

120

THEOREM 3.5. Let $(\mu_i X_i: i \in N)$ be a countable family of σ - \mathscr{C} -scattered supercomplete spaces. Then $m(\prod_{i \in X_i} u_i X_i)$ is supercomplete.

COROLLARY 3.6. A countable product of σ -C-scattered paracompact spaces is paracompact.

References

- [1] K. Alster, A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf Fund Math, 114 (1981), 173-181,
- A. Arkhangel'skii, On a class of spaces containing all metric and all locally bicompact spaces. Soviet Math. Dokl. 4 (1963), 1051-1055.
- [3] H. Corson, Determination of paracompactness by uniformities, Amer. J. Math. 80 (1958). 185-190.
- L. M. Friedler, H. W. Martin and S. W. Williams, Paracompact C-scattered spaces. Pacific J. Math. 129 (1987), 277-296.
- [5] Z. Frolik, On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. Math. 8 (1960), 747-750.
- [6] A note on metric-fine spaces, Proc. Amer. Math. Soc. 46 (1974), 111-119.
- [7] S. Ginsburg and J. R. Isbell. Some operators on uniform spaces. Trans. Amer. Math. Soc. 93 (1959), 145-168.
- [8] A. Hohti, On supercomplete uniform spaces, Proc. Amer. Math. Soc. (3) 87 (1983), 557-560.
- On supercomplete uniform spaces II, Czechoslovak Math. J. 37 (1987), 376-385.
- [10] On supercomplete uniform spaces III, Proc. Amer. Math. Soc. 97 (1985), 339-342.
- [11] A. Hohti and J. Pelant, On complexity of metric spaces, Fund. Math. 25 (1985), 133-142.
- [12] M. Hušek and J. Pelant. Extensions and restrictions in products of metric spaces. Topology Appl. 25 (1987), 245-252.
- [13] J. Isbell, Supercomplete spaces, Pacific J. Math. 12 (1962), 287-290.
- [14] Uniform spaces, Math. Surveys, no. 12. Amer. Math. Soc., Providence, R. I., 1964.
- [15] J. Pelant, Locally fine uniformities and normal covers, Czechoslovak Math. J. 37 (112) (1987). 181-187.
- [16] M. D. Rice, A note on uniform paracompactness, Proc. Amer. Math. Soc. 62 (1977), 359-362.
- [17] M. E. Rudin and S. Watson, Countable products of scattered paracompact spaces, ibid. 89 (1983), 551-552,
- [18] R. Telgársky, C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74.
- [19] Spaces defined by topological games, ibid. 88 (1975), 193-223.

UNIVERSITY OF HELSINKI DEPARTMENT OF MATHEMATICS Hallituskatu 15 SF-00100 Helsinki Finland INSTITUTE OF MATHEMATICS ČSAV Žitná 25

115 67 Prague 1

Czechoslovakia

Received 7 June 1989

On supercomplete uniform spaces V: Tamano's product problem

by

Aarno Hohti (Helsinki)

Abstract. In this paper we solve the analogue of Tamano's problem [8] for supercomplete spaces. We show that a supercomplete space uX has the property that its product with every supercomplete space is again supercomplete if, and only if, X is C-scattered [19].

1. Introduction. This is the last member in our series of papers [4]-[7] on supercomplete uniform spaces. These spaces were introduced and characterized by J. R. Isbell in [11]. By definition, μX is supercomplete if the uniform hyperspace $H(\mu X)$, equipped with the Hausdorff uniformity, is a complete uniform space. By [117, supercompleteness is a uniform form of paracompactness: μX is supercomplete iff (1) X is (topologically) paracompact and (2) the Ginsberg-Isbell locally fine coreflection $\lambda\mu$ $\lceil 3 \rceil$, $\lceil 11 \rceil$ is the fine uniformity of X. (In this case, every open cover of X can be analyzed combinatorially by using uniform covers as a starting point.) This notion has also been studied in the context of linear spaces and closed graph theorems [2], [15]; [10] gives an application to homogeneous spaces. Several results concerning product spaces and supercompleteness have been obtained in [4]-[7] and [8]; closely related questions on uncountable products are dealt with in [17].

In [18], H. Tamano asked for a characterization of paracompact spaces the product of which with every paracompact space is paracompact. While it is known [16] that in the class of p-spaces of Arkhangel'skii [1], such paracompact spaces are σ -locally compact, the general problem has proved to be difficult. In this paper we solve the analogous question for supercomplete spaces, with a relatively simple proof.

