

Of course, the same argument applied to [0, 1/2] forces $\varphi(1/4) = 1/4$, and applied to [1/2, 1] forces $\varphi(3/4) = 3/4$, and so on. Likewise, if $\varphi(-1) \neq -1$, this midpoint argument applied to [-1, 1] won't give $\varphi(0) = 0$. So we conclude:

 $\varphi(x) = x$ whenever x is dyadic.

Continuity then finishes off the theorem.

References

- [1] S. Bloom, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc., to appear.
- [2] R. R. Coifman, A real variable characterization of H^p, Studia Math. 51 (1974), 269-274.
- [3] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, ibid., 241-250.
- [4] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [5] P. W. Jones, Homeomorphisms of the line which preserve BMO, Ark. Math. 21(1983), 229-231.
- [6] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- [7] B. Muckenhoupt and R. L. Wheeden, Weighted BMO and the Hilbert transform, Studia Math. 54 (1976), 221-237.
- [8] D. A. Stegenga, Bounded Toeplitz operators on H¹ and applications of the duality between H¹ and the functions of bounded mean oscillation, Amer. J. Math. 98 (1976), 573-589.
- [9] J.-O. Strömberg, Non-equivalence between two kinds of conditions on weight functions, in: Proc. Sympos. Pure Math. 35, Part 1, Amer. Math. Soc., Providence, R.I., 1979, 141-148.
- [10] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, Florida, 1986.

DEPARTMENT OF MATHEMATICS SIENA COLLEGE Loudonville, New York 12211, U.S.A.

Received September 25, 1987

(2366)

An interpolation theorem with A_p -weighted L^p spaces

by

STEVEN BLOOM (Loudonville, N.Y.)

Abstract. If T and T^* : $uL^n \to \text{BMO}_n$ for all $u \in A_1$, then T: $L^p(w) \to L^p(w)$ whenever $w \in A_p$, 1 .

In 1976, Muckenhoupt and Wheeden introduced the weighted bounded mean oscillation spaces, BMO_u [6]. On R, $f \in BMO_u$ provided

$$|I|^{-1} \int_{I} |f - I(f)| \leqslant CI(u),$$

for all intervals I, using the notation |I| = Lebesgue measure of I and $I(f) = |I|^{-1} \int_I f$. These spaces proved to have more than just an intrinsic interest, they turned out to be the solution spaces to some important singly and doubly weighted norm inequalities [1]. The purpose of this note is to show that these spaces arise as interpolation endpoints for $L^p(w)$, $w \in A_p$.

A weight $w \in A_p$ if

$$I(w)I[w^{-1/(p-1)}]^{p-1} \leqslant C$$
 for all intervals I ,

when p > 1. $w \in A_1$ if

$$I(w) \le C$$
 ess inf w, for all intervals I.

The A_p classes are nested, $A_p \subset A_q$ if q > p, and a weight belongs to some A_p class if and only if it satisfies a reverse Hölder inequality: $I(w^{1+\delta})^{1/(1+\delta)} \leq CI(w)$, for some $\delta > 0$ and all intervals I. The Hardy-Little-wood maximal operator and the Hilbert transform are bounded on $L^p(w)$ if and only if $w \in A_p$, $1 [2]. Also any <math>w \in A_p$ can be factored into the form $w = uv^{1-p}$, for some u and $v \in A_1$, the Jones' Factorization Theorem [5].

We will use the sharp maximal function of Fefferman and Stein [4],

$$f^*(x) = \sup\{|I|^{-1} \int_I |f - I(f)| : x \in I, I \text{ an interval}\}.$$

If $1 , then <math>||f^*||_p \approx ||f||_p$, provided $||f||_p$ is finite.

Interpolation with weighted spaces

13

Let T be a linear operator. We say $T: uL^{\infty} \to BMO_u$ provided

$$|I|^{-1}\int\limits_I|T(fu)-I(Tfu)|\leqslant CI(u)\|f\|_\infty,$$

with C independent of I, and we say T: $L^p(u) \rightarrow L^p(u)$ if

$$||Tf||_{L^{p}(u)} \leq C ||f||_{L^{p}(u)}.$$

Theorem. If T is a linear operator with adjoint T^* and if T, T^* : $uL^{\infty} \to BMO_u$ for all $u \in A_1$, then T: $L^p(w) \to L^p(w)$ for all $w \in A_p$, 1 .

