that 2., = #2,,(R) is a preprojective com-
ponent in I'y,(R).

“(a) If f € End (X) is noninvertible then f is a sum of compositions of irreducible maps
in mod, (R) because the direct sum of all modules Y in 2, with Homg (Y, X) 5 0 is
finite and therefore has semiprimary endomorphism ring. Hence there is a cycle in 2,
a contradiction. If Extk (X, X) # 0 then by arguments used above there is a cycle in 2
and we again get a contradiction.

(b) Since X, Y are in 2, there is t > 0 such that the modules A' X, A4'Y are both
nonzero and one of them is mdecomposablc projective. First suppose that 4'Y= P is
projective. Since we know from Proposition 3.8 that J(P) = T*, where g > 0 and T is
indecomposable, (b) follows from (3.5). Next suppose that 4‘Y is not projective and
A'X = P is projective. Again, by Proposition 3.8, J(P) = T? where ¢ > 0 and T is
indecomposable. Since according to (3.4) and (3.5 there is an irreducible
map A4t Y- A'X we have 41 Y = T Now (b) follows from (3.4)-(3.6).

(c) The first assertion follows from (b) and Proposition 3.8. The second immediately
follows from the definition of the fundamental group because £, has no oriented cycles
and J{P;) = T for some g; >0 and T indecomposable. '

(d) If XY are in 2, then by the arguments used in the proof of (a) any
feHomg (X, Y) is a sum of compositions of irreducible maps. It follows that for any
t = 1 there is an F(Y)-F(X)-bimodule epimorphism

& @It (X, V®rpxy -+ O Irr (X, Xp) > J (X, Y (X, 1)

where the sum is finite and the X ; are in 2. Since by Corollary 3.10, J" (X, Y) = 0 for
some m, in view of £,, (d) follows from (b) by an easy induction on t. This completes the
proof.

COROLLARY 3.14. Let R be a basic artinian sp-representation-finite right peak PI-ring.
Then the following conditions are equivalent:

(@) (I, (R),d,4,7) is a symmetrizable valued translation quiver and R is simply
sp-connected in the sense that the fundamental group of (I',(R), d, 4, %) is trivial.

(b) (I, (R), d) has no oriented cycle.

(c) End (X) is a division ring for every mdecomposable module X in mod,(R).

(d) R is schurian.

Proof. (a)=-(b) and (c)=(d) are obvious.

(b)=>(d). Apply arguments in the proof of Proposition 3.13(a).

(a)<=(d)=(c). We know from [21; Proposition 6.3] that R has almost split
sp-sequences. Then by Corollary 3.9, #,,(R) is a preprojective component and
(I's, (R), d) = 2, (R) according to Corollary 3.11, Consequently (a) and (c) follow from
Proposition 3.12 and the proof is complete.

4. An algorithm for describing #,,(R). Suppose that R is a basic schurian artinian
right peak PI-ring of the form (1.1) which is upper triangular and the valued poset
(I%, d) has the properties (i) and (ii) of Proposition 3.8. Then according to Corollary 3.9,
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#,(R) is a preprojective component and applying arguments of Happel [16] similarly
to [21; Section 8] one can show that every indecomposable X in 2, (R) is uniquely
determined by its dimension vector dim X (1.3) provided R is a ﬁmte-dlmensxonal
algebra over a field.

Following the method initiated by Bautista, Brenner and Ringel (see [14]) we can
describe 2 (R) in terms of dim X, XE‘?SP(R) as follows:

(a) lecn R of the form (1.1) which is upper triangular we calculate the numbers
dijy dijy i, j =1, ..., n, % (1.2) and we write two sets of vectors in Z"*!:

'f]/={pl""’ pn!pn+1=P*}, .‘2={qo,...,q,,}

where
@.1) pi=dimP;=(0,..., L, dj4y, ..., ,*)

4y =dim QY = (d;, di—dy, ..., d;, diy d;)

©0 Mk "1’ ok

with do; = diy., dio = dy, and diy =djp =0 for all i > 1 (see 2.3).
(a;) Consider the set I = {t,, ..., t,}, where
=1t(p)i=g;'p; with g;=GCD(dj1, ..., djy).
Note that according to Proposition 3.8 we have J(P) = T(P*, t; = dim T(P) and the
valued arrow from T(P) to P; in (I,,(R), d) has the form
(el )
T(P)—"5P; if dy = dy, dyy for all k>j,
4.2)

1,
TP, )i—r) P; otherwise.

