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Weighted Lorentz norm inequalities for integral operators

by

ELIDA V. FERREYRA* (Cordoba)

Abstract. Conditions depending on the kernel K(x, v) are given for weight functions w and
v so that the integral operator Kf{(x)=[%_ K(x, )f()dy, where K{x, ) >0 is defined on
A = {(x, y}: y < x}, is bounded from a Lorentz space £7((— 00, @), vdx) inte another Lorentz
space L”"‘(( — o0, o), wdx}. In Theorem 1 the kernel K(x, y) is supposed to be nonincreasing in x.
In Theorem 2 the kernel is supposed to be nondecreasing in y. Dual results for the dual operators
are given. Finally, it is shown that the stated conditions on the kernels are not always necessary.

1. Introduction. Our purpose is to find conditions that imply weighted
Lorentz norm inequalities for the integral operators K and K* defined by

1) KFG) = § K, 00y,

(12) K*f(x) = § K(y, x) f(y)dy,

where K (x, y) is defined on 4 = {(x, y) eR?: y < x} and it is nonnegative. Two
kinds of kernels K{x, ), either nonincreasing in x, or nondecreasing in y, are
considered separately. In the last section we deal with the necessity of our
conditions. :

The Hardy operator Tf(x) =[5/, x > 0, and the modified Hardy opera-
tors T, f (x) = x " [3 f. with real 5, are examples of the above operators. Several
authors have obtained inequalities for weighted Lebesgue norms for these
operators (cf. [2]-[4], [7], [9] and [10}). Our results compare with others in
the literature as follows. 1f we restrict ourselves to the Hardy operator, the
sufficient condition (1.3} of Theorem 1 is known to be also a necessary
condition ([8]). The same is true for condition (1.5) of Theorem 2 when
restricted to the modified Hardy operators. If we consider only Lebesgue
norms our results are related to those of Andersen and Heinig [1] as follows.
Our monotonicity conditions on K(x, y) are more general than those in [1],
while the weights considered by Andersen and Heinig are in a class larger than
ours. :
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Before we state our theorems we recall the usual conventions 0:co = Q,
1/p+1/p' =1. In what follows K(x, v} is nonnegative and it is defined on
A= {(x, y)eR* y <x}. The characteristic function of the interval {(a, b) is
denoted by Yewn(-). The norms uvsed below are defined in Section 2.

THECREM 1. Let K be the integral operator defined by (1.1), where K(x, y) is
nonincreasing in x. Let 1<p, g, s<w, 1<r<w, s=1if r=1, and
max{r, s} < min{p, q}. If

sup(f w)'? | K{a, W0~ (M- ou(PLrwm =B < o,

azR a

{1.3)

and v >0 ae. on (—oo,a) if [$w>0, then

(1.4) ” Kf ”LP-‘J(w) g CHfHLr,s(D), for a” f

THEOREM 2. Let K be the integral operator defined by (1.1), where K(x, y) is
nondecreasing in y. Suppose 1< p,g< w0, | €r<w, g=1ip=1, and
r <min{p, q}. If

Sup”K(xa a)X(a,w)(x)ﬂLmq(w)( j. Ul_r')”rl =B< o0,

acR -

where the second factor on the left side of (1.5) is interpreted as |[v™ ¥~ w.allL=w

(1.5)

if r=1, and we add in this case the hypothesis v >0 ae. on (—co,a) if

”K(x: a)x(n.m)(x)HLF-ﬂtw) > 0: then
(1.6) IKSf frosawy < Cll f lery  for all 1.
We also obtain results dual to those above.

THEOREM 3. Let K* be the integral operator defined by (1.2), where K(x,.y)
is nondecreasing in y. Suppose p,q,r and s are as in Theorem 1. If

sup( | W' IK(y, a)o” ' (Mol eem = B < o0,
R —w

and v>0 ae. on (g, o) if [, w>0, then

(1.8) 1K*f N govapmy S Cl S zrmewy, ~ for all f.

