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Gradient homotopies of gradient vector fields
by
A PARUSINSKI (Gdansk)

Abstract. Consider two gradient vector fields on the unit ball B” = R* and nowhere
vanishing in 8", It is shown that if they are homotopie, then they are gradient homotopic. The
same result holds for Hamiltonian vector Nelds, :

1. Introduction and statement of results, Assume that we have a con-
tinuous vector field » defined on the closed unit ball B* = R" and having no
zeroes in 87!, We are interested in finding a topological criterion which
ensures that » has zeroes in B". By standard facts from homotopy theory (see
for example [N]) we know that if v is not homotopic (in the space of all
continuous vector fields on B" nowhere vanishing in 8"~ ') to a constant vector
field (i.e. deg(v|gn-:) % 0) then » must have zeroes in B", The aim of this paper is
to study whether we can obtain a better result if we restrict ourselves to some
classes of vector fields. For example, if we know that v is gradient or
Hamiltonian, could we deduce from some “homotopic” properties of v that it
has zeroes in B" even if deg(v|ga-1) = 07 The most natural approach to this
problem is to consider gradient (or Hamiltonian) homotopies.

Dermimion 1. Two gradient vector fields gradf, gradg on B" nowhere
vanishing in 8" are said to be gradient homotopic if there exists a C*-function
F(x,t) on B*xI such that:

(1) Flx, Q)= f, F(+, ) =g.

(2) grad F has no zeroes in 8" x L

PROPOSITION 1. Let v = grad [, where f e C'(B"), and let v be nowhere zero

~in B Then v is gradient homotopic to g constant vector field.

Prool We can assume that f is smooth. By the Hadamard Lemma

S(x)= fO)+ Y x,0:0%),

=l

where the g, are smooth and »(0) = (9,(0), ..., §,(0)). Then

Plx, )= £O)+ 3, %, g6

P=1

is the required homotopy between v and »(0).
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The problem which we consider is the following: If two gradient vector
fields are homotopic, are they necessarily gradient homotopic? If the answer
were negative, it would mean that considering gradient homotopies we obtain
a better criterion for vanishing of » = gradf at some point than using the
ordinary ones. But we will show that the answer is affirmative.

THEOREM 1. Assume that we have on B” two gradient vector fields nowhere
vanishing in 8"~ ! and homotopic (in the space of all continuous vector flelds on B
nowhere vanishing in 8*"Y). Then they are gradient homotopic.

Let n=2k We call a vector field v Hamiltonian if v, = —8H/0xy..,,
tysi = OH/Ox, fori=1, ..., k, and some H e C'(B"). Hamiltonian vector fields
occur naturally-in mechanics (see e.g. [A]). For Hamiltonian vector fields one
can define Hamiltonian homotopies analogously to the gradient case. Note
that a vector field v is Hamiltonian iff v, = —wy,; and v, =w,, i=1, ...,k
for some gradient vector field w, so Theorem 1 implies:

THEOREM 2. Assume that we have on B" two Hamiltonian vector fields
nowhere vanishing in 8"~ and homotopic (in the space of all continuous vector
Sields on B” nowhere vanishing in 8"~ 1). Then they are Hamiltonian homotopic.

Notation and remarks. 1. In this paper the character I is reserved for the
interval [0, 1].

2. By a smooth map {function, vector field) on a subset of an affine space
we mean the restriction to this set of a C_-smooth map (function, vector field)
defined in an open neighbourhood of the set.

3. We often replace continuous vector fields or maps defined on sub-
manifolds of affine spaces by their smooth approximations. This can be done
thanks to the approximation theorems (see e.g. [H], Theorem 3.5 or [M]). The
obtained vector field (map) is homotopic to the original one. This principle will
also be used to approximate homotopies, as maps defined on manifold x 1, or
elements of hemotopy groups, as maps defined on spheres. For example, if we
have an element of the kth homotopy group =, of the space of continuous

vector fields defined on B", then it can be represented by a smooth map from

§ %< B" to R".
2. Proof of Theorem 1. Consider the following spaces:
V=)= {v=_{,..,0)e(C°B); v(x) 0 for xe& '},
T = 7 (n) = {(v, (e COS"™1; TS~ 1) x COS"~1);
(v(x), h(x)) # 0 for xe8 )

with C°-topology (where C°(S""%; TS"~') denotes the space of continuous
* sections of the tangent bundle TS" H,

o = (n) = {feC'(B); grad fe ¥}
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with C*-topology, and
= (n) ={(g, eC' (8" ")x C*(8""Y); (gradg, h)e ¥}

with mixed C'x C%-topology.