2. Preliminaries. The basic reference to uniform spaces is [12]. For a completely regular space X, $\mathcal{F}(X)$ denotes the fine uniformity of X, consisting of all the normal covers of X, and βX denotes the Čech-Stone compactification of X. The basic properties of the Čech-Stone compactification can be found e.g. in [20]. We repeat here the definition of (slowed-down) Ginsburg-Isbell derivatives (see [9]) of uniformities. Let $\mathscr{C}(X) \subseteq P(P(X))$ denote the collection of all covers of X. Then $\mathscr{C}(X)$ is ordered by the relation \prec of refinement. Let μ , ν be filters in $\mathscr{C}(X)$ with respect to \prec . The symbol ν/μ

denotes the collection of the elements of $\mathscr{C}(X)$ refined by a cover of the form $\{U_i \cap V_j^i\}$, where $\{U_i\} \in \mu$ and for each i, $\{V_j^i\} \in \nu$. In general the filter ν/μ is not a uniformity, even when μ and ν are uniformities of X. However, let μ be a uniformity, and define, by transfinite induction, a family of filters in $\mathscr{C}(X)$ by setting $\mu^{(0)} = \mu$, $\mu^{(x+1)} = \mu^{(\alpha)}/\mu$ for a successor ordinal and let $\mu^{(\beta)} = \bigcup \{\mu^{(\alpha)}: \alpha < \beta\}$ in case β is a limit ordinal. There (obviously) is α such that $\mu^{(\alpha+1)} = \mu^{(\alpha)}$, by [3] this $\mu^{(\alpha)}$ is a uniformity, called the locally fine coreflection of μ and denoted by μ . For technical reasons, we also introduce the (-1)th derivative $\mu^{(-1)}$. An element $\mathscr{M} \in \mathscr{C}(X)$ is called *trivial* if $X \in \mathscr{M}$. Then we define $\mu^{(-1)}$ as the collection of all the trivial covers of X. Clearly $\mu^{(0)} = \mu^{(-1)}/\mu$.

If μ is any set of elements of $\mathscr{C}(X)$, and $A \subset X$, then $\mu \upharpoonright A$ denotes the restriction $\{\mathscr{U} \upharpoonright A \colon \mathscr{U} \in \mu\}$ to A, where $\mathscr{U} \upharpoonright A = \{U \cap A \colon U \in \mathscr{U}\}$. If μ is a uniformity of X, then $\mu \upharpoonright A$ is the relative (induced) subspace uniformity of A. We recall that the operations of taking Ginsburg–Isbell derivatives and forming restrictions to subsets commute; i.e., for all $A \subset X$ and all α we have $\mu^{(\alpha)} \upharpoonright A = (\mu \upharpoonright A)^{(\alpha)}$.

3. The result. In this section we prove the result promised in Introduction, extending the analogous theorem for paracompact p-spaces obtained in [5]. However, we notice that the result of [5] is used here to handle a subcase.

Theorem 3.1. Let μX be a supercomplete uniform space. Then $\mu X \times \nu Y$ is supercomplete for every supercomplete space νY if and only if X is C-scattered.

Proof. Sufficiency has been proved in [5]. For necessity, suppose that X is not C-scattered. It will be enough to find a paracompact space Y such that $\lambda(\mathscr{F}(X)\times\mathscr{F}(Y))\neq\mathscr{F}(X\times Y)$, because $\lambda(\mu\times\nu)=\lambda(\lambda\mu\times\lambda\nu)$. As X is not C-scattered, it contains a non-empty closed subset F such that F is nowhere locally compact. Furthermore, we can assume that F is nowhere locally Čech-complete. Indeed, suppose that $p\in F$ has a Čech-complete neighbourhood U in F. A closed neighbourhood V of P contained in P is Čech-complete and paracompact, but not P-scattered. Hence, by Theorem 4.1 in [5] there is a separable metrizable space P such that P is not supercomplete. Now P is P-embedded in P, which implies that P is not hence that P is not supercomplete.

As F is nowhere locally compact, $\beta F - F$ is a dense subset of βF . By a result of Isbell [3], there is a paracompact space Y and a open continuous onto map $\varphi\colon Y\to\beta F-F$. Denote by $\bar{\varphi}$ the Stone extension of φ to a continuous map $\beta Y\to\beta F$. Let Δ denote the inverse of the graph of $\bar{\varphi}$ in $\beta Y\times\beta F$, i.e., $\Delta=\{(p,q)\in\beta F\times\beta Y: \bar{\varphi}(q)=p\}$. Then Δ is a closed subspace of $\beta F\times\beta Y$ and $(F\times Y)\cap\Delta=\emptyset$. By regularity, there is for each $(x,y)\in F\times Y$ an open neighbourhood G_{xy} in $\beta F\times\beta Y$ such that

$$(\operatorname{cl}_{\beta F \times \beta Y}(G_{xy})) \cap \Delta = \emptyset.$$

