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assumption on m and n, there exists a homotopy W: S"7'xIxI—>R"™0
between w and 8/8x, which equals identically 8/8x, on 8"~ ! x {0, 1}. Now, in
order to obtain a homotopy with the required properties, it suffices to glue F to
{x, w(y, t)>. One can do it, for example, as follows. Choose a parametrization
w: I=IxI of the union of three sides of the square, for example

0, 31) it £<1/3,
alt) = < (3t-1,1)  if 1/3<t<2f3,
(1,3=3) if23<t

Now the formula for the homotopy can be written as follows:
Fix, y, 1) =

{F(x, (1+a,(0) -y, o, (1))
Cx, WAL (1) Iy~ 1, o (0))
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An operator on a separable Hilbert space
with all polynemials hypercyclic

by

BERNARD BEAUZAMY (Paris)

Abstract. We construct an operator 7' on a scparable Hilbert space with one hypereyclic
pofot x, and such that for any polynomial p with complex coefflicients the point P(T)x, is also
hypercyclic.

Let x, be a point in a Banach space E, and let T be 4 linear operator on E,
The orbit of x, under T is just the set of iterales

1 2,
Foo= x5 Txq, T?x,, ...}

The point x, is said to be eyelic for T if the vector space generated by F, is
dense in E, and hypercyclic if F, itsell is dense in E.

The invariant subspace problem, solved negatively by P. Enflo in Banach
spaces (see P. Enflo [5]) and still unsolved in Hilbert spaces, can of course be
rephrased as: Let T' be an operator; does there exist (besides 0) a point x,
which is nrot cyclic? In Enflo’s example, all nonzero points are cyclic.

So one is naturally led to an investigation of the regularity of the orbits of
a linear operator. Trying to find points for which the orbit is regular (meaning,
for instance, that || T"x|| — oo as n—» o) was done in our book [4], Chap. 3.
Here, conversely, we concentrate on irregular orbits: those of hypercyclic
points, and try to construct operators with as many hypercyclic points as
possible.

The first result in this direction was obtained by S. Rolewicz [8], who
constructed on /, (1 < p < w) or ¢, an operator with one hypercyclic point, OF
course, its iterates are also hypercyclic, but if one considers for instance
(xo+Txo)/2, nothing says that this vector is still hypereyclic. Indeed, the
construction can be modified in order to provide also a finite number of such
vectors, but only a finite number. :

The [ollowing question was ruised by P. Halmos [6]: can one produce an
operator, in a separable Hilbert space, for which the set of hypercyclic points
would contain a vector space? We solve this question here. We do not prove
that all points are cyclic, so our cxample might still have invariant subspaces.
We do not know if this is the case or not.
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As is the case for the invariant subspace problem, things are more
advanced in Banach spaces, and C. Read [7] has produced an example of an
operator, on the space I,, for which all nonzero points are hypercyclic.
Previously, an example of an operator with a slightly weaker property, called
supercyclicity, was constructed by the author [1] (for every nonzero peint x,,
the half-lines generated by the orbit are dense in the whole space). Such
operators, of course, have no invariant subspaces.

QOur construction originates in the ideas introduced by P. Enflo to
construct & Banach space and an operator on it with no nontrivial invariant
subspaces [5]. But here we have a Hilbert space setting, and things
become harder. A previous result in the same direction, also in a Hilbert
space, was obtained by the author in [2], where an operator was constructed
with one hypercyclic point and such that for any polynomial p with rational

coefficients the point p(T)x, is also hypercyclic. Going from polynomials with
" rational coefficients to all polynomials is far from being as trivial as it
may seem.

Our result had a preliminary announcement in [3].

THEOREM A. There is a separable complex Hilbert space and an operator
T on it with a hypercyclic point x, such that for any polynomial p with complex
coefficients the point p(T)x, is also hypercyclic.

In fact, our construction provides a much stronger information. We
denote by [Z the weighted !, space defined by:

5={@)e Y G+ Dlal* < +o0},

i>0
endowed with the norm [{ap);s0ly = (20 G+ Dla,?)"2.

THECREM B. There is a separable Hilbert space H, the completion of the
polynomials in one variable x for a norm ||| < ||, such that muitiplication by
x is continuous on it and, for this operator, all nonzero elements of 12 are
hypercyclic.

The construction of this example will occupy the rest of this paper, and
will be divided into several steps.

1. Enumeration of the triples. We first enumerate the triples (g;, g}, &)in1s
where:

— ¢;, ¢; are polynomials with rational coefficients (that is, both real and
imaginary parts rational), .

