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Absolutely p-summing operators
and Banach spaces
containing all I, uniformly complemented

by
ANDREAS DEFANT (Oldenburg)

Abstract. Tt is proved that for p=1, 2 and oo a Banach space G contains uniformly
complemented all /s if (and only if} each operator T: E~F such thatid;®T: G®,E—~G®, Fis
continuous splits into a product T= RS of an absolutely p-summing operator § and an cperator
R with an absolutely p'-summing dual.

0. Introduction. In [4] Jarchow conjectured that for a fixed real number
1 < p < o a Banach space G contains alf ¥, uniformly complemented if (and
only if) it satisfies the following condition (): Every operator T'e #(E, F} such
that

id,®T: G®,E-G®,F

is continuous can be written as a product RS of two appropriate operators
R and S where R’ is absolutely p'-summing and § is absolutely p-summing. We
give an affirmative answer for p =1, 2 and . For arbitrary 1 < p< 0 it is
proved as a by-product that -G satisfies (*) if and only if there is a constant
4 = 1 such that for every natural number » there are finitely many operators
L, I,e ¥, G)and Py, ..., P,eZ(G, I) (where m depends on n} with

m m .
idp =Y PuJi, X IPAILE< A
k=1 k=1

Standard notions and notations from Banach space theory are used, as
presented in [5]. For the general theory of Banach operator ideals we refer the
reader to [8].

1. S,-spaces and T;épaces. As usual & stands for the space R" equipped
with the /,-norm. A real Banach space G is said to be an §,-space if it contains
all Y uniformly complemented, i.e., there is a sequence (G,) of n-dimensional
subspaces of G and projections P,e #(G, G} onto G, such that

supd(G,, I})) <o, sup Pl <o

(here as usual d(-, ) denotes the Banach-Mazur distar'lce).. Clearly, G is an
Sy-space if and only if there is a 4 > 1 such that for every »n there are operators
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1,e#(, G) and P,e Z(G, I}) satisfying
idg =PI, |PlIL]<2

As an example we mention that every infinite-dimensional % -space (in the
sense of Lindenstrauss and Pelczyfiski) is an § -space. Moreover, it is well
known that a Banach space is an S -space iff its dual is an §,-space, and every
S_-space is either §;, S, or S,. Pisier [9] (answering an oid question of
Lindenstrauss) constructed a class of infinite-dimensional Banach spaces which
are not S, for any 1< p < o0.

We start with a useful characterization of S~ and §_-spaces.

1.1. PROPOSITION. A Banach space G is an S-space (resp. S,,-space) if and
only if its L-sum

L(G):= (e GM G2 = ( T Il ) < 0]

is an S,-space (resp. S -space).

Proof. Of course, if the complemented subspace G of /,(G) is an S,-space
(resp. S -space) then this also holds for [,(G) itself. Conversely, assume that
,(G) is an S_-space. A Banach space is an §_-space iff it contains all
1%, uniformly, and hence by (a special case of) the Maurey-Pisier theorem (see
[6], p. 85 or [7], p. 85) a Banach space is §_ iff it has no finite cotype. But then,
since by [6], p. 55, the I,-sum 1,(G) has no finite cotype if and only if G has no
finite cotype, G is an §,,-space. Finally, if /,(G) is assumed to be §, then the
assertion follows by duality. w

We shall also need a characterization of $,-spaces which appears as
a consequence of the following lemma. Let p,., be the normalized rotation
invariant Borel measure on the sphere §,,,:= {xeR"*?||x|, = 1}.

12. LemMa, For each neN let r, be a seminorm on R"™2 such that
ro(x) < ||x), for all xeR"*2. Moreover, assume that

inf | r

i Sn+1
Then there are a constant ¢ > 0 and nye N such that for all n
a subspace E, of R"*? satisfying

dimE,

2 (X) 41 (dX) =200 > 0.
= n, there exists

Zen and  clx|, < ryx) < ||xl,
for all xeE,.
The proof is modeled on the proof of Milman’s important theorem [7], 4.2:

Fix ne N and let M, denote the median of r, restricted to 8,41 1€, the unique
real number M, such that