Proof. First take $u \equiv 1$, an A_1 weight. This means that T and T^* map L^{∞} into BMO. If $f \in H^1$ and $g \in L^{\infty}$,

$$|\int (Tf)g| = |\int fT^*g| \le C ||f||_{H^1} ||g||_{\infty}.$$

So $T: H^1 \to L^1$. By Macias interpolation [3], $T: L^p \to L^p$, as does T^* . Now for $u \in A_1$ and $f \in L^{\infty}$,

$$u^{-1}(x)T^*(uf)^*(x) = \sup_{x \in I} |I|^{-1} \int_{I} |T^*(uf)(y) - I(T^*uf)| dy \cdot u^{-1}(x)$$

$$\leq c_1 \sup ||f||_{\infty} I(u)u^{-1}(x) \leq c_2 ||f||_{\infty}.$$

by the A_1 condition. So $u^{-1}(T^*u)^{\#}$: $L^{\infty} \to L^{\infty}$. Since also $(T^*)^{\#}$: $L^2 \to L^2$, complex interpolation [8, p. 205] gives, for 1/p + 1/q = 1, p near 1,

$$u^{2/q-1}(T^*u^{1-2/q})^*: L^q \to L^q.$$

Thus

$$\int ([T^*u^{1-2/q}f]^*(x))^q u^{2-q}(x) dx \le C \int |f|^q dx.$$

Replacing $u^{1-2/q}f$ by g, $|f|^q = |g|^q u^{2-q}$, so this says

$$(T^*)^{\#}: L^q(u^{2-q}) \to L^q(u^{2-q}).$$

By the weighted version of Fefferman and Stein's Theorem [9, p. 272],

$$T^*: L^q(u^{2-q}) \to L^q(u^{2-q}).$$

(We are being a little sloppy here. The theorem actually says: If $||T^*f||_{L^q(u^{2-q})} < \infty$, then $||T^*f||_{L^q(u^{2-q})} \le C ||(T^*f)^*||_{L^q(u^{2-q})}$. Since T^* : $L^q \to L^q$ and since A_1 weights are bounded below, on any compact interval,

$$\int (T^*f)^q u^{2-q} \le c_1 \int (T^*f)^q \le c_2 \int |f|^q < \infty$$

on a dense subspace of $L^{q}(u^{2-q})$.)

Now let $g \in L^q(u^{2-q})$ and $f \in L^p(u^{2-p})$. By Hölder's inequality,

$$\left| \int (Tf)g \right| = \left| \int (T^*g)u^{2/q-1}fu^{1-2/q} \right| \le \|T^*g\|_{L^q(u^{2-q})} \|f\|_{L^p(u^{2-p})},$$

and duality gives $T: L^{p}(u^{2-p}) \to L^{p}(u^{2-p})$, or $u^{2/p-1} T u^{1-2/p}: L^{p} \to L^{p}$.

Next let $f \in L^p$ and $g \in L^q$. Then

$$\left| \int T(fu^{2/q-1})u^{1-2/q}g \right| = \left| \int f\left[u^{2/q-1}T^*(u^{1-2/q}g)\right] \right| \leqslant C \|f\|_p \|g\|_q,$$

so the operator

$$u^{1-2/q}T(u^{2/q-1})$$
: $L^p \to L^p$

also.

In the arguments above, we could of course interchange T and T^* . So we have shown: If 1/p + 1/q = 1 with p near 1 and if u and v belong to A_1 , then

$$u^{1-2/q}T(u^{2/q-1}): L^p \to L^p$$
 and $v^{2/q-1}T(v^{1-2/q}): L^q \to L^q$.

Let

$$\alpha(t) = t - 1/q, \quad \beta(t) = t - 1/p.$$

So $\alpha(1/p) = 1 - 2/q$, $\alpha(1/q) = 0$, $\beta(1/p) = 0$, and $\beta(1/q) = -1 + 2/q$. So interpolation gives

$$u^{\alpha(t)}v^{\beta(t)}T(u^{-\alpha(t)}v^{-\beta(t)}): L^{1/t} \to L^{1/t}, \quad \text{for } 1/q \le t \le 1/p.$$

In particular, taking t = 1/2 gives $T: L^2(w) \to L^2(w)$ whenever w has the form $w = u^{2\alpha(1/2)} v^{2\beta(1/2)}$.

Finally, fix $w \in A_2$. By Jones' Factorization, there exist u and v in A_1 with w = u/v. By reverse Hölder, we can find a $\delta > 0$ so that u^r and v^r are in A_1 whenever $1 \le r \le 1 + \delta$. In particular, if we choose p sufficiently near 1, we can force $r = 1/(1-2/q) \le 1 + \delta$. But with this r,

$$u^{r2\alpha(1/2)}v^{r2\beta(1/2)} = uv^{-1} = w,$$

so $T: L^2(w) \rightarrow L^2(w)$.