(a;) We define inductively sets Iy, I, ..., I,, of vectors in Z"*! and valued arrows
between vectors of I, and ., as follows:

(i) We mark vectors of I; as pairwise different points on the line xy =j in the
plane R2

(ii) Let I = {p,} and define I, as the set of vectors p;e 2 such that t(p,) = Py For
any such i we connect p, with p,el, by the valued arrow

(dindin)
D, % D

(iii) Given xel..;~2 we form a mesh
| {
I P’
I 1
} <7,/
I
X AT(x)
{
‘ \d& ’
I
|
! .
lk-1 k /%)
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where x,,...,x, are all vectors in [, connected with x, dj='dy,, d;=d,,,

1
()= Y, x;d;—x. We put

j=1
levr= {47 ()} xeh-1—2}u{oeP5t(p)ed Nl

We comnect X, ..., X, with 47 (x) as is marked on the mesh above and we connect ¢;
with p; by the valued arrow (4.2) with T(P), P; and t;, p; interchanged.

Note that if x = dim X el,_, —2and X, . X are all indecomposable modules in
mod,, (R) connected by irreducible maps startmg from X, then taking x; = dim X; we
get 47 (x) = dim 4™ (X).

©

This together with the remark in (i) shows that 2, (R) = U1 ; if we identify X with

dim X.

(4.3) Conclusion. The procedure will stop at step m iff go = dim E(P,)el,. In this
case R is sp-representation-finite and (I',, (R), d) = lyu ... w1, (Corollary 3.11). Thus we
get a simple procedure for describing £, (R) (and dually for describing the preinjective
component 2,,(R)) which is the Auslander-Reiten quiver provided R is sp-represen-
tation-finite.

ExXAMPLE 4.4. Let R denote the real numbers and C the complex numbers. Consider
the 7x 7 matrix ring

]

=X

aaa

mo X
anaaan
momoR®
ancaaaan

0

where the maps ¢; are given by the multiplication in C. Then T is a right peak
R-algebra which is sp-representation-finite and

1,

E

1—-

(1,

)

3

|

(%, dy: )5
.
7=

ON— h—
b ;

Applying the algorithm one can construct (I',(T), d) presented in Figure 1,
Other examples can be found in [21; Appendix] and in [30].

5. The Auslander-Reiten quiver I'. (R) of a splitting ring. Suppose that R is an
artinian right peak PI-ring of the form (1.1) which is upper triangular and has almost
split sp-sequences. In particular, R has the reflection duality (2.0). Moreover, we suppose
that (I, d) is a valued posed with respect to the relation i < j«;M; # 0. Following [21;

icm
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Definition 4.5] we say that (I, d) has a splitting decomposition if there is a disjoint union
poset decomposition

(5.0 Ip=T+C+I"
such that I’, I are not empty and

(i) 7 < i for all e, i"eI" and there are no relations ¢ <, i <¢ with ceC,
fer, i'el”,

(i) (C*, d) with C* = Cu{*} is a homogeneous chain

(C*, d): ey cy— =Gy Cprr = H, oy, = e, =1,
(iii) d;; = dy, iy for all iel, jel”.
In this case (I%. d) has the form

¢y gy
(1) ol P (% *

Throughout suppose that (I%, d) admits a splitting poset decomposition (5.0) and
put )
(52) e=e,+e('+C), n=e +e(C+I"), e =e{l), e =e,+e(l),
J* =Ju{s} where e(J)=) e; for J = Iz. Moreover, we put
jel
(5.3) A=eRe, B=nRy.
Note that A and B are the right peak ring R, - and R, ;. [29; 1.13] obtained from the

form (1.1) of R by omitting all rows and columns with indices in I and I, respectively.
Following [28, 29, 217 consider the functors (seec [1])

L T
(5.4) , m0dyy(A) 2 MOdey(R) & mod,y (B),

where ¥, =y, Py=rc.p are the restriction functors to (I'+C)%, (C+I7), ie.
1y (X) = Xe= (X, 1P jer+ s
(5.5 : L(Y,) = Hom,(Re, Y,), T(Zy)=Z®pyHR.