Theorem 1 says that the gradient map grad: o/ — %" induces an injection
on the connecied components. The spaces f and ¥ of (gradient) vector fields
restricted to $"" ! are used in the inductive step. Let n denote the outward unit
normal vector field on 8"~

LiMMA 1. The map @: of - defined by
o) =/, o fom)lgn-

is ¢ homotopy equivalence. The same holds for §: v =¥, given by
@) = (', ),
where Vige-1 = 0" -h-n.

Proof. Let ¢: ¥—1I be a smooth function equal to 0in a neighbourhood
of 0 and to 1 in a neighbourhood of 1, Define : o7 — of by the formula

g, mix) = e(lxM{gGe/1x1)+ x| = REx/x]).
Then it is e¢asy to check that:

(1) poif =idg.

(2) yrop ~id,, by means of the homotopy t:(Froe)(f)+(1~1)-f,

which gives the result for ¢. The proof for ¢ is similar. =

PROPOSITION 2. The map 11 & -4 which sends (g, h) to (gradg, h)
induces a one-to-one correspondence between the connected components of these
spaces.

Proof. First we show the injectivity of my(1): mg(e#)— 75 (¥) (the induced
map on the sets of connected components) by induction on .

Case n == 2. This is a special case (for many reasons, one of them being that
T$! is a trivial bundle). Let s be a parametrization by arc length on §'. Then
the vector field ﬂ/r’)s is a nowhere zero section of TS

The space o = {(v, he¥; ‘.ql vds = 0} (with C%topology) is just the
image of ¢ and the induced map & — &' is 4 homotopy cquivalence. In fact,
< is homeomorphic to &' xR via (g, h)~ ((grad g, h), g(0)) (the inverse is
(e, b, )= (c+ o, b))

Consider ' ¥ The conneoted components ¥7; of ¥ ate classified by
the topological degree deg(v:d/ds+h-n) =ieZ.

LiMMA 2. For i 5 1 the inclusion o' ¥, < ¥y is a homotopy equivalence.

Proof Let (v, hye¥; Consider the continuous functions v, (5) =
maxgi{v(s), 0}, v..(5) = mingg {v(s), 0} and their integrals ¢ (v), ¢.(z) over
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S!, Wote that ¢, and ¢_ are continuous functions of v and they nowhere vanish
(since i # 1). Therefore, & = &/'n ¥ is a strong deformation retract of 47, by
- means of the deformation

(@, By, —1(0, H+1=0-((LO) v, +{L@) v ), B),
where L(v) = (—c_(v)/c, (v)'”*. =

For i = | the above proof does not work. Take (vy, hp)e oy = o' N ¥F;.
Since jslv =0, v, has zeroes, and rotating the circle we can assume that
9(0) = 0. Hence 2,(0) # 0. After perturbing (v,, fp) in &%, we can also assume
that it equals (sin, 1) just near 0. We shall show that it is in fact homotopic (in

1) to (sin, 1). By the arguments from the proof of Lemma 2, it suffices to [ind
such a homotopy in {(v, h}e ¥;: min(z) < 0 and max(v} > 0}.

The map o = (v, hy): §' >R*\0 = C\0 has degree 0 (since v, hy'n has
degree 1), so it can be lifted to a map d@: S'—>C, ie. expod = x and a(0) = wi/2.
Let v: 8' — C satisfy expoy = (sin, 1) and {0} = ni/2. Then

exp(t-a+(1—1t)y)
is a homotopy with the required properties. &

Inductive step. Let (g, h)es# = o (n). We will deform (g, ) in < in order
to obtain an element of &7 of the simplest possible form. The first step is to
deform g to .a Morse function (see e.g. [H]). So, assume that ¢ is a Morse
function and divide the set of its critical points into the set P on which h is
positive and @ on which h is negative (h nowhere vanishes on the set of critical
points of g).