— ¢; has always “I” as the first nonzero coefficient (the degrees being
written in increasing order),

— & is of the form 12", 1> 1.
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Doing this enumeration, we require, for all j = 1:

(@) degy; < j, degq; < j.
(b) &, =27,
(c) if n; < n, < ... are integers such that

qHIZQ‘n:,:"'s q;;:q;2="'
then &, > &, > ...

These requirements can easily be met the following way: in R, we write
an enumetation of the polynomials with rational coefficients on the x axis and
on the y axis, taking into account condition (a). On the z axis, we put 27/ at
z=1, for {=1,2,... Then, for each k, we enumerate entirely the set
{x+y+z < k}, before enumerating {x+y+z < k+ 1}, and we realize this by
enumerating the set {x+y < k'} for increasing k' < k.

We consider the norm [(a});z0l, as a norm on the space of polynomials,
and, if p =) sea.x, we define Ipl, = (Y,50(i+ Dig)?)"

The space I2 thus defined is a Hilbert space, an algebra, and multiplication
by x has norm \/5 :

We now define the systems. For every j = 1, we put

J=inf{j; g~ ayhe < 172, ;= gj, g; = gpt.

We then say that j belongs to the system of the integer /. We observe that here
all systems are defined at once, and not inductively, contrarily to what we did
in [2].

The enumeration of systems will be made with Greek letters, v =1, 2, ...,
so, for every j, the value of j will be a Greek letter, eg. j= v

We observe that, by the definition of the systems and the normalization we
have chosen, the index of the first nonzero coefficient in ¢; depends only on j.
We call it m, if j=v, so we write

n ' gy = X" b Ly T
We finally introduce the following notations:

O =gy Ui=lgily. OF =max0, 0% =max0;.
JEn : . Jsn
Our construction will be totally determined be a sequence of integers (N )z o,
strictly increasing, which will be chosen by induction. If [ = v, we put [; = x™.

.

2. The norm ||,,. We define ||, == |*|,,. Fix now an integer n > 1. For any
polynomial p, we look at all representations of the form

(2) p=r+ z Zaj.«xm(lj‘h'—q’i)’

i=1la
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where r is a polynomial and the a;, are complex numbers (j = 1, ..., n, agN),
and we define

() el =inf{b+ L L 4 X g @3+ +H g}
hJ=V

vE1az0 Ji=v

where the infimum is taken over all representations of the form (2).
In order to sirnplify this expression, we introduce the following notations:

A=Y Ya.g—q),

=l a
[AT0 = 2. 2 483 X g s@+ 07"+ F 450,
vZlaz0 hi=v hi=v

Quite clearly, we have

121+ Dalony < 1P1len + 1220
Mpl(n) = J;L“P{(n) for AleC

and p = 0 implies |ply, = 0. The converse of this implication comes up only at
the end of the construction. Despite this fact, we will speak of the “norm™ [ty
but we keep in mind that it is only a quasi-norm. The following properties of
the norm |-}, will be used:

ProrosiTioNn 1. For all n = 1:

@) Il < 'lp-1) €. € e

O L=l < /26, i =1, . n
) Pl < 2%l i T=v j<n.
(d} 1xplw < 2[ploy-

(€) The norm |, is hilbertian.

Proof. (a) is obvious, (b) follows from the representation of Lig;—q; with
r=0 and all a;,=0 except a;0=1. (c) follows from the representation
obtained by replacing x* by x***. (d) is obvious.

To see (e), we observe that; for all p,, p,,

20pylfn +1palt) = lpy +poldy+ipy — 2ol2y

and the converse inequality follows after the change of variables u = p, +p,,
v=py—D;-

Rc. mark. We could make the norm ||, equivalent (with constants
depending on n) to |-|,, by adding to [4]Z, the term ¥}, > a0 452 This would
change nothing in our construction. :

We also need the following obvious
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Lemma 2. For all polpnomials p,,p, and every n, O<n<1, if
C 2 (1—n)/n, then

1Py 4Pl A Clogla = (1 —n)lp I3

The proof is left to the reader.

3. Study of {1],.

PrOPOSITION 3. If the sequence (N));zo grows fast enough, we have
Mey =172 for every nz 1.

Proof We know that |1|y, < {1|,, = 1. Therefore, we cun find a represen-
tation of 1 of the form (2),

(4) I=1-4d+4,
which gives the estimate

(5) @a = |1 - Al +{473,
with '

(6) <4

We will show that €7 = 1/4, and this will prove our proposition. In order to do
so, we {irst need control upon the high degree terms (that is, « large) in 4.