Following [32; 5.15] and [33] we are going to show that (I, (R), d) is a simple
glueing of (I',,(4), d) and (I, (B), d) by applying the functors Land T

The basic role is played by the following result.

PrOPOSITION 5.6. Under the assumptions and notations above we have:

(a) The functors T, L are full, faithful and v, L= id, ry T=id. Tis left adjoint to vy and
L is right adjoint to r,.

(b) If Y, is indecomposable in mod,, (A) then the restriction (LY)e" of LY to I U {*} is
isomorphic to E"(soc Ye') = E"(P,)', where h = dim(Ye,); and E"(P,) = E,(P,)e" is
the injective envelope of P, in mod,,(e"Re"). If Ye'=0 then Y=P, for some
ji=1,...,m+1, where ¢p4q = *.
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(©) Tis exact, T(e;B) =¢;R for ie(C+I"V* and TQY) = OV for jeI.

(d) Lis exact, Lle;A)=e;R for iel and LOY)= QY for jel'+C.

() If X is indecomposable in mod,, (R) and Xe' + 0 then r 4 (X) is indecomposable and
Lr (Y)= X If X&' = O then ry(X) is indecomposable and Try(X) = X. Every indecom-
posable module X in mod,,(R) is in one of the images ImT, ImL.

Prool (a) is well known (see [1]).

(b) Since L is right adjoint to r, it carries injectives to injectives. Then the first part of
(b) follows by the arguments in the proof of [28; Prop. 2.5(a)]. The second part of (b)
and the first two statements in (c) follow immediately from the definitions.

(e) It follows from [21; Lemma 4.6] that the splitting poset decomposition (5.0)
induces & corresponding ring splitting decomposition of R [21; Def. 4.2] and therefore
(e) follows from [21; Theorem 4.3].

(d) Lis left exact as a right adjoint to the exact functor r,. Let f: Y,— Y be
surjective. In order to prove that L(f) is surjective it is sufficient to show that the
restrictions of L(f) to (I"+C)* and to (I")* are surjective. The first is 4 (f) = fand the
second is rL{f}: L(Y)e"—L(Y")e". Since the induced surjection soc L(Y) ¢’ —soc L(Y") "
splits, according to (b) rL(f) is a splittable epimorphism and therefore L(f) is surjective.

Since QY and L(QY) are indecomposable and QU¢ % 0 = L(QY)¢, (¢) yields
0 = Lr ,(Q") = L(Q!) because one can easily show that r, Q9 = Y. The remaining
statements in (d) and (¢) can be proved in a similar way. The proof is complete.

In the proof of our glucing theorem we shall need the following three lemmas. We
suppose that R is as above.

LeMMA 5.7, Let Q, denote the sp-injective B-module 0%7,j=0,1,...,m (see (2.2)).
Then :

(a) The restriction Q,e” of Q~j to I"U{x} is isomorphic to the injective envelope
E"(P)=Ey(P,)e" of P, in mod,,(¢"Re"). Moreover,

dimG e =(0,...,0,1, ..., 1, 1)

¢ Cp *

and Q,,,“.E Op-r16...60, Qo = Ey(P,) are hereditary sp-injective such that if
Homy (@), Z) # 0 and Z is indecomposable then Z = @, for some i <j.