For exponents other than 2, the argument just given can be modified appropriately, or if one prefers, we can appeal to Rubio de Francias' Extrapolation Theorem [7], and the proof is complete.

As an application, we derive Hunt, Muckenhoupt and Wheeden's theorem, that the Hilbert transform $H: L^p(w) \to L^p(w)$ whenever $w \in A_p$ and $1 . <math>Hf(x) = \text{p.v.} \int \frac{f(y)}{x-y} dy$, so $H^* = -H$. To apply the theorem, we must show that $H: uL^\infty \to \text{BMO}_u$ whenever $u \in A_1$. It's well known that $H: L^\infty \to \text{BMO}$. The point of the theorem is that whatever holds for BMO invariably holds for BMO_u when $u \in A_1$ and can be proven without so much as a break in stride. Yet that minuscule bit of generality lets one interpolate to $L^p(w)$ for all $w \in A_p$.

Let $u \in A_1$. Let's mimic the old proofs and show $H: uL^{\infty} \to BMO_u$. Let $f \in L^{\infty}$, fix an interval I and put $f_1 = f\chi_{2I}$ and $f_2 = f - f_1$, where 2I denotes

the interval concentric with I of twice the length. Let p > 1 be near enough to 1 so that reverse Hölder holds for u with exponent p. Since $H: L^p \to L^p$, we have

$$\begin{split} |I|^{-1} \int\limits_{I} |H(uf_1)| & \leqslant \left(|I|^{-1} \int\limits_{\mathbf{R}} |H(uf_1)|^p\right)^{1/p} \leqslant c_1 \left(|I|^{-1} \int\limits_{2I} |f|^p u^p\right)^{1/p} \\ & \leqslant c_1 2^{1/p} \|f\|_{\infty} \big(\frac{1}{2} |I|^{-1} \int\limits_{2I} u^p\big)^{1/p} \\ & \leqslant c_2 \|f\|_{\infty} \big(\frac{1}{2} |I|^{-1} \int\limits_{2I} u\big), \quad \text{by reverse H\"older,} \\ & \leqslant c_3 \|f\|_{\infty} \operatorname{ess inf} u, \quad \text{by } A_1, \\ & \leqslant c_3 \|f\|_{\infty} I(u). \end{split}$$

Let x_0 be the center of I and $\delta = |I|$. Then

$$|H(uf_{2})(x) - H(uf_{2})(x_{0})| = \left| \int_{y \neq 2I} \left[\frac{1}{x - y} - \frac{1}{x_{0} - y} \right] u(y) f(y) dy \right|$$

$$\leq \|f\|_{\infty} \delta \int_{y \neq 2I} \frac{1}{|x - y||x_{0} - y|} u(y) dy$$

$$\leq c_{4} \|f\|_{\infty} \delta \sum_{n=1}^{\infty} 2^{-2n} \delta^{-2} \int_{|y - x_{0}| \leq 2^{n} \delta} u(y) dy$$

$$\leq c_{5} \|f\|_{\infty} \sum_{n=1}^{\infty} 2^{-n} \operatorname{ess inf}_{|y - x_{0}| \leq 2^{n} \delta} u$$

$$\leq \frac{1}{2} c_{5} \|f\|_{\infty} \operatorname{ess inf} u \leq \frac{1}{2} c_{5} \|f\|_{\infty} I(u).$$

Integrating, we have

$$|I|^{-1} \int_{I} |Hu(f_1 + f_2)(x) - Huf_2(x_0)| \le (c_3 + \frac{1}{2}c_5) \|f\|_{\infty} I(u),$$

so that $Huf = Hu(f_1 + f_2) \in BMO_n$.

References

- [1] S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), 103-122.
- [2] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
- [3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [4] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [5] P. W. Jones, Factorization of A_p weights, Ann. of Math. 111 (1980), 511-530.

- [6] B. Muckenhoupt and R. L. Wheeden, Weighted BMO and the Hilbert transform, Studia Math. 54 (1976), 221-237.
- [7] J. L. Rubio de Francia, Factorization theory and A_p weights, Amer. J. Math. 106 (1984), 533-547
- [8] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
- [9] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.

DEPARTMENT OF MATHEMATICS SENA COLLEGE Loudonville, New York 12211, U.S.A.

Received September 25, 1987

(2367)