Lemmva 4. Set jor u = 1,
K, = 4log,(2*(/N,+1./0F*+ 14+ 09).
The representation obtained Jrom (4) by keeping in A, for all j, only the terms with
{OC € va—l ]:f I< Hy
ag K, fi=n
gives an estimate €% with
-8
%z I_:I:W%;'z
Proof Set K = K,. We write
A= E E o XU q;— ),
J=lagkK
AH —_ A_Af, I’f e |AH|w’
I = '32 Z aj.uxa(.l,iQ_j_qzi)JW)
K

=Yt
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so I" <Y I). We will now estimate I7:
IL'< ZK\/““(LZ “j,aliqfrwﬂ?z j.aqlw)
£ J=v =y

But [, = x"i, g} = ¢, if J=v. So, for v <y,

B< L Vot /N Y gyt 5] 3, d)

o> K J=v

< VRIS (o D4R L ]S 0t

v a> K

1
SEHT LS iy
v a>K P i=v

S2/N,+ 1275 f2 416, +2 75205,
LR /N, L0+ 1+ 0)%,,

Therefore

u=1

z I;,g2~KM-12;1—1(\/-N#_1+1\/0?21-{-]4'0 1)(5

v=1

<87EE 2

by the choice of K,
Now, from Lcmma 2 with n =874

[ — A" BH AR > (18721 — a2
and so

1—87#
14+87#

% = -
as stated.
So now, instead of (4), we have a representation
)] lwm 1—A'+ A
with
(10) A= _.Z Y a;,MX“(quj—q_’,-)f_Z > (L gy~ q))-
J<pasKu- J=uasK,

We put s; = acxk,., @;,%% for J< g, and s, = Dask, 4ax" for = p. For
a polynomlai p=73c¢x and keN, we put

=2 exh p=1Y ¢,
i<k ivk

icm
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We write (9) as

{11) 1=1-% sljg;—d)+ Y 8,5~ ), s;lq+ 4"

i<n f=u J=n

We make the following induction hypothesis: if 42 <
1) 3 sl <
i=v

4, then

for v<op,

and now we prove it for v = .
Assume that this is false. Then [Yj=,5,4)1°] > 87" and therefore

(13) T 8% > 18405,
i=n
From (6) and Lemma 5 it follows that €, < 8. Therefore
(14 TH#Y et <8, DAY anft <22
= I=w a  J=u
Let DeN. We have, since degg, < [,
|28 qJ'-”'W gk 2. s)lolw
J=p J=n
= tq# Sjtiu)|D|w < 1‘1;1(_2 5j|1)~,;)|w
J=p J=p
< 01:'(_2 Sj)'-D—#'w = 0’ !Z aja' (Oﬂ“’r‘l ]"2)
J=u “>B B J=n

< Gr (Dmu)4y—D22y.+3 < 1/64

by a proper choice of D = D,, independent (of coursel) of N .
Now, put p, =1~- EJ<#SJ(I 4;—47)- Applying again Lemma 2 with
n=1/8 C=38, we get

|P0+ Z S; "fi'f|n+" Z qqu|D S}quJ‘W'I'l/B

>(1=1/8)[po+ 3. ;91" — T 5,1 lw-
T=u J=u

and therefore

€241/8 = (1 ---1/8)|po+jz O

“

2, Sfliqjlw
Jen

The degree of p,, is at most K,y N,y +p—1. ‘30, it N, > max(D,, K, Ny
+u—1), then

I.Du"']z 5,917 = 3, sk f% = [po +IZ qu'Jln\ijzu siliq s
=g =p =

=4
|2 shaje = | ]Z 554 f%-

=i
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But g;, j’= p, starts with x™. So
|xNu“Z qujiw = [xN“""”*‘Iw/(S“G;), by (13)

i=n

;‘8‘"_9"; N#+1>16,

by u proper choice of N, and this contradicts (i2).
Now, we look at {11) once again. We have

Er ==Y stha= @)+ 2 95~ L skl
=g

i<n f=n
= |1= % stig— )+ L st
J<un J=n
= II “(_Z Sf‘ﬁ')'olw
isp
>0~ Y 87> 3/4
vl

and this proves Proposition 3.

4. The final norm. Let now [|p|| = lim|p|,,, for any polynomial p. We have
the following properties of the limit “norm” |p|:

PROPOSITION 5.

@ Il <l

() Ia,—ajf < /28, for all j>1.

(© I5pll < 2%|pl for ail v, all j, if [=».

(@ lepll < 20p).

© 1l > 1/2.