(b) If Zy is in mod,,(B) and Ze" = E" (P,)", where h = dim (Ye, )y, then Zp is a direct
sum of copies of hereditary sp-injective modules Qy, ..., G, In particular, rz(e; R) has this
property if jelI',

(¢) The A-modules P, = P, ... & P, are hereditary. Moreover, 70, = LP, and
TQ] sLP,, Jor j=0,..,m-1,

If, in addition, R satisfies the assumptions in Theorem 3.7 then the end of 2,,(B) and
the beyinning of #,,(4) have the forms (5.8) below with valuations (1,1) over arrows
Q’J*'l"”gja Pc‘/“) I)u_/nl' -

. Prool (a) Note that the reflection duality (2.0) applied to the ring B carries Q; to
Be, , Which is obviously hereditary projective because (5.0) is a splitting decomposition
{look at the diagram (5.1)). Then (a) follows from the duality DV and its definition.
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(b) It is easy to see that every indecomposable summand Z' of Z has also the
property of Z in (b) and therefore Homy (g, Z') # 0. Since §,, is hereditary sp-injective,
Z' is sp-injective and therefore there are monomorphisms Q,,, —=Z'-Qy =Ep (P,). Then
(@) yields Z' =~ Q; for some j < m.

It follows from Proposition 5.6(c) and (b) that Y, =r, (P;) is indecomposable,
Py LY, rg(P)e’ = Yo" = E"(P,)" with h = d;, and the proof of (b) is complete.

(c) The first part follows from the shape of I (see (5.1)) and the second one follows
from (a) and the definition (3.1).

LEMMA 5.9. Let Y, Y and Z,Z' be indecomposable modules in modg, (A) and mod,, (B)
respectively. Then

(2) Homg (LY, TZ) =0 if Ye' 0.

(b) The natural epimorphisms

(5.10) L I (Y, )= I (LY, LY, T I (Z, Z)~1Ire(TZ, TZ)

are bimodule isomorphisms over the natural ring isomorphisms F(Y)= F(LY),
F(Y)xF(LY), F(Z)=F(TZ), F (Z) = F(TZ), respectively. In particular, L and
T carry irreducible maps to irreducible ones.

Proof. (a) Since Ye' # 0, by Proposition 5.6 we have rp(LY)e" = (LY)e" =~ E” (P*)",
vzhere h = dim (¥e,)r, and according to Lemma 5.7, ry(LY) is a direct sum of copies of
Qo o Q.- Hence if we assume that there is nonzero feHomg(LY, TZ) then the
restriction of f to socLY < ry(LY)e" is nonzero and therefore Hom,,(Q}, Z2)#0. It
follows from Lemma 5.7 that Z & @, for some 0 < i < jand TZ = TQ, = LP, _, where
P, =P, Hence Homy(LY, TZ) = Homg (LY, LP,, ) = Hom, (¥, P,.) =JB'. becau-
se P, . is hereditary projective and Y&P, fori=1,...,m+1. This éontradiction
finishes the proof of (a).

(lz} Sv:lppose T@ =0, where geJ(Z,Z'). Then T(g) has a factorization
TZ->X—-TZ in mod,, (R) with he J(TZ, X), teJ (X, TZ') and in view of (a), X can
be chosen o{ the form X = T (Z"). Since T is full and faithful, g = the J?(Z, Z'). Thus
g=0 and T is bijective.

Suppose L(f) = 0 where JeJ(Y, Y'). If L(Y) is not in the image of T then as above
we conclude that f = 0. Suppose L(Y) 2 T(Z). Note that this happens if and only if
Y P, f0~r some j=1,...,m+1, cpi; = . Suppose Y = P, and note that
L(Y) = T(Q;-,) (Lemma 5.7). If LY’ is in the image of T then wejare done by (5.9)
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for T Supposcla LY’ ¢ImT and L(J)=0. Then L(f) is a sum of composed maps
~ » t , . .

LP, = TQj-y = X~ LY’ where heJ(TQ;_,, X)), t,eJ(X,, LY’) are both nonzero.

Assume that X = T(Z,). Then h, = T (K,) for some h: 0;-1—Z, and Lemma 5.8 yields

Z,=0Q, X, =T(Z)=LP,, for some i< j—1. This proves that all modules X are of

the form L(Y,} because of Proposition 5.6(e). It follows that f = > S f for some

KeJ(%, Y),/i'eJ (P, ¥) and therefore [ = 0. This finishes the proof.
Lemma 5.11. Suppose that Y,, Z, are indecomposable and let

P: 00 Y5 Y 5 ¥ 50, 3:00Z5Z =2 >0

be almost split exact sequences in mod,, (4) and mod,, (B) respectively. Then L), T3 are
almost split sequences.