LemMMA 3. Let (g, hyeZ be as above. Then
deg(grad g+h-n) = (— 1)+ ¥ (= 1)@,
peP

where i(p) denotes the index of g at p. (If P=@, then we understand the
right-hand side to be (—~1))

-~ Proof. Assume that ¢ = max,.g.-1h(x) > 0. Consider on U = {xeR"
1< [x]| €2} the vector field

wlx} = v(x/llx)—2c - (|x] 1) n(x/ =),
where v = gradg+h-n. Note that wig.-: = v and deg(wlgp-1) = (—1)", where
Syt ‘denotes the sphere of radivs 2. The point x e U ‘satisfies w(x) = 0 if and
only if x/|x| € P and ||x|| = h(x/||x||)/(2¢)+ 1. The local index of w at such an
x equals —(—1)*/1*. Therefore, by the properties of the index [H] we have
deg(Wlsg-l)_deg(Ms""l) = = Z (—1y®
peP

and the lemma follows for ¢ > 0. If ¢ < 0, then deg(v) = {(—1)"and P = @. This
ends the proof = _ '
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We continue the process of perturbing (g, k) using isotopies of 8"~ 1. Fix
peP. Since n = 3, we can move P into a small neighbourhood of p without
changing Q. Afterwards we move @ into 87! n {xeR"; x, < —1/2} and P into
§""'n{xeR"; x, = 1/2}. Since h is positive on P and negative on  we can
change it linearly via t-h+(1—~1)'x, to a new h = x,. We call (g, h) of this
form normal. ‘

Assume that we have two elements (g, h,) and (g,, ,) of «¢ homotopic
in #. Then

deg(grad g, «+ 1, ) = deg(grad g, +h, -n).

By the above, we can assume that (g, ), i = 1, 2, are normal (in particular
hy =hy = x,). Let ¢t B 1871 be a difftomorphism onto the southern
hemisphere and let P(i) (i= 1, 2) denote the set of critical points of g, on
which h, == x, is positive. By Lemma 3 :

z (— 1) = Z (— 1)ie,
peP(L) peria)

Consequently, grad(g, o¢) is homotopic to grad{g,0¢) in #'(n—1) and, by the
inductive assumption and Lemma 1, they are also gradient homotopic, Let G
B""! x IR be such a homotopy. Consider on (87! x )u{8%" " x {0, 1}) the
function equal to Goe™' on 8© " x I to g, on S""*x {0} and to g, on
S-1x {11, By [H], it can be extended to a smooth function G' on 8"~ ! x I and
now (¥, x,) is the required homotopy. This ends the proof of the injectivity of
n,(1) and hence, by Lemma I, the proof of Theorem 1.

The surjectivity of n, (1) follows from Lemma 1 and the following lemma.

LemMA 4. For each deZ there is fe/ such that deg{gradflg.-.) = d.

Proof. Let g: I—1 be a smooth functional equal to O near 0 and to
1 near 1. For n =2 and d # 1 we define f,(z):= ¢{||z|)Re(z* "), where zeB*
= R? = C. By the Cauchy-Riemann formula d{z' ~%)/dz = (8f/dx, —&ff@y} near
St. Therefore, deg(grad flgn-1) = d. For d =1 we put f,(x, y) = x*+y*

Assume n > 2. Define f{x,, Xy, ..., X} = fi{x(, x)+x3+...+x2. Then
grad [ = (Qf,/0x,, 0f/0x,, 2x4, ..., 2x,) and by the properties of suspension
(see eg. [H], [S])

deg(grad fig. ) = deg(grad filg)) = d. =

3. Quesiions, Assume that we have a continuous family »: B"xB"—R”
of continuous vector fields on B' such that the restriction ¢ of v to 4(B" x B™)
=81 BB % 8" ! nowhere vanishes, If #f gives a nontrivial element in
T 1 (RMNO) == 7, 4 e 1 (8" 1Y), which is equivalent to saying thal v is not
homotopic (in the space of all families of vector fields as above) to a constant
(family of) vector field(s) v(x, y) = we R\, then v must have zeroes (see [N]).
As in the case of one vector field one can ask whether in the case of v gradient
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(i.e. »(x, y) = grad_f (x, y) for some fe C'(B"xB™) there is a better invariant
which shows that v has zeroes. First we note that simply by repeating the proof
of Proposition 1 we obtain:

ProprosITION 3. Let v{x, y) = grad{ be as above. If v has no zeroes in
B" x B", then v is gradient homotopic (i.e. In the space of all fumilies of yradient
vector fields nowhere vanishing in B"x B") to a constant vector field.

QUESTION 1. Are two fomilies of gradient vector fields gradient homotopic
if they are homotopic?

This question seems to be much more difficult than the problem we have
considered earlier. I the answer is negative, it means that there exists some new
obstruction for families of gradient vector fields which can be used in looking
for their zeroes. Question 1 is closely related to the homotopic properties of the
map grad: .« —¥", We have shown (Proposition 2 and Lemma 1) that m,(grad)
is a bijection.

Fix * = x, e and # = d/dx, ¥ .
QuesTiON 2. Is m,(grad): n, (o7, x) > w, (¥, *) injective?

ProPOSITION 4. If m, (grad) is injective, then every family of gradient vector
fields {(on B") which is homotopic to a constant vector field is gradient homotopic
to a constant vector field. The converse holds for m < n—1.

Proof. Take any family »(x, y) = grad, /' (x, ) of gradient vector fields.
We can assume that f is smooth. By the Hadamard Lemma

100 D)= FO, 9+ T x-0,%, ),
=1

~ where the g;.’s are smooth and grad, (0, y) = (g,(0, y), ..., 4,0, y)). If N is
sufficiently large, then o(x, y) #0 for |x[|+ [y|*" = 1, so the homotopy

Fx, y.8) = (1=0£0, )+ 3 -1 —0x-+¢(1 = 512, y)

i=1

joins f to

n
hxa y) = 3 xi-gi{(1=y1*M)x, y)

i=1
But the gradient (with respect to x} of & for yeS8™~! does not depend on
x and equals w(y) = (g,(0, ). ..., ,(0, »)). So, we have just proved that any
family of gradient vector fields is gradient homotopic to a family which does
not depend on x for yeS™ ' The same argument works for homotopies
of gradient vector fields and so it is easy to see that the homotopy

class of w: 8" 'R0 only depends on the gradient homotopy class of
vlx, y) = grad, f(x, ). : ' :
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Assume that =,(grad) is injective and take a v(x, y) = grad,f(x, y)
homotopic to a constant vector ficld. We can assume that [ is smooth and that
v restricted to B"xS$" ™! does not depend on y. We denote this map as above
by w. We know that v is homotopic to a constant vector field, say &/dx,. Let

Vi (B"xB"xI, 2(B"x B")x I)—(R", R"\0)

be such a homotopy. By the same arguments as at the beginning of the proof,
we can change V in such a way that ¥ign.gm- 1, does not depend on y (in
particular, it is gradient with respect to x).

Let * B"xB"—R be defined as follows:

(1) Jlx, )= fx. 20 0 |y < 172

(2) grad, J(x, y) = Vix, y/lyl, 20pl=1) if byl =172

(3) Jhwxsn 1 = x,.
Then fis gradient homotopic to f and ¥ can be considered as an {ordinary)
homotopy between grad,f and &/0x,.

The function f induces, via the identification (8", ) ~ (B"/§"~1, §"~ 1),
a function h: B"x 8" — R satisfying h(x, ) = x,. So, I defines a,&7n,,(«, *)
which gives (by means of ¥, see above) a trivial element of =, (¥, *). By
assumption, o, is trivial in =z, (., *). Let H: B"xB" x{~R be a homotopy
between h and the constant map. Let

o B"XxB"xI-B"x(B"S" ) x1=B"x8"x1

be the canonical projection. Then Hoa is a gradient homotopy between f and
a constant vector field.