(fy The norm |-| is hilbertian.

Let now H be the completion of the space of polynomials with complex

coefficients, under the norm |[-|. It follows from (d) that the operator T of
muitiplication by x is continuous on H, and satisfies | T < 2.

THEOREM 6. In the space H, all elements of 12 {except 0) are hypercyelic
Jor T. This means: for every & > 0, every q in [, every g’ in H, there isan N = 1
with
(15) IT™g~g' <e.

Proof. We may assume that the first nonzero coefficient is 1: indeed, if
this coefficient is ¢, we prove that

IT¥(g/c)~q'fell < #/lc].
Now, we observe that it is enough to prove (15) when ¢" has rational

coefficients, because there is such a ¢ with lg"~ 'l <lg"~4g'l, < &/2, and if

[T¥g—q"| <¢&/2, then |T¥g—~¢'| < & We may also assume, of course, that ¢ is
of the form 1/2%, [ = 1.
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So there is a sequence (m);s, of integers in the enumeration with g, . g in
oy @uy = 4’5 &4, = & for all j. We may finally assume that ;= el < 112, 80
n; < ny for j = 1. Let |- [, denote the operator norm from ||| into itself. By
Proposition 5(c}, we have :

1 llop € 2.

Therefore
Wy = 4l K Wy @y~ '+ [ g iy — 4
< /20428 g, —q||
and ¢,,— ¢~ 0,50 L, g—¢'| < 4:/2 for j large enough, and Theorem 6 is proved.

The fact that |-]| is a norm on the space of polynomials follows
immediately from Theorem 6 and Proposition 3. Indeed, for every p, there is an
I'such that ||lp—1| < 1/4, so |llp] > 1/4, and lp|| > [{{o,/4.

Remark., We observe that our construction has the following property,
which we may call “central action™ :

The I; which acts on g; (that is, satisfying for instance |,g,—1] < ¢)
depends only on jand not on j itself. For instance, for a given ¢, the same x™
satisfies [|x"rg—1[| < 1/2 i |yg;~—gl, < 1/2.

This property holds because the “systems” are computed with respect to
the norm [, and not in the final norm. As we will see, such a simple
description is impossible if one wants to construct an operator with all vectors
hypercyclic, and, in this respect, our example has the strongest possible
property.

Indeed, assume that for every ¢ > 0 and every g, there is a polynomial
[ such that if |lg'—g|| <& then |ig—1] <& Then |Hg—g)| <28 and
il < 2.

Now, let p, be a sequence of almost eigenvectors corresponding to some
Aeo(T). So we have |p,J =1, and (x—1)p,—0. Lot [, be the polynomials
satisfying ||I,p,— 1]} < & By the previous computation, |[[l,, < 2. But

1 Cx-= D py = e — D < £ flx—Algp

and since |1/l is bounded, I (x—A)p, =90, thus x|l € ¢fx-4]l,,; a cont-
radiction il originally ¢ was chosen small enough.
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Approximation properties
of the partial sums of Fourier series
of some almost periodic functions

by
PAULINA PYCH-TABERSKA [Pornah)

Abstract. Twao basic classes £, und Ay of functions almost periodic in the Stepanov sense are
considered, For functions of these clagses, four approgimation theorems concerning the pointwise
and uniform convergence of their Fourier series are proved. Also, in the case of uniformly almost
periedic functions, an estimate of the order of strong summability of these series Is obtained.

1. Preliminaries. Let S be the class of all complex-valued functions almost
periodic in the sense of Stepanov ([9], Chap. V). Suppose that the Fourier
series of a function fe8 is of the form

'] 1 r
n fx)~ 3 Ae* with A4, = lim T [ Fe= 2 de
k= Tk 0
and that 0 = 2y < A, < Ay iFhkeN = {1,2, ...}, Mo dy= 00, Ay = —4,,
[Ay+]|A -] > 0. Let & > 0 and f# > 1 be two fixed numbers. Denote by @, the
set of functions of class S, bounded on R = (—og, o), whose Fourier
exponents satisfy the condition

Agiy—Ay z o (keN),
and by 4, the set of those jeS for which
Aaar 2 Pl (keN),
Given any function fe S, consider the following partial sums of series (1):

(2) Sl Sl = 3 * A (neN),
Ak A

Introduce the auxiliary function

2
t Y e £ 3. - . T ' ‘ : |
B ) w2 sin b - A)1 sin5r+ M O<i<ny, |t>0)

1980 Muothematics Subject Classification (1985 Revision), Primary 41A25; Secondary 42A75,