Proof. Since LY, LY", TZ, TZ" are indecomposable it is sufficient to prove that
L(w), T(v) are left almost split. Let f: LY—X be a nonzero nonisomorphism and let
X be indecomposable in mod,,(R). We know from Proposition 5.6(e) that either
X =LU or X =TV for some U in mody(4), V in mod,,(B). If X = LU there is
a nonisomorphism ¢: Y- U such that f = L(g). Since 9 is almost split g factorizes
through u and [ factorizes through L(u). Suppose X = TV. Since f #0, in view of
Lemma 5.9 (a) we have (LY)e' = 0 and therefore LY = TZ for some Z. It follows as in
the proof above that Y= P,, Z =, for some j=1,...,m+1 (see 58). Since
Homy, (@1, V) = Homg (LY, X) # 0, in view of Lemma 5.7 we have V= §; for some
i<jand X x TV TQ, = LP, .1 h: Y=P,  issuchthat L(h) = f then h factorizes
through u and f' factorizes through L(u) as required. Consequently LY is almost split.
The proof of the remaining part is left to the reader.

Now we are able to prove the main result of this section.

THEOREM 5.12. Let R be an artinian right peak PI-ring of the form (1.1). Suppose that
R is upper triangular, has almost split sp-sequences and that (I, d) is a valued poset with
respect to i <j<>;M;#0. If (I, d) has a splitting decomposition (5.0) then

(a) The exact functors L, T (5.4) carry almost split sequences to almost split sequences
and induce the bimodule isomorphisms (5.10). ‘

(b) Every almost split sequence X in mod,,(R) is either of the form T (3) or of the form
L(D), where 3 and Y are almost split sequences. Every irreducible map f: X — X' between
indecomposable modules in mod,,(R) is of one of the the forms L(g), T (), where g and
h are irreducible,

(¢) An indecomposable module X in mod,,(R) belongs to Im LnImT if and only if
X = L(P,) = T(J)-,) for some j=1,...,m+1, where cy+y =% (see 58).

(d) If, in addition, R satisfies the assumptions of Theorem 3.7 then (I, (R), d, 4, 7) has
the form below (in the notation of Remark 3.12) obtaifed fr~om (Fsp (B), d: 4, x) and
(I'yy(A).d, 4, x) by the identification of the final section Q,—Qn=1— ...~ Qo in 2,,(B)
with the starting section Py~ P, —...— P, of P, (A) (see 5.8), where A, B are the rings

tm

(5.3) and there are no maps from the right to the left.
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2 2,8 | # | @8
A < > 8 Y wea| 2, | gla DER

Proof. (a) follows from Lemmas 5.9 and 5.11, whercas (¢) [ollows [rom the proof of
Lemma 5.9.

{b) We know from Proposition 5.6(e) that every indecomposable module X in
mod,, (R) belongs either to Im T or to ImL. Let

X 0-X-X -X"=0
be an almost split sequence in mod,;, (R) and let X be indecomposable. If X = LY then
we know from Proposition 5.6(d) that Y is not sp-injective and therefore there is an
almost split sequence 9 in mod,, (4) starting with ¥, By Lemma 5.11, LY is an almost
split sequence starting with X and therefore, ¥ & LY).

Suppose now that X ¢Im L. Then X = TZ for some Z and we know from (¢) that
X T(Qj) for j=0, 1, ..., m. Then, in view of Proposition 5.6(c), Z is not sp-injective
and therefore there is an almost split sequence £ in mod,, (B) starting with Z. It follows
from Lemma 5.11 that X = T(3) as desired. Since the second statement in (b) follows
from the first, (b) is proved.

Since (d) follows from (a){(c) the theorem is proved.

CoroLLARY 5.13. Let I be a poset having a disjoint union poset decomposition
I=I'+C+I", where C: €1—>Cy~> ... ¢, is a chain, I', 1" are nonempty and the
condition (i) below (5.0) is satisfied. If T: (C +1")-sp—I-sp is the natural embedding
Junctor and L: (I'+ C)-sp —I-sp is given by L(M, M)jerve =M, M), where M‘- =M,
. Joriel'+C and M; = M for icI”, then T, L are exact and have the properties (a)-(d) of
Theorem 5.12 with I-sp, (I'+C)-sp, (C +1")y-sp and mod,, (R), mod,, (4), mod,, (B)
interchanged.