THEOREM 4. Let K* be the integral operator defined by (1.2), where K{x, y)
is nonincreasing in x. Suppose p, q and r are as in Theorem 2. If

(1.7

(1.9)

o :
sup [K(a, 1)X(-w.0(Mlereml | v 7)) =B < o0,
acR a

where the second factor on the left side of (1.9) is interpreted. as |v™" o limis f
r=1, and we add in this case the hypothesis v> 0 ae. on (a, o0) if |K(a, y)
X ¥(= ) (P Loy > 0, then

(1.10) IK*f lzoagn < Cll f i, for all f.
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These theorems are proved in Section 3. Before that we introduce some
definitions -and recall some known results in Section 2. Finally, Section 4 deals
with the converses of our theorems.

2. Definitions and auxiliary results. Let (M, 1) be a measure space. Given
4 measurable function f on (M, w), we define the distribution function Ap and
the nonincreasing rearrangement f* of f with respect to u by (see e.g. [6], p.
249)

Ars) = ul{xeM: |f(x)] > s)),  f*@ =inf{s > 0: A,(s) < i}

The Lorentz space IP4(u) consists of all measurable functions f satisfying
1 Lrvagey < 0, Where
a3
[ [ (g/pyer ey di}s, O<p<ow,b<g<m®,
”f“LPr'?(y) = 0
supt' 21 * (1),

>0

D<p<oo,g= .

Note that if p= g then LP(y) is the usual LP(,u)‘ space.
Tt is not difficult to see that the following equality holds (see, for example,

[8], p. 332)

o0
[fgst A (g ds]', O<p<o0,0<g<o0,

0
”f” Loaaquy =
supsi (s)?,

>0

(2.1) .
0<p<co,q= 0.

If1 <p<ooandlsqgoo,orp=q=1orpﬂq=oo,itcanbe‘shown
(see, for example, [5], p. 112) that there exists a constant C > 0 such that

22)  CH|fliumag < sup{|[fadul: 19lewiw < 1} < Cll flleraga-
We will use the following lemma found in [8], p- 333.

Lemma 1. Let (M, p) be a measure space. Suppose q 2 max {r, s} and let

(E,} be a sequence of disjoint measurable. subsets of M. Then

Z “XE,;f“qu-’(n) & ”f”ih'(u)'
K

The measure spaces (M, u) that appear in our theorems are such that
M =R and g is a weighted Lebesgue measilre.

3. Proofs of the theorems. For simplicity, we make the following definition.
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DerINITION 1. We say that a nonnegative function f is K-admissible
(respectively, K*-admissible) if Kf (x) (respectively, K*f(x)) is finite for all x.

The proof of Theorem 1 relies essentially on Lemma 1 and the following
results.

LemmMaA 2. Let K{x, y) be nonincreasing in x. We put
x—=d
3.1) Kof()= [ K, DSOMy, for 60,

If f 20 is K-admissible, then

(3.2) Im K, f(x) S K;f(xp) € lim Kyf(x), for all x,,
(3.3 [ S loagy = Hm | K flizee, for all p,g>0.

d—QF

Proof Fix x, and é. Since

K(x! Y)f(y)X(— m,xwé)(y) S K(xos y)f(y)xlimoo,xu)(y)! fOf x() <x< x0+55

and since fis K-admissible and K (x, y} is nonincreasing in x, the Dominated
Convergence Theorem implies

. Xp—d .

im K, f(x) = :f K(xga_y)f(y) dy < K5 fxo)-

The remaining inequality in (3.2) follows from a similar argument by
considering x,—d < x < x4. The equality (3.3) follows from the fact that if &,
decreases monotonically to zero, then for ail x, K;_f(x) increases monotonical-
Iy to Kf(x). Consequently, 1K, fllimaq tends to [1Kf || e

LEmMMA 3. Let J2 0 be K-admissible with compact support and let § > 0.
Suppose K (x, y) is nonincreasing in x and let K, f be defined as in (3.1). For each
keZ let E, = {x: K,f(x) > 2. Then:

(a) If E, is a nonempty set then it is the disjoint union E, = Ui I¥ of intervals
with nonempty interiors. _

(b) Either NIy =@ or I 571,

(©) If af = inf{e: tel¥} then af > —oo and K, f(a}) = 2%, :

(@ If Ik, j) = {ir I¥ < I™'} is @ nonempty set then we can choose o such
that af ™' < af < df for all iel'(k, j), {(a*77, w5 a disjoint collection of
intervals and K, f (o) = 2.