ﬂ‘n+1{M >J?:: lu'n'l-l[Mnérn] 2%
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Put 0:=1% and &:= $M,. By [7], Theorem 2.4, there is a subspace E, of R"*?
with

&*n

2log12

and a O-net N in §, ., nE, such that for all xe N (denote by ¢ the geodesic
distance on S,.,)

iy (%)= M| < sup{lr(x)—r, () e(x, ») < e} Ssup{r,(x—yllIx—yl. <&} <&

Now [7], Lemma 4.1, is applied showing that M, < r,(x) for all xe§, ;N E,
(we remark that Lemma 4.1 of [7] is only formulated for norms r,, but its proof
just uses the fact that r, is a continuous, convex and homogeneous function). So
it remains to prove that for large n the median M, is larger than or equal to
some uniform constant d > 0.

For neN put 4,:=[r,=M,] and for t = 0 let (4,), be the set of all
xeS8, ., such that g(x, y) < t for some ye A,. Then for every xe§, ., and ye 4,

rn(x—y) P lrn(x)_'Mniz

dimE, =

= ¢ M?n

elx, y) 2 ix—yll. =
and hence for all t 2 0
{x €8, 41| Ir,{x)~M,] >t} = complement (4,),.

Since by Levy's lemma (see [7], Corollary 2.3)
'Nn*f-l((An)I) Z ]_\J Tc/ze“:znlz
we obtain

< /‘n/ze —1Zn2

Hy + ll:lrnquJ > t]

and therefore

| j 1" x)ﬂu-i-l(dx I j |i" (x

Sni L Sn+1
< /2 T Py T,
= )} 2\/T;

By assumptions this implics for all n

~M;| fn 1 (dx)

(L
s | r (%) g @dx) < M"+5_ﬁ’

Sai
so that for all n > n?/u’
d:i=af2<M,,
which leads to the desired conclusion. =

This lemma implies a useful criterion for S,-spaces.
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1.3. PROPOSITION. A Banach space G is an S,-space if and only if there is
a constant o > O such that for every n there are operators V,e L(I5*%, G) and
U, Z(G, 5% satisfying
§ ULV 0Ms a4 1 (dx) 2 U L] > 0.
Sn+1

Proof. If G is an §,-space then there is 2 2 1 such that for all » there are
I,.,e2(BY?, G) and P,,,e#(G, I§T?) with

idpez =Py o4, [Pzl 14 2]l < A,

In particular, for a:=1/A, ¥,:=1,,, and U,:= P, .,
J AUVl sy ey (dx) =1 2 || U, [ 1¥,] > 0.

Sne1
Conversely, we assume without loss of generality that ||V, = |U,| = 1.
Define
Ti=U,V,e 257,577,
r(x):=Tx||, for xeR"*2,

By the lemma there exists a constant ¢ > 0 such that for large n there is
a subspace E, of R"*2 with dimE, > cn and ¢|x|, < #,(x) for all xeE,. Now
observe that T, is injective on E, and consider the following commutative
diagram:

Eps ' 1) ——2—(E,, |]|)

anEE“ ]‘ T; 1

G 22 (TE, [+],)

where @, is the orthogonal projection. With I,:=¥,|; and P,i=T,'Q,U,
one gets idg, = P, I, and, since for all xe T,E,

_ i - 1
I3 ks < =rl T %) = <[

moreover | P,| |1 < 1/c. This proves that “G contains all E, uniformly
complemented”, and hence is an §,-space. m

Now, as a technical device, a new class of Banach spaces is defined which
a priori is larger than the class of all §,-spaces. We call a real Banach space
G a T,-space (1 < p < o) if there is a constant A = 1 such that for every ne N
there are me N and operators I,..., I,eZ(l;, G)and P,..., P, e LG, 1)
satisfying

m m
idp= 3 P, Y Pl Il < 4.
k=1 k=1 :
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A Banach space G is T, if and only if its dual is T, (one direction is trivial
and the other follows by standard arguments using (a ‘weak form of) the
principle of local reflexivity). Obviously, every S,-space is a T,-space.
The following partial converse is the crucial step of the proof of our main
result.