Let $\mathscr{G} = \{G_{xy} \cap (F \times Y): x \in F, y \in Y\}$. We claim that the open cover \mathscr{G} of $F \times Y$ is not in $\lambda(\mathscr{F}(F) \times \mathscr{F}(Y))$. On the other hand, we obviously can (and will) assume that $F \times Y$ is paracompact. Thus, \mathscr{G} is an element of $\mathscr{F}(F \times Y)$, and this will show that $\mathscr{F}F \times \mathscr{F}Y$, and hence $\mathscr{F}X \times \mathscr{F}Y$, is not supercomplete.

We shall proceed by the method of contradiction and assume that $\mathscr{G} \in \lambda(\mathscr{F}(F) \times \mathscr{F}(Y))$. Then $\mathscr{G} \in [\mathscr{F}(F) \times \mathscr{F}(Y)]^{(\alpha_0)}$ for some α_0 . It is clear that \mathscr{G} is

not a trivial cover of $F\times Y$ (because otherwise the closure of some member equals $\beta F\times \beta Y$); consequently $\alpha_0\geqslant 0$. Thus, there is a uniform cover $\mathscr U$ of $\mathscr FF\times \mathscr FY$ and $\alpha_1<\alpha_0$ such that

$$\mathscr{G} \upharpoonright U \in [\mathscr{F}(F) \times \mathscr{F}(Y)]^{(\alpha_1)} \upharpoonright U$$

for all $U \in \mathcal{U}$. The cover \mathcal{U} being uniform we can find (uniform) open covers \mathcal{U}_0 and \mathcal{V}_0 of $\mathscr{F}F$ and $\mathscr{F}Y$, respectively, such that $\mathscr{U}_0 \times \mathscr{V}_0 \prec \mathscr{U}$. The open cover \mathscr{U}_0 of F can be extended over a Čech-complete subset G of βF . (It was shown during the proof of 3.4 in Γ 51 that a uniform cover \mathscr{W} of a Tychonoff space Z can be extended over a Čech-complete paracompact subspace of βZ . For completeness, we succinctly mention here how the extension can be obtained. Since W is uniform, there is a compatible nseudometric σ such that \mathcal{W} is uniform in σZ , and \mathcal{W} can be extended (uniformly) over the completion $\pi\sigma Z$, which is a Čech-complete and paracompact subspace of $\beta\pi\sigma Z$. Extend \mathcal{W} over $f^{-1}\lceil \pi \sigma Z \rceil$, where f is the Stone extension of the embedding $Z \to \pi \sigma Z$.) Now $G_0 - F$ is dense in βF . In fact, let G be any Čech-complete subset of βF containing F and let $p \in F$. Then for any (in βF) open neighbourhood V of p, the set $G \cap V$ is an open subset of G and hence Čech-complete. If $G \cap V \subset F$, then it would be a Čech-complete neighbourhood of p in F, which is impossible by our assumption on F. Thus, $G \cap V \cap (\beta F - F) \neq \emptyset$. This implies $p \in cl_{nF}(G - F)$, and so G - F is dense in βF , and hence also in $\beta F - F$. Finally, it follows that for any such a Čech-complete subset G, and for any nonempty open subset V of βF or of $\beta F - F$, the set $V \cap (G - F)$ is a dense subset of V.

Now let $\widetilde{\mathscr{U}}_0$ be an open cover of G_0 , extending \mathscr{U}_0 , and let $U_0 \in \mathscr{U}_0$ be arbitrary. We write $\widetilde{\mathscr{U}}_0 = \{\widetilde{U} \colon U \in \mathscr{U}_0\}$ where $\widetilde{U} \cap F = U$. Since $\varphi[Y] = \beta F - F$, and since by the above $\widetilde{U}_0 \cap (G - F) \neq \emptyset$, there is $V_0 \in \mathscr{V}_0$ such that $\varphi[V_0] \cap \widetilde{U}_0 \neq \emptyset$. It follows that

$$(\tilde{U}_0 \times V_0) \cap \Delta \neq \emptyset$$
.