- Proof (a) The connected components {I¥} of E, are intervals with
nonempty interiors. In fact, it follows from the second inequality in (3.2) that
for each x, € E, there exists an s > 0 such that (x, ¢, x,] is contained in E,.
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(b) Since E, = Ey-q and I¥7' is a connected component of E,.,, we
deduce (b) easily.

(c) Since f is supported on a compact set, we have af > — co. Following
the argument of the proof of (a) we see that af does not belong to E,. On the
other hand,

*< lim K f(0)< Kf (@)
X (af)
by (3.2). Thos (c) follows,

(d) Let of = inf{af: ieI'(k, )}. Then using the first inequality in (3.2), we
deduce that K, f (o) = 2% So of > o}~ * holds. Since (@57 ", of) & Er— 1 —E,, we
have K, f (¢f) < 2% by the second inequality in (3.2). It just remains to prove
that the collection {{af™*, &)}, is disjoint. But (af %, of) = A (B —Ey),
and the latter sets are clearly pairwise disjoint.

Proof of Theorem 1. It is quite clear that we can restrict ourselves to
f>0, feI*(v), f with compact support and w # 0. Moreover, it is enough to
prove the theorem for K-admissible functions. To see this, we take f= 0,
fels@) and define f; = fi(- w.5 -9 where ¢ >0 and x, = inf{x: [Fw =0}
Note that if [¢w >0 for some x, from (1.3) and (2.2) we have

Kf) = | Ko 9000~ (w0 dy

s CHK(X: y)U—1(.V}X(~oo,x)(y)"L"'-"(u) “f”L""(U} < .

Then, it turns out that f, is K-admissible for all ¢ > 0, since Kf(x) = 'Kf (x) < o0
when x < x,—¢ and Kf(x) < Kf(x; —g) < otherwise. Assurpmg thek in-
equality (1.4) to be true for all f;, we may deduce the same inequality for f, since
from (2.1) we have

VKT Naaon < 1K (2 o) pn = 10 1K (fMlaraco

Let K,/ be defined by (3.1 We will prove that
(1.4Y K flraon € ClL s

where ¢ does not depend on & or f Then, from (3.3) we obtain (1.4). .

[n order to show the validity of (1.4Y, we take 6 > 0 and a nonnegative
K-admissible fupction f in I¥(v) supported on a compact set. Suppose
1< ¢ < oo, Then (2.1) and Lemma 3 imply

e}
1K f [y = a § 87 s ()7 ds < € §2k“( w)ur
0

CKaf>249
=CcYony Y [wrsl,

k J ierth.) I¥
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where

1= CRET 2w

kJ af
By (¢) and (d) of Lemma 3 and by the fact that K (x, y) is nonincreasing in
x, we obtain

oc~?i

C I K(aj,y)f(y)dy

J'

= C[K,f(oh)— K f (@] €

Thus

=3

r<eSis( ] K6

Then (2.2) and {1.3) give

ayp({ Wy,

I
J

R

I<Cy [} 0o, ,‘_a)ﬁiu(u)lIK(aihy)v"l(y)x'_ ) Iliu(v (J w)]eP
k aj & ) . (— o0,

< CB"Z(Z Ifx Bt sk H{ns(u))q"p < Che ”f”%m(u)-
PR (@5 *—aaf—a)

The Jast estimate follows from Lemma 1 and (d) of Lemma 3. The case g = co
with p < oo is established by a simple modification of the above argument. The
case g = p = co is deduced easily. Thus Theorem 1 is proved.

The following lemmata are needed in the proof of Theorem 2.

LemMMA 4. Let K(x, y) be nondecreasing in y. We put

(4 1509 = | K&, 91 0)dy,

Jor 6> 0.
x+d
If f =0 is K*-admissible then
(3.5) lim K3 £() <K3f00) < lim KEF(),  for all x,,
(3.6) HE* Neriagy = Bm K} fllsa, for all p, g > 0.
d=o+

The proof of this result is almost identical to that of Lