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§ 3. Families satisfying weak conditions. We now examine the question for the cases
when the parameter 7 in the condition C [, 4] is greater than three. The proofs are left
to the reader.

TueoreM 3.1. () [2% % 6, 4, 1]-»R if 3<0<x;

(i) [2% % 0, 4, 1]-P if 2< 0<% ®

Theorem 3.1 shows that under these weaker conditions all questions are solved in
the negative. This appears to correspond to the case C(3, 4) in [2].
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More on locally atomic models
by

Ludomir Newelski (Wroctaw)

Abstract.
TuEOREM. Assume Tis a stable theory with »(T) < 8. If [T} < cov K +b+min(cov L, D), then
any A< C can be extended to a model of T locally atomic over A. ’

This improves Theorem 2.2 from [N2], in which we have a stronger assumption that
%(T) =N, (ie. T is superstable). The coefficients bounding |T| above are defined in terms of
measure and category on the real line, and can vary between ¥, and 2™

§ 1. Introduction. Throughout, we use the same standard terminology as in [N2]. In
particular, Tis a fixed first-order theory in language L, € is the monster model of T, ie.
a very saturated model of T of high cardinality, such that all models of T under
consideration are elementary submodels of €. For a formula feL(G), [A] is the class of
types containing 8. A is a set of parameters from €. L(A) is the set of formulas with
parameters from 4, S(4) is the set of complete 1-types over A. pe S(4) is locally isolated
if for every @(x, y)& L there is a y € p such that W |- plo, ie. for every de 4, Y(x) implies
either ¢(x, @) or T1¢(x, ). A model M of T containing A is locally atomic over 4 if for
each e M, tp(a/A) is locally isolated. The notion of local isolation, invented by Shelah,
is fundamental in stability theory. It is one of the main tools to construct models of
stable theories in the non-totally transcendental case.

To understand the paper, no deep understanding of stability theory is necessary. In
particular, the reader does not have to know what % (T) is, provided he is willing to
accept Lemma 1, (2)—(3) without proof.

Now we explain what the real line coefficients b, b, covK and cov L are.

b=min{|4]: 4 € “w&Vfe“w Iged 37 nf(n < gn},
5 = min{|4]: 4 € “w&Vfew IgeA Vnfn) < gn}.

Thus b is the minimal power of an unbounded family of reals, and D is the minimal
power of a dominating family of reals. If I < 2(X) then we define

covl = min{|A}: A =I1&|J4 =X}

The author would like to thank Janusz Pawlikowski for many valuable comments which
helped to improve presentation.
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Now, K, L denote the family of meager subsets of the real line and subsets of the
real line of Lebesgue measure 0, respectively.

b, b, cov K, cov L and other 6 coefficients regarding K and Lare arranged in the
so-called Cichon’s diagram, which is an extended version of the Kunen-Miller chart (cf.
[F], [M2]). Encapsulated in this diagram are the known inequalities between the
coefficients of the real line. One finds out from Cichon’s diagram that cov K, b, and
min {covL, b} are all <b < 2% and >N, and can vary quite independently between
N, and 2%, which means that for every assignment of ¥, and, say, ¥, to the symbols
covK, b, and min {cov L, b}, there is a generic model of ZFC realizing this assignment.

From the point of view of stability hierarchy, the theorem cannot be improved
anymore. In [N2] we have found an example of a stable T of power ¥, and with
x(T) = N, such that for some 4 there is no M = A locally atomic over 4. Also, we have
shown in [N2] an example of a superstable T (i.e. %(T) = X)) of power %, such that for
some A there is no M 2 A4 locally atomic over A, %, is the minimal power of a partition
of the real line into compact sets. Now, D <, < 2% and there are models of
ZFC+ 1CH in which %, = N, holds. This shows that in ZFC only, we cannot improve
the coefficient cov K+ b+min {cov L, b} bounding |T] in the theorem to, say, 2%, The
theorem shows that some basic statements of stability theory are independent of ZFC
and that ZFC does not determine a statement of stability theory regarding cardinals
between N, and 2%

The theorem was proved for countable stable T by Lachlan [La]. Our proof is
a technical complication of the proof of Theorem 2.2 from [N2]. In the proof,
depending on which of |T| < covK, |T| <b, |T| <min{covL, b} holds, we use the
compactness theorem in three different ways. As covK, b, and min{covL, b} can vary
independently between N, and 2%, none of these ways is stronger than the others.

