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THEOREM 3.5. Let (1; X;: i€ N) be a countable family of o-@-scattered supercomplete
spaces. Then m([ [y u; X,) is supercomplete.

COROLLARY 3.6. A countable product of o-%-scattered paracompact spaces is
paracompact.
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On supercomplete uniform spaces V:
Tamano’s product problem

by

Aarno Hohti (Helsinki)

Abstract. In this paper we solve the analogue of Tamano’s problem [8] for supercomplete
spaces. We show that a supercomplete space uX has the property that its product with every
supercomplete space is again supercomplete if, and only if, X is C-scattered [19].

1. Introduction. This is the last member in our series of papers [4]-[7] on
supercomplete uniform spaces. These spaces were introduced and characterized by J. R.
Isbell in [11]. By definition, uX is supercomplete if the uniform hyperspace H(uX),
equipped with the Hausdorfl uniformity, is a complete uniform space. By [11],
supercompleteness is a uniform form of paracompactness: X is supercomplete iff (1)
X is (topologically) paracompact and (2) the Ginsberg-Isbell locally fine corefiection Au
[3], [11] is the fine uniformity of X. (In this case, every open cover of X can be analyzed
combinatorially by using uniform covers as a starting point.) This notion has also been
studied in the context of linear spaces and closed graph theorems [2], [15]; [10] gives
an application to homogeneous spaces. Several results concerning product spaces and
supercompleteness have been obtained in [4]-[7] and [8]; closely related questions on
uncountable products are dealt with in [17].

In [18], H. Tamano asked for a characterization of paracompact spaces the product
of which with every paracompact space is paracompact. While it is known [16] that in
the class of p-spaces of Arkhangel'skii [1], such paracompact spaces are o-locally
compact, the general problem has proved to be difficult. In this paper we solve the
analogous question for supercomplete spaces, with a relatively simple proof.

2. Preliminaries. The basic reference to uniform spaces is [12]. For a completely
regular space X, & (X) denotes the fine uniformity of X, consisting of all the normal
covers of X, and BX denotes the Cech-Stone compactification of X. The basic
properties of the Cech-Stone compactification can be found e.g. in [20]. We repeat here
the definition of (slowed-down) Ginsburg-Isbell derivatives (see [97]) of uniformities. Let
%(X) = P(P(X)) denote the collection of all covers of X. Then % (X) is ordered by the
relation < of refinement. Let x4, v be filters in € (X) with respect to <. The symbol v/u
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denotes the collection of the elements of % (X) refined by a cover of the form {U, AV},
where {U,}e u and for each i, {¥} . In general the filter v/u is not a uniformity. even
when p and v are uniformities of X. However, let ¢ be a uniformity, and define, by
transfinite induction, a family of filters in %'(X) by setting p@ = g, u** 1 = @/ for
a successor ordinal and let u® = [ }{u®: o < B} in case § is a limit ordinal. There
(obviously) is o such that x** 1 = 4@, by [3] this 4 is a uniformity, called the locally
fine coreflection of x and denoted by Au. For technical reasons, we also introduce the
(-1)th derivative u™ Y. An element % €% (X) is called trivial if X e%. Then we define
w7 as the collection of all the trivial covers of X. Clearly u® = pt~Y/u,

If u is any set of elements of % (X), and 4 < X, then u [ 4 denotes the restriction
{1 A: Uep}to 4, where U A= {UnA: Ued}.1f pis a uniformity of X, then u | A
is the relative (induced) subspace uniformity of A. We recall that the operations of
taking Ginsburg-Isbell derivatives and forming restrictions to subsets commute; i.e., for
all Ac X and all « we have u® [ 4 = (u | A)®.

3. The result. In this section we prove the result promised in Introduction, extending
the analogous theorem for paracompact p-spaces obtained in [5]. However, we notice
that the result of [5] is used here to handle a subcase.

THEOREM 3.1. Let uX be a supercomplete uniform space. Then uX x vY is supercomp-
lete for every supercomplete space vY if and only if X is C-scattered.

Proof. Sufficiency has been proved in [5]. For necessity, suppose that X is not
C-scattered. It will be enough to find a paracompact space Y such that
MF (X)x F(Y)) # F (X x Y), because {1 x v) = A(4ux Av). As X is not C-scattered, it
contains a non-empty closed subset F such that F is nowhere locally compact.
Furthermore, we can assume that F is nowhere locally Cech-complete. Indeed, suppose
that pe F has a Cech-complete neighbourhood U in F. A closed neighbourhood V of
p contained in U is Cech-complete and péracompact, but not C-scattered. Hence, by
Theorem 4.1 in [5] there is a separable metrizable space Z such that #Vx #Z is not
supercomplete. Now V is P-embedded in X, which implies that & (V) = & (X )V and
hence that #X x #Z is not supercomplete.

As F is nowhere locally compact, fF —F is a dense subset of BF. By a result of Isbell
{31, there is a paracompact-space Y and a open continuous onto map ¢: Y- fF—F.
Denote by ¢ the Stone extension of ¢ to a continuous map Y- SF. Let 4 denote the
inverse of the graph of @ in fYx BF, ie., 4 = {(p, g)e fF x BY: @(q) = p}. Then 4 is
a closed: subspace' of fFx Y and (Fx Y)nd4 =@. By regularity, there is for each
(x, ¥eFxY an open neighbourhood G,y in FxfY such that

(lpwpy (Gyl)nd = 2.

Let9 = {G,n(FxY): xeF, yeY}. We claim that the open cover % of F x Y is not in
MFF)xF (Y)). On the other hand, we obviously can (and will) assume that F x Y is
paracompact. Thus, ¢ is an element of & (F x Y), and this will show that FF x & Y, and
hence #X x #Y, is not supercomplete.