Since U_0 is open, we have $\widetilde{U}_0 \subset \operatorname{cl}_{\beta F} U_0$. Thus, $\widetilde{U}_0 \times V_0 \subset \operatorname{cl}_{\beta F \times \beta Y} (U_0 \times V_0)$, which implies that $\mathscr{G} \upharpoonright (U_0 \times V_0)$ is not a trivial cover of $U_0 \times V_0$, since the closures (in $\beta F \times \beta Y$) of the elements of \mathscr{G} do not meet Δ . Therefore, we have $\alpha_1 \geq 0$. Thus, there exists a uniform cover of $U_0 \times V_0$, with respect to the induced uniformity

$$(\mathscr{F}(F)\times\mathscr{F}(Y))\upharpoonright (U_0\times V_0)=(\mathscr{F}(F)\upharpoonright U_0)\times (\mathscr{F}(Y)\upharpoonright V_0),$$

. call it \mathcal{U} , and $\alpha_2 < \alpha_1$ such that

$$\mathscr{G} \upharpoonright U \in \left[(\mathscr{F}(F) \upharpoonright U_0) \times (\mathscr{F}(Y) \upharpoonright V_0) \right]^{(\alpha_2)} \upharpoonright U$$

for all $U \in \mathcal{U}$. We can find uniform covers \mathcal{U}_1 and \mathcal{V}_1 of U_0 and V_0 , respectively, such that $\mathcal{U}_1 \times \mathcal{V}_1^r \prec \mathcal{U}$. Choose open covers \mathcal{U}_1 and \mathcal{V}_1 of F and Y, respectively, such that $\mathcal{U}_1 \upharpoonright U_0 \prec \mathcal{U}_1^r$ and $\mathcal{V}_1 \upharpoonright V_0 \prec \mathcal{V}_1^r$. As above, extend \mathcal{U}_1 to an open cover $\widetilde{\mathcal{U}}_1$ of a Čech-complete subspace $G_1 \subset G_0$ of βF . The sets $U_0 \cap U$, where $U \in \mathcal{U}_1$, lie densely in \widetilde{U}_0 , and a fortiori so do the sets $\widetilde{U}_0 \cap \widetilde{U}$, $\widetilde{U} \in \widetilde{\mathcal{U}}_1$. For each $\widetilde{U} \in \widetilde{\mathcal{U}}_1$, $\widetilde{U}_0 \cap \widetilde{U} \cap (G_1 - F)$ is a dense subset of $\widetilde{U}_0 \cap \widetilde{U}$, so the sets $\widetilde{U}_0 \cap \widetilde{U} \cap (G_1 - F)$ lie densely in \widetilde{U}_0 . Therefore,

 $\varphi[V_0] \cap \widetilde{U}_0 \neq \emptyset$ implies that $\varphi[V_0] \cap (\widetilde{U}_0 \cap \widetilde{U}_1 \cap (G_1 - F)) \neq \emptyset$ for some $\widetilde{U}_1 \in \widetilde{\mathcal{U}}_1$. Choose $V_1 \in \mathcal{V}_1$, such that $\varphi[V_0 \cap V_1] \cap (\widetilde{U}_0 \cap \widetilde{U}_1) \neq \emptyset$. As above, we get

$$[(\tilde{U}_0 \cap \tilde{U}_1) \times (V_0 \cap V_1)] \cap \Delta \neq \emptyset,$$

and we see that $\mathscr{G} \upharpoonright [(\tilde{U}_0 \cap \tilde{U}_1) \times (V_0 \cap V_1)]$ is not a trivial cover, which implies that $\alpha_2 \ge 0$. Thus, we have found a sequence $0 \le \alpha_2 < \alpha_1 < \alpha_0$ of ordinal numbers.

For the inductive step, suppose that we have found sequences $(\alpha_i: i \in [n+1])$, $(\mathcal{U}_i \times \mathcal{V}_i: i \in [n])$, $(\widetilde{\mathcal{U}}_i: i \in [n])$, $(\widetilde{U}_i: i \in [n])$, $(V_i: i \in [n])$, and $(G_i: i \in [n])$ (where [n] denotes the set $\{0, \ldots, n\}$) such that

- (1) $\mathcal{U}_i \times \mathcal{V}_i$ is an open uniform cover of $\mathscr{F}F \times \mathscr{F}Y$ for all $i \in [n]$;
- (2) $\widetilde{\mathscr{U}}_t$ is an extension of \mathscr{U}_t to an open cover of the Čech-complete subset G_t of βF for all $i \in [n]$;
 - (3) $\tilde{U}_i \in \tilde{\mathcal{U}}_i$, $U_i = \tilde{U}_i \cap F$ and $V_i \in \mathcal{V}_i$ for all $i \in [n]$;
 - (4) $F \subset G_n \subset ... \subset G_0 \subset \beta F$;
 - (5) for each $i \in [n]$, $\mathcal{G} \upharpoonright (U_i \times V_i)$ is not a trivial cover;
 - (6) for all $i \in [n]$, $\mathscr{G} \upharpoonright (U_i \times V_i) \in [\mathscr{F}(F) \times \mathscr{F}(Y)]^{(\alpha_{i+1})} \upharpoonright (U_i \times V_i)$;
 - (7) $\alpha_{i+1} < \alpha_i$ for all $i \in [n]$;
 - (8) $\varphi[\bigcap_{i=0}^n V_i] \cap (\bigcap_{i=0}^n \widetilde{U}_i) \neq \emptyset$