Now we assume that m <n and every family of gradient vector fields
which is homotopic to a constant vector field is gradient homotopic to
a constant vector field, Let h: (8", )~ (o7, =} be such that gradoh is
homotopic to a constant map. We can treat i as a function on B” x 8™, By the
identification (8", %) = (B™/S"™ ', 8"~ 1), h gives a function f on B” x B™ such
that wu(x, y) = grad,f(x, ¥} is homotopic, by means of a homotopy
Vi B"xB"xI-R", to a constant vector field. By assumption, we can find
a gradient homotopy F: B*xB"x1—R such that

(1) Flx, y, = [(x, ) {in particular F(x, y, 0) =x, for ||y = 1),
2y Fx, y, 1) = x,,
(3) grad, Flx, y, 1) £ 0 i (x, yjed(B" < B,

In order to prove ihe proposition it suffices to change F in such a way
that it equals identically x, for |yl = 1.

Using the Hadamard Lemma, as at the beginning of the proof, we
change F in such a way that grad F(x, y, 1) does not depend on x for
[yl = 1 and stilf equals x, on B* x 8™ ' x {0, 1}, Put w(y, 1) = grad, F(x, y, 1)
for Jy|l = 1. Adding to F a function not depending on x we change it so that
now F(0, y, t) = 0. This implies F(x, y, ) = {x, w(y, 1)) if ||pll = 1. By the
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assumption on m and n, there exists a homotopy W: S"7'xIxI—>R"™0
between w and 8/8x, which equals identically 8/8x, on 8"~ ! x {0, 1}. Now, in
order to obtain a homotopy with the required properties, it suffices to glue F to
{x, w(y, t)>. One can do it, for example, as follows. Choose a parametrization
w: I=IxI of the union of three sides of the square, for example

0, 31) it £<1/3,
alt) = < (3t-1,1)  if 1/3<t<2f3,
(1,3=3) if23<t

Now the formula for the homotopy can be written as follows:
Fix, y, 1) =

{F(x, (1+a,(0) -y, o, (1))
Cx, WAL (1) Iy~ 1, o (0))
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An operator on a separable Hilbert space
with all polynemials hypercyclic

by

BERNARD BEAUZAMY (Paris)

Abstract. We construct an operator 7' on a scparable Hilbert space with one hypereyclic
pofot x, and such that for any polynomial p with complex coefflicients the point P(T)x, is also
hypercyclic.

Let x, be a point in a Banach space E, and let T be 4 linear operator on E,
The orbit of x, under T is just the set of iterales

1 2,
Foo= x5 Txq, T?x,, ...}

The point x, is said to be eyelic for T if the vector space generated by F, is
dense in E, and hypercyclic if F, itsell is dense in E.

The invariant subspace problem, solved negatively by P. Enflo in Banach
spaces (see P. Enflo [5]) and still unsolved in Hilbert spaces, can of course be
rephrased as: Let T' be an operator; does there exist (besides 0) a point x,
which is nrot cyclic? In Enflo’s example, all nonzero points are cyclic.

So one is naturally led to an investigation of the regularity of the orbits of
a linear operator. Trying to find points for which the orbit is regular (meaning,
for instance, that || T"x|| — oo as n—» o) was done in our book [4], Chap. 3.
Here, conversely, we concentrate on irregular orbits: those of hypercyclic
points, and try to construct operators with as many hypercyclic points as
possible.

The first result in this direction was obtained by S. Rolewicz [8], who
constructed on /, (1 < p < w) or ¢, an operator with one hypercyclic point, OF
course, its iterates are also hypercyclic, but if one considers for instance
(xo+Txo)/2, nothing says that this vector is still hypereyclic. Indeed, the
construction can be modified in order to provide also a finite number of such
vectors, but only a finite number. :

The [ollowing question was ruised by P. Halmos [6]: can one produce an
operator, in a separable Hilbert space, for which the set of hypercyclic points
would contain a vector space? We solve this question here. We do not prove
that all points are cyclic, so our cxample might still have invariant subspaces.
We do not know if this is the case or not.
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