We shall procced by the method of contradiction and assume that
YeA(F (F)x F(Y)). Then ¥e[F (F)x F (Y)]* for some %,. It is clear that % is
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not a trivial cover of Fx Y (because otherwise the closure of some member equals
BF x BY); consequently w, > 0. Thus, there is a uniform cover % of FFxFY and
oy < o, such that

Gl UelF (F)xF(Y)]* U

for all Ue . The cover % being uniform we can find (uniform) open covers %, and ¥,
of #F and FY, respectively, such that %, x ¥, < %. The open cover %, of F can be
extended over a Cech-complete subset G of BF. (It was shown during the proof of 3.4 in
[5] that a uniform cover #° of a Tychonoff space Z can be extended over
a Cech-complete paracompact subspace of fZ. For completeness, we succinctly mention
here how the extension can be obtained. Since %" is uniform, there is a compatible
pseudometric o such that %" is uniform in ¢Z, and % can be extended (uniformly) over
the completion noZ, which is a Cech-complete and paracompact subspace of fnoZ.
Extend #” over f ™! [naZ], where f is the Stone extension of the embedding Z~noZ.)
Now G, —F is dense in fF. In fact, let G be any Cech-complete subset of BF containing
F and let pe F. Then for any (in fF) open neighbourhood ¥ of p, the set GNV is an
open subset of G and hence Cech-complete. If GAV < F, then it would be
a Cech-complete neighbourhood of p in F, which is impossible by our assumption on F.
Thus, GN VN (BF —F) # &. This implies pecly;(G~F), and so G~F is dense in fF,
and hence also in BF —F. Finally, it follows that for any such a C‘ech-complete subset G,
and for any nonempty open subset ¥ of SF or of BF—F, the set Vn(G—F) is a dense
subset of V.

Now let %, be an open cover of Gy, extending %, and let U, €%, be arbitrary. We
write 4, = {U: Ue,} where UnF = U. Since @[Y] = BF—F, and since by the
above Uy (G—F) # @, there is Vo€ ¥y such that ¢ [V,]nU, #@. It follows that

(ToxVo)nd # @.

Since U, is open, we have U, < clyp Up. Thus, Uy x ¥ < clyp gy (Ugx V), which
implies that @ | (U, x V,) is not a trivial cover of U, x ¥, since the closures (in BF x BY)
of the elements of % do not meet 4. Therefore, we have o; 2 0. Thus, there exists
4 uniform cover of U,x ¥, with respect to the induced uniformity

(Z (F)yxF (V) [ (Uq % Vo) = (F (F) 1 Up) X (# (Y) | V),

. call it %, and o, <o, such that

GNUE[(F (F) [ Ug)x (F (V) I V,)]* tU

for all Ue%. We can [ind uniform covers #; and ¥| of Uy and V,, respectively, such
that % x #7 < %. Choosc open covers %, and ¥7 of F and Y, respectively, such that
U N Ug <y and #, |V, <#{. As above, extend %, to an open cover & ; of
a Cech-complete subspace G, < G, of F. The sets Uyn U, where Ue %, lie densely in
U, and a fortiori so do the sets U U, Ued,. For cach U ed,, UynUn (G, ~F)is
a dense subset of UynU, so the sets UynTn(G,—F) lie densely in .U,. Therefore,
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@oV,1nU, # @ implies that ¢ [Voln{T,nT,n(G,—F))#@ for some U,ed,,
Choose ¥, e such that @ [V,n¥,1n(UenU,) #@. As above, we get

[(OonT)x(VonV)Ind # @,

and we see that ¢ | [(U,nU,)x(Von V)] is not a trivial cover, which implies that
a, > 0. Thus, we have found a sequence 0 < a, < oy <o, of ordinal numbers.
For the inductive step, suppose that we have found sequences (o: ie[n-1]),
@, x ¥ ie[n)), (@; ie[n), (O ie[n]), (Vi ie[n)), and (G;: ie[n]) (where [n]
denotes the set {0, ..., n}) such that
(1) %,x ¥, is an open uniform cover of FFx FY for all ie[n];

(2) 4, is an extension of 4, to an open cover of the Cech-complete subset G, of fF '

for all ie[n];

(3) U,e®,, U= U,NF and V,e¥; for all ie[n];

4) FeG,c...c G, < fF;

(5) for each ie[n], ¥ [(U,x V) is not a trivial cover;

(6) for all ie[n], & [ (U, x V)e[F (F)x & (Y)]®*9 | (U, x W);

(7) apq <oy for all ie[n];

® o[-0 KN (V-0 U) # 0.
Exactly as in the case n=1, we find that o, >0, and we find open covers
Bys1, Ve 1, & Cech-complete extension G,.; o G, of F, an open extension %,, of
Ups1 OVEr Gyyy, tyry < 0yiy and elements U,y &€%yu i, Vw1 %50y satislying the
above conditions (1)-(8) with n replaced by n-+1. By complete induction we obtain an
infinite decreasing sequence

e Ky <Oy < <, < 0y

of ordinal numbers, which is a contradiction. Thus, we conclude that % is not a member
of A(# (F) x-# (Y)), as required, and hence that #F x #Y is not supercomplete. This
~ finishes the proof. m

Remark. In the above proof we found for a given non-C-scattered space X a space
Y such that X x #Y is not supercomplete. However, we did not check whether X x ¥
is paracompact or not. In case the paracompactness of X x Y is needed, Y can be
replaced by a weakly o-discrete stratifiable space provided by Junnila’s construction
[14], the product of which with X can be shown to be paracompact.
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