Proof. Apply Theorem 5.12 to R =FI* Note that mod,, (FI*) & I-sp,
mod,, (4) = (I'+ C)-sp, mod,, (B) & (C+1I")-sp and the functors L, T above coincide
with the functors L, T in (5.4) (see [307).

Remark 5.14; (1) Let
| S sMa
=0 5]

where S = ¢ Re’, M = ¢' Ry (see 5.2). Then M, is a direct. sum of copies of hereditary
sp-injective B-modules 0, ..., 0, (Lemma 5.7 (b)) and therefore we are in a situation
similar to that in [34] (compare Theorem 5.12 with [34; Theorem 1 and Remark 1)

" (2) It would be interesting to prove a counterpart of Theorem 5.12 for a ring splitting
of R in the sense of [21; Definition 4.2]. Example 4.4 shows that Theorem 5.12 and
Lemmas preceding it do not hold for ring splittings. In fact I, = J'-+C+1" with
I'={1,2,4}, C={3,6}, I"= {5} induce a splitting system of functors (54) with
R = T. The modules from Im L and from Im L~ Im T in Figure 1 are underlined and
wave underlined respectively.
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Another illustration of the construction {Fap(R), d, 4) in the case of a ring splitting
by successively applying (5.4) is given in Example 5.15 below.

(3) In {33] a splitting theorem is proved for directed multipeak bound quiver algebras.
It plays an important role in determining coordinate supports of indecomposable socle
projective modules over covering algebras of right peak algebras (see [32]).

Exameie 5.15. Let € and R be the complex and real numbers, respectively, and
coocccec

‘RR O

RO

c

anoen
moox O
aaaoann

0

where ¢p3,0 R®R—C is the natural embedding, ¢,q,: CQC~C is such that the
composed map &,4,: C—Hom(C, C) = C is the identity. The remaining maps i Are
multiplications. Note that

/((2.2)
______ ——
2 /’X
(3, d) *
NN /
1 5
\4/

has no splitting decomposition; however, Iy = I'+C+1" V\{iLh I'={1}, C: {2,3, 43 5},
I" = {6} induces a ring splitting with the corresponding rings A,.B as in (5.3) obtalped
from R by omitting the first row and the first column, and the sixth row and the S}xth
column respectively. Note that I, ={1,2,3,4,5}, Iy = {2, 3,4,5,6}. Eiar t?e rings
A and B there exist ring splittings induced by the following decompositions:
Ii=I4-+Cy+Iy and Iy=1I5+Cp+Is,

where Iy = {2}, C, = {1, 3, 4}, I = {Sh Iy = {2}, Cp = {3, 4, 6}, I = {5}.

Let (4!, BY) and (4% B* be the corresponding splitting pairs like in (5.3). Then

(2,1)
(P, d): 235Dkt |, (I, d): 14— 5o w22,

(%, d): i\;///
1

(I3, d): 3-6Dx5ed.
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Note that the rings A and B? are hereditary sp-representation-infinite of type F,. Do
The ring B! is hereditary representation-finite of type B% and the ring A4* is ;\/f \o \,\;\/ o\
sp-representation-finite of type F, (see [21; Appendix]). The Auslander—Reiten valued (o/ o e /o\ /{o\\0
quivers of the rings above are presented in Figure 2. \IO vl \" o\ /O\ P
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Let us denote by L, T, L, T*, I, T? the functors (5.4) corresponding to the pairs (4, B), :< +< >? °< \!< \><
{4, BY), (4%, B?), respectively. One can show that I'y,(A) and I, (B) are obtained {rom /7\ P 3/ +<\
Iy (4Y), I, (BY) and I, (4%), I',,(B?) by glueings along sections in Im I! ~Im T* and 3\ /’\ >« \/ "(
Im I ~Im T? presented in Figure 3. The marked sections represent the indecomposables . ?\ /3 +/ \2/ >
.2) ‘ RS T
0,0,1,0,1,1)—(0,0,2, 1, 2, 2)-(1,0,2,1,2,2-(0,0,2,0,1, 1), N k? 7

(1,2)

©.1,0,1,2,1)-(0,2,1,2,3,2=5(0,2,1,2, 4,2)-(0, 2,0, 1,2, 1)

Fig. 3
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in terms of dimension vectors (x,, ..., X5 Xy), (X3, ..., Xg, X,), respectively. Moreover,
+"® and +'e are the vectors (1, 0, 1,1,1,1) and (0, 0, 2, 1, 1, 1); +"e belongs to
a tube of rank 3 and +'e belongs to a tube of rank 2.

We mark by o the modules in ImL, Im I} ImI? and by + the ones.in
T, Im T*, Im T2 The modules in Im T* ~Im LY ImT2AIm I2, Im T ~Im L are denoted
by +®. The glueing respects the natural order in the quivers.

Now by simple calculations one can show that I, (R) can be obtained from I’ o (4)
and Iy, (B) by glueing along a section in ImL~Im T as presented in Figure 4. The
indecomposable modules in this section are represented in terms of their dimension
vectors (xy, Xj, ..., Xs, Xg, x,),1e.:(0,0,0,1,1, 2, 1)—(0,0,2,1,1,4,2)-(0,0,2, 1,

@1
2,4,2)—(0,1,2,1,2,4,2)-(0,0,1,1, 1,2, 1). The singular point +'e = +einthe

square Belongs to a tube of rank 2, its dimension vector is 0,0,2,1,1,2, 1). Note that

the triple
A s
.4

in the square equals (1,0,2, 0, 1, 2, 1)»(2, 0, 3, 1, 2, 4, 2)—-(1,0,1,1,1,2, 1) and
belongs to a tube of rank 3. The modules + @, +@, +"® form one 4-orbit in the tube.
The boldface sections in Figure 4 should be identified.
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On supercomplete uniform spaces IV:
Countable products '

by

Aarno Hohti (Helsinki) and Jan Pelant (Praha)

Abstract. We show that the product of countably many supercomplete C—écattered spaces is
supercomplete. The result implies similar but weaker theorems of [1], [17] and [4].

1. Introduction. It is well known that the product of paracompact spaces is in general
not paracompact. It was proved by Z. Frolik in [5] that a countable product of locally
compact paracompact spaces is paracompact. The same is true for the larger class of
paracompact p-spaces of Arkhangel'skii [2]. Recently a weaker structural condition of
being scattered or C-scattered has been used by K. Alster [1], M. E. Rudin and S.
Watson [17], and by L. M. Friedler, H. W. Martin and S. W. Williams in [4], to obtain
similar results. We prove in this paper a natural extension of their results by showing
that a countable product of supercomplete C-scattered spaces is supercomplete. The
notion of supercompleteness was defined by J. R. Isbell in [13]; by his result — we can
take it as a definition — a uniform space X is supercomplete iff X is topologically
paracompact and the Ginsburg-Isbell locally fine coreflection ([6]) Au is the fine
uniformity of & (X) of X. By using the concept of metric-fine coreflections, we show at
the end of the paper that a countable product of ¢-C-scattered paracompact spaces is
paracompact,

Our proof uses a simple recursive technique based on well-founded (or Noetherian)
trees, applied e.g. in [11], [12], [15] in the context of uniform spaces.

2. Preliminaries. This section consists of preliminary definitions. We refer the reader
to [14] for basic information on uniform spaces. For the definition of the Gins-
burg-Isbell locally fine coreflection A, the reader is referred to the first three papers [8],
(91, [10] in our study on supercomplete spaces. A well-founded tree is a partially ordered
set 7 = (T, <) with a unique minimal element Root(¥) such that every branch, ie.,
maximal linearly ordered subset, of J is finite. We denote by End(7) the set of all
<-maximal elements of . Given pe T, the set of all immediate <-successors of pis
denoted by S(p). Thus, S(p) = {ge T: ¢>p and ¢ >r > p for no re T}. Furthermore,
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