14, THEOREM. For p=1, 2 and oo every T,-space is an S,-space.

Proof The cases p=1 and co: Because of the duality of T,- and T,-
spaces as well as S - and S,-spaces it suffices to prove that every T, -space is
S, Let G be a T, -space. In view of 1.1 we show that the I,-sum of Gis §,,. By
assumption there is 43> 1 (not depending on n) and there are operators
1., 1,e £, G)and Py,..., P,e (G, I.;) (where m depends on n) such
that

idp = Z Py, Z [Pl 1T ] < A,
k=1 k=1

Without loss of generality we may assume that |P.fj = |[I;/ for all k. Define

Vi o= B{(G), {mld, ..., 1,5, 0,..),

U, LG) =TIy,  (xm z P, x,.

k=1
Then obviously id = U, ¥, and [[,]| < ﬂ, U, < \/1 which proves that
I,(G) contains all I3, uniformly complemented.

The case p = 2: Let G be a T,-space. In order to show that G is S, we use
criterion 1.3. Let ne N. Then there are operators I,,..., I,,e (152, G) and
P,,..., P,e Z(G, 5*%) such that '

idpy ez = Y Pl

k=1

2P LY < 4,
k=1

where the constant 43> 1 does not depend on n. Assume that for all
k=1,....m

1
§ PG o 1 () < 5 1P A

*Sar

Then

1= I ” i Pkfk(x)uzﬂnﬂ(dx) < j i HP:;Ik(x)”z.unﬂ-(dx)

Sa+1 k=1 Shr1 k=1

1 n
<7 X IRl <1,
k=1



242 . A. Defant

a contradiction. Hence there is 1 <k<m such that with o«:=
V,:=ILe#{#? G) and U,:= P, e Z(G, I5*?)

[ 10.%6) 2 | Ul 1V, >0,

Snowt

which by criterien 1.3 implies that G is an §,-space. =

174 >0,

12 #n+ 1 (dx)

It remains unsclved whether the preceding result holds for arbitrary
I<p< 0.

2. S,-spaces and p-dominated operators. Let 1
a Banach space. For x,,..., x,€ E put

sp<w and let E be

wy )z sup{( 3, Cx, 3P| 2By )

(with the obviousmodification for p = o). Denote by [Z,, D] the Banach
operator ideal of all p-dominated operators: Te 2,(E, F) if there is a ¢ = 0 such
that

n
-gl |<Txi= J’i>l 5 pr(xi) wp'(y;)

for all finite families x,,..., x,€E and y},..., y,€F". The norm is given by
D, (T):=infc where ¢ is as above (see [8], 17.4).

Important particular cases are 2, =&, the ideal of all absolutely
summing operators, 2, = 21", the ideal of all operators T such that T is
absolutely summing, and 2,, the largest Banach ideal of operators which in
Hilbert spaces coincides with the ideal of all nuclear operators. A deep
factorization theorem of Kwapien (see [8], 17.4.3) states that an operator T is

p-dominated if and only if it can be written as a product RS where R’ is
absolutely p'-summing and § absolutely p-summing, briefly: 2,:= 23" 02,
(put £ = &).

As usual &(-; E, F) denotes the injective norm on the tensor product E® F
of two Banach spaces and =(-; E, F) the projective norm. Moreover, for
1 <p< oo we shall consider the norms

WP(Z; E’ F)= inf{wp(xi)wp'(yi)lz = Z x£®yi}
=1
wil(z; E, F):=sup {I[z, w||w,(w; E', F) <1},

which as c and = form tensor norms in the sense of Grothendieck, in particular:

€ < w,, wy < x(see e.g [2] and [3]). If E is an % ,-space or F is an &% s-Space
then 1somorph1cally

E®F=E®,F, E@F-= E@,sF.
Morcover, for arbitrary Banach spaces E and F
2,(E, F)=(E®,_F), Tm(xQ@ym{y, Ix)),
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holds isometrically. Hence, if as usval [.#, I] stands for the Banach operator
ideal of all integral operators then

@B, ) = (E®,, FY = (EQ,FY

provided E is an % -space or F an Z -space.
The following tensor product characterization of p-dominated operators is
a slight extension of results proved in [1] and [4].