§ 2. Proof of the theorem. As in [N2], to prove the theorem it suffices to include
each consistent formula 8(x)eL(4) into a locally isolated type peS(4). So let us fix
A = € and a consistent formula 6(x)e L(A). First let us clarify what »(T) < &, means.

Let ¢ (x)e L(4) and = ¥, or N,. We say that a sequence of formulas @,(x, 7,),
a<p, p-splits below ¢ if for any finite subsequence Pag0)s ++ s Pafn—1)
a(0) < ... <a(n—1), and any v < p, there are parameters i, € A, c€">v, called splitting
parameters, such that for each oe"”v, the formulas Pala))(X, Mgn¢n) €<, are

(a) pairwise contradictory,

(b) consistent with @ (x)& A @up(x, Mgy 1))

i<lel !

LemMa 1. Let ¢(x)e L(A) be a consistent formula and ¢,(x, Fo) & < Wy, a sequence of
Jormulas. Then (1)—(2)~(3), where (1), (2), (3) are the conditions given below.

(D) {oux, 7), « <} N,-splits below o,

() {@.(x, 7,), &« < w,} Ny-splits below ¢,

(3) #(T) >N,

Proof. (1)—(2) is trivial, (2)—(3) follows easily by [Sh, LII].

The following characterization of local isolation, which is of some interest in its

cm
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own right, is the only place in the proof of the theorem where we really use some basic
stability theory. )

. LeMMA 2. Assume T is stable. Then pe S(A) is locally isolated iff for every @(x, y)eL
there is Y(x)ep such that ¢ does not ¥ -split below V.

Proof. This is an immediate conclusion from [N2, Lemma 2.5] and the definition
of locally isolated type.

Let (%) [respectively (*x)] stand for:

there is a consistent formula &' (x) 0(x), 8 (x)e L(4), such that for any consistent
formulas ,(x)e L(4), n < w, with ¢,(x) 8'(x), there is a formula x(x, )€ L which
N, -splits below infinitely many [respectively all] of ¢,’s.

Lemma 3. (1) If (11 (+) and | T] < ) or (71(**) and |T| < cov K) then there are formulas
6,(x)e L(A) for n < w such that {8(x), 8,(x): n < w} is consistent and for each y(x, y)e L
there is n < w such that y does not ¥,-split below 6,

(2) If6,, n < w, satisfy the conclusion of (1) then every type pe S(A)~ [0 () [8,]

is locally isolated. In particular, there is a locally isolated peS(A) containing 0.

Proof. (1) We find a tree of consistent formulas {¢,(x): n€“>w} < L(4) below
0(x) such that )

(a) ¢,()@,(x) for v<ne“ o and

(b) for each ne®” w and yeL, either y does not X;-split below @, ¢y for all but
finitely many n (when 71(x) holds) or y does not X,-split below ¢, ¢, for some n (when
~1(x«) holds).

Let N(y) = {fe“w: x W,-splits below ¢y, for every n < w}. We prove that

(C) “ # stLN(X)'

When 1(x%) holds then by (b) each N(y) is nowhere dense, hence if |T| < covK
then (c) is clear by the definition of cov K. When ~1(*) holds then by (b) for each xeL
there is f,&®w such that for every fe N(3), f<f, Now if |T| < then there is g €“w
such that for each y, 71g <f,. hence g¢N(x) and (c) follows.

Let fe“w—| ) yer N(%). Clearly the formulas 6, = ¢, n < o, satisfy our demands.
(2) follows by Lemma 2.

The following lemma concludes the proof of the theorem. In [N2] we used
superstability here.

LEMMA 4. If %(T) < N, then "\(++). If additionally |T| < covL+b, then 71(x).

Proof. Suppose not. We are heading towards a contradiction with »(T) < N, via
Lemma 1.

Case 1. |T| <covL and (x).

By induction we find a sequence ¥,, o < @, which R,-splits below ¢'. To begin
with, by (+) there is ¥, which R;-splits below §'. -

Suppose f < w,, and we have a sequence ¥, o < f, which X,-splits below 0. Let

B= |J B,, where {B,: n < w} is a non-decreasing sequence of non-empty subsets of
n<w .
B such that |B,| = b(n) < n for n > 0. Let a, (i), i < b(n), be the increasing enumeration of
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B, Let i1, = n® and let 1, (0), o €*™> p,, be splitting parameters for ., (0), ..., Yo um-1).
Set §,=""y, and for ceS, let &} be
A Yauo(X: Fy(olli+1)) &0 (x).
i<b(m)
Finally, for yeL let
A= {ceS,: x does not W -split below ¢}, A, = [J (I]S,x [T 4%.
. m<m n€m - e

Suppose there is no suitable ¥, such that {i,, & < > No-splits below . Consider the
statement

h @m < w)(Vn>m)(1Fng ... Fnppy~1 Moy - ovs M- 19 €S, — AL).

If for some y €L, for each k < N, (1) is false, then we can prove that if , = x then {if,,
a < By No-splits below @', a contradiction. The proof consists first in choosing suitable
subtrees of trees of parameters {fi,(¢): c€®™> )}, n <, and then applying the
definition of X,-splitting.

Hence for each yeL there is k < N, such that () is true. (1) implies that there is
m < o such that for n>m, [4% = (n* — k)™, Let p be the product measure on [],S,
arising from measures which assing weight n™3*® to each point in S, Then

3_ biny
nd,) = 1im<1'[ <" = ") ) =1

As covL> |T|, there is {0, n < W)€ ﬂxeL A,. Consider the formulas ¢, = &) , n < w.
For any y, for all but finitely many n, o,€ 4}, hence y N,-splits below ¢,. This
contradicts ().

Case 2. |T{ <b and (%).

We proceed as in case 1 but replace N,-splitting by ¥, -splitting, and therefore
ty = 1 by pt, = N, In () we have now k = N, If for some ye L and k = Ny, (1) is false,
then again we can prove that if W, =y then (i, o< ) N -splits below @,
a contradiction. As in case 1, the proof consists first in choosing suitable subtrees of
trees of parameters {i,(c): ¢€"> ), n < w, and then applying the definition of
N, -splitting.

Hence for each yeL, (1) is true for k = R,. It follows that there is n, < @ and
a function g,: (n<o{n} x("™>0))~w such that if n> n, and ceh® :) satisfies
o(i) = g,(n, oli) for each i < b(n), then seA}. Now the idea of the proof consists in
choosing in virtue of |T| < b a single function eventually dominating all the ¢g,’s. More”
precisely, we proceed as follows. We define by induction functions

g5 (U {m x (Tl nt®>g) e

n<w

for j <|Bl, and sequences o}, e/"'w for n, t <w and j < b(n)—1 as follows.

(1) Let a,?y,(O);-: t. For each n, y, g,(n, 07,) is the function mapping ¢ to g,(n, any).
As [T <D, there is g, such that for each n'< w, yeL, for all ¢ large enough we have
9o(n, 00.) 2 g,(n, ab.,).
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(2) Suppose we have defined gy, ..., g;-1 and i3 for n, t < w and j—1 < b(n)—1.
If j < b(m)—1 then we put ol = o7 gj-1(n, oi71)>. By |T| < b there is g; such that
for evety yeL, n<a, if j<b(m—1 then for all but finitely many t< o,
gsln, ol = g, Th-
Having found g;s for every yelL define f, e“w by
J,(n) = min {e: (Vu > 1)(V] < b(n)=1)(g;(n, v) > g, (n, R}

Choose f&“w such that [or every xelL, for all but finitely many n, f(n) > f, (n). For
n < w define o, as oi%m'ew. By the above construction it follows that for every
ye L, for all n large enough we have a,€ 43, So if we put ¢, = @4, then for each y € L,
y N,-splits below ¢, for all but finitely many n, thus contradicting ().

Case 3. (+%) We proceed as in case 2, Le. find a sequence ¥, o < w,, which X ,-splits
below (. Suppose we have found i, « < f, which X,-splits below @. Consider the
countable set of formulas {@% n <w, oe"™w}. By (+x) there is yeL such that
5 N-splits below ®} for each n, a. So for Yy =17 Y ¢ <) ¥, -splits below ¢’

The model-theoretical keypoint of the proof is Lemma 2, giving a translation of
local isolation into a chain condition. Suppose that in some model of ZFC we want to
find a stable theory Twith %(T) < ¥, and a set of parameters 4 such that there is no
model M of T containing A and locally atomic over A. By Lemma 3, for some
f(x)e L{4) we have to ensure that no sequence 0,, n < o, satisfies the conclusion of
Lemma 3 (1), and simultaneously we have to falsify conditions (1) and (2) from Lemma 1.
Lemma 4 shows that sometimes there may be that many sequences 6,, n < , that this
task is impossible to render.

COROLLARY 5. I/ T'is stable, x(T) < ¥y, |T| < covK+b+min{covL, b}, Q(x)eL,
and M '; are models of T with Q(M) = Q(N), then there is N' ; N with Q(N") = Q(N).

Proof See [Lal, [N2].

The above corollary was the reason why the author became interested in locally
atomic models. This corollary gives a nice proof of the two-cardinal theorem for stable
theories (of small power). Primarily it was proved by Lachlan [La] for countable stable
T Several trials to improve Lachlan’s proof have been made in [B], [Ls] and [H],
V. Harnik has proved Corollary 5 without assumptions on |T| or x(T), but instead
adding additional assumption that M (or N) is |T|-compact, and using Fiyp-isolated
types instead of F&, (= locally)-isolated types. For the definition of F} see [Sh]. The
author has obtaincd some similar consistency results on Fx-atomic models for
¥, < % < |T|, which require however some additional forcing technique.

QuisTioN. Can we replace cov K +b+min{covL, b} in the theorem just by b?
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On the additivity of the fixed point property
for 1-dimensional continna

by

Roman M anka (Warszawa)

Abstract. Two rational arcwise connected continua X, and Y, with the fixed point property
are constructed such that X, n Y, is contractible and X, U Y, does not have the fixed point
property. The problem of the additivity of the fixed point property for 1-dimensional continua is
summarized in the remark at the end of the paper.

1. Introduction. It is known that if X and Y are I-dimensional continua with the
fixed point property and X n Y is an AR, then X U Y has the fixed point property ([6],
p. 1292). The aim of the present paper is to show that, roughly speaking, nothing more
can be proved on the additivity of the fixed point property, for non-planar 1-dimen-
sional continua, answering simultancously a problem raised in [5] (p. 237).

To formulate the main result of the paper precisely, recall that a continuum X is
said to be rational if X has a base of neighbourhoods with countable boundaries, and
arcwise connected il any two points of X can be joined by an arc in X. Any
homeomorphic image of a cone over a convergent sequence of points together with its
limit is called a harmonic brush; such a brush is contractible and has the fixed point
property (see, for instance, [1], p. 20). The main result will be the following

THEOREM. There exist two rational arcwise connected continua X, and Y, with the
fixed point property such that X, 0 Yy is a straightline harmonic brush and X, U Y, does
not have the fixed point property.

The continua X, and Y, will be uniquely arcwise connected, i.e. for any two points
of X, or Y, there will be exactly one arc between them, so that the results from [5] can
be applied. All other topological notions used, but not defined in the present paper, can

‘be found in [4].

The continua X, and Y, will be constructed almost wholly on the plane E? (except
an arc of ¥, lying in E* outside E*). A basic role in their description will be played by
certain geometrical functions on E?, which we shall define now.

Namely, for the points
(1.1) a=(1,1), ¢=(0, 2 and dy-1=(0, 24277,
we take into account the following functions, defined for all peE: k=-1,0,1,2,...
and n=1,2,... '

n=1,2,...,
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