Exactly as in the case n=1, we find that $\alpha_{n+1} \ge 0$, and we find open covers \mathscr{U}_{n+1} , \mathscr{V}_{n+1} , a Čech-complete extension $G_{n+1} \subset G_n$ of F, an open extension $\widetilde{\mathscr{U}}_{n+1}$ of \mathscr{U}_{n+1} over G_{n+1} , $\alpha_{n+1} < \alpha_{n+1}$ and elements $\widetilde{U}_{n+1} \in \widetilde{\mathscr{U}}_{n+1}$, $V_{n+1} \in \mathscr{V}_{n+1}$ satisfying the above conditions (1)–(8) with n replaced by n+1. By complete induction we obtain an infinite decreasing sequence

$$\ldots < \alpha_{n+2} < \alpha_{n+1} < \alpha_n < \ldots < \alpha_0$$

of ordinal numbers, which is a contradiction. Thus, we conclude that $\mathscr G$ is not a member of $\lambda(\mathscr F(F)\times\mathscr F(Y))$, as required, and hence that $\mathscr FF\times\mathscr FY$ is not supercomplete. This finishes the proof.

Remark. In the above proof we found for a given non-C-scattered space X a space Y such that $\mathscr{F}X\times\mathscr{F}Y$ is not supercomplete. However, we did not check whether $X\times Y$ is paracompact or not. In case the paracompactness of $X\times Y$ is needed, Y can be replaced by a weakly σ -discrete stratifiable space provided by Junnila's construction [14], the product of which with X can be shown to be paracompact.

References

- [1] A. Arkhangel'skii, On a class of spaces containing all metric and all locally bicompact spaces, Soviet Math. Dokl. 4 (1963), 1051-1055.
- [2] I. M. Dektjarev, A closed graph theorem for ultracomplete spaces, Dokl. Akad. Nauk SSSR. 154 (1964), 771-773 (in Russian).
- [3] S. Ginsburg and J. R. Isbell, Some operators on uniform spaces, Trans. Amer. Math. Soc. 93 (1959), 145-168.
- [4] A. Hohti, On supercomplete uniform spaces, Proc. Amer. Math. Soc. 87 (3) (1983), 557-560.

- [5] On supercomplete uniform spaces II, Czechoslovak Math. J. 37 (1987), 376-385.
- [6] On supercomplete uniform spaces III, Proc. Amer. Math. Soc. 97 (1985), 339-342.
- [7] A. Hohti and J. Pelant, On supercomplete uniform spaces IV, this volume, 119-124.
- [8] A. Hohti, On relative ω-cardinality and locally fine coreflections of products, to appear in Topology Proc.
- [9] On Ginsburg-Isbell derivatives and ranks of metric spaces, Pacific J. Math. 111 (1) (1984), 39-48.
- [10] Another alternative proof of Effros' theorem, to appear in Topology Proc.
- 11] J. Isbell, Supercomplete spaces, Pacific J. Math. 12 (1962), 287-290.
- [12] Uniform Spaces, Math. Surveys 12, Amer. Math. Soc., Providence, Rhode Island, 1964.
- [13] A note on complete closure algebras, Math. Systems Theory 3 (4) (1969), 310-312.
- [14] H. J. K. Junnila, Stratifiable pre-images of topological spaces, Coll. Math. Soc. János Bolyai 23 (1980), 689-703.
- [15] J. L. Kelley, Hypercomplete linear topological spaces, Michigan J. Math. 5 (1958), 235-246.
- [16] K. Morita, On the product of paracompact spaces, Proc. Japan Acad. 39 (1963), 559-563.
- [17] J. Pelant, Locally fine uniformities and normal covers, Czechoslovak Math. J. 37 (112), 1987, 181-187.
- [18] H. Tamano, On compactifications, J. Math. Kyoto Univ. 1 (1962), 162-193.
- [19] R. Telgársky, C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74.
- [20] R. C. Walker, The Stone-Čech Compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, Berlin-Heidelberg-New York 1974.

UNIVERSITY OF HELSINKI DEPARTMENT OF MATHEMATICS Hallituskatu 15 SF-00100 Helsinki Finland

Received 7 June 1989