=J(E, F),

2.1, PROPOSITION, For 1 € p < w, Te #(E, F) and a Banach space G con-
sider the following four statements:

(1) Te?,(E, F).

(2} id,; ®T G@wp,E—» G®,F is continuous.

(3)idg®T: GRE-G®,F is continuous.

4 ldC®T R, E—~>G® + F is continuous.
Then (1)=>(3)==(4) and (1)=={2) ( ). Conversely: If G is a T-space then (1)-{4)
are equivalent. In particular, if G is an infinite-dimensional % ~space then (1) is
equivalent to

(5) d;®T: GRE-GR,F is continuous.

We remark that this result in particular implies that Pisier's infinite-
dimensional Banach spaces P for which P®,P = P®, P holds isomorphically
cannot be T,-spaces for any | < p< o0 (for the construction of these spaces see

e.g [9]).
Proof. Obviously, (3)=>(4} and (2)=
Indeed, for z =Y /-1¢,@x,cGRE

n(idg ® T{2); G, F) = sup{Kidg ® T(2), 92 HpeBeo.pr)
= sup{| L (T, Logd || @ €Bo@nry) S

F) dcnoles the canonical operator associated with ¢), and

(4). The proof of {1)=>(2) is easy:

D, (Thwy(xw, (g

(here L, e Z(G,
hence
alide ® T(2); G, F) < D, (T)w, (21 G, E).
The implication (1)=>(3) follows from (1)==(2) by duality, since Te @ ,(E, F) ift
T'ed (I, E) and the embeddings
G® L« (GREY, C&uF—(G®,F)

are isometries. So it remains to prove (4)=>(1) provided that G is a T-space. Fix
X5,..., X, €E and yi,..., y,€ F'. Then there is a constant Azl (mdependent of

n) and there are operators I,,..., I, £(5, G) G)and P,,...,P,eZL (G, I}) (m
depending on n) such that

m
ldl;)' == Z Pkfk,

=1

S 1P L < A
k=1

4 - Btudin Mathematica 95.3
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. Hence with g;:=sgn{Tx;, y;» by use of (4)

=3y > (1,e,® Tx;, Pre;@&;y5)

i k

<Y KY Le® T, Y Pie,®@e;y5)]
i i

k

Y KTyl
i=1

g zk:w;!‘ﬂ(ZIkei@ T G, F)wp(}:P;cej(@s]y}; G, F)
i J

< Aidg®T: G®,,, E~> G, Fllw,(x)w, (¥,
which as desired proves that T is p-dominated. m

As a corollary this proposition implies that an operator Te (K, F) is
p-dominated if and only if there is an S,space G such that
id,®T: G®,E~G®_F is continuous. In [4] Jarchow asked for a certain
converse of this statement: I's a Banach space G an § -space if every operator
Te £(E, F) such that idg®@T: CR,E—=GR®,.F is continuous, is already
p-dominated? The following theorem gives a positive answer for p = 1,2 and co.
Moreover, for arbitrary 1 < p < oo it is shown that the answer to Jarchow’s
problem is positive if one considers the class of all T,-spaces instead of the class
of all §,-spaces.

2.2. THEOREM. Let 1 < p < co and let G be a Banach space. Then the

following are equivalent:

{1) Every Te £(E, F) such that ida@T: G ,E—~G®_ F is continuous, is
p-dominated.
(2) There is a constant ¢

I(T) <

(I(T) is the integral = nuclear norm of T).
(3) G is a T-space.

20 such that for each Te ¥ (I3, I7)

clidg®T: G®,IL G @b |

Moreover, for p=1, 2 and co these statemenis are equivalent to
(4} G is an S, -space.

Proof. Obviously, (1) (2} is a consequence of the closed graph theorem
and the fact that Z,(I,, I,) = #(l,, I,) (see the preliminary remarks of this
section). Moreover, (S)w(l) follows directly from 2.1, and (3)=(4) (if p = 1,2 or
oo} was already stated in 1.4. Hence it remains to prove that (2) implies (3): For
neN consider the linear surjection

¢! (HB®G)®

(GRE) LR, WRI®EGRE{(g,g>n®E,
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and define the quotient norm
3(z; by, )= inf{n(w; [,®,G', G, )| ¢, (w) = z}

on L& .
Step 1: We prove that under the hypothesis of (2) for all n

305 I, I0) < ca(-; I, B2
or dually: For u=3,x,Qy,ely,®
w(u; By, ) < o' (ug by, 1)
where
O (u; Iy, y:=sup{|<u, v3|[8(v; 1, By < 1},
Consider the operator T,:=),y,®x, e Z (I, I). Then
lide®T,: G® B GRI| < & (us I, 1.
Indeed, for z =Y ,9,® ¢, G choose

w=3gi®n el ®,L=(G®.hL)
7

with s(w; G, Ip) < 1, n(ids @ T,(2); G, I}) = [idg ® T,(z), w)|, and check
ﬂ:(idﬁ® Tr;(z)l Gs [;') = KZ%@I}(&:): Zg.}@r’j)'
i J

= [, e(Zn@d) R(La@ )]

< 8w By, IYO(ey (.0 I 1) < 8'(us I, Belz; G, 15,

Hence by (2)
w(u; By, ) = I(T: B = I) < 08" (u; Iy, 7).

Step 2: Let us now prove that G is a T,-space. For all n the following
diagram commutes:

®.6Y9.(C®, 1"‘) b&, b

I i
G)®, L(G, 2y (b, 1Y)

SRT»~TS.
Therefore by step 1 there is we (I}, GY® £(G, IY) such that ¥(w)
n(w; (b, G), £(G, 1) < (1 +2)c,

which by the definition of the m-norm 1mplies the assertion: For every n there is
m and there are operators [,,.. eZ(ly, G) and Py,..., P, e Z(G, 1)
satisfying

2L,

= idf}; and

ﬂl

m m

id; =k§1Pka, k21 Pl 11 < (1 +2)?c. m
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Since 9,9, for 1 <p< (see [8], 174.5) one gets as an immediate
consequence that every T,-space (1<p< o) is either S, or S, or 8.

We remark that the theorem holds in the complex sense also (for the
definition of complex §,- and T,-spaces use the complex [’s instead of the real
ones). Indeed, it can be checked easily that the proof of the equivalences
(1)e>(2)<=(3) does not depend on the scalar field. Moreover, for p =1, 2 and
o every complex T,-space contains all complex [ uniformly complemented.
For p = 1, oo the proof is exactly that of 1.4, and for p = 2 the argument is as
follows: Let G be a complex T,-space, Then it is immediate that G considered
as a real Banach space is T;, and hence §, by 1.4. But, if a complex Banach
space considered as a real one contains all real 1% uniformly complemented,
then it also contains all complex I uniformly complemented (this was pointed
out to me by Pisier; his argument is based on the facts that Theorem 5.11 of
[10] is valid in the complex case also and moreover its converse is essentially
true).

Finally, we state some simple reformulations of the theorem. It follows from
2.1 that for G = I, every Te £(l,, [} is integral ( = p-dominated) if and only if
id,®@T: G®,l,—G®,l,is continuous (see also [2], 5.2). By the theorem and
the closed graph theorem the following partial converse holds: For p = 1, 2,
oo the fact that every Te ([, ) is integral if id;,®T: G®,E—+G®,F is

continuous, implies that G is an §,-space.

‘ Purely formulated in terms of operators this means

2.3. CorOLLARY. Let p =1, 2 or co and let G be a Banach space. Then the
following are equivalent:

(1) Every Te%(,. 1) such that TSeZ(G, l,) is integral for every
Se#(G, L), is integral itself. '

(2) There is a constant ¢ = 0 such that for all Te L (1}, 5}

KT) < csup{[(TS)|||§: G~ < 11}
(3) G is an S,-space.

The equivalence of (1) and (2) follows by standard arguments (using the
closed graph theorem). The proof of {2)«>(3) is a direct consequence of 2.2 and
the commutativity of the following diagram:

0@ 6o,
I i
LG, B)—1(G, [})
SmTS.
We remark that /, in 2.3(1) can be replaced by any infinite-dimensional
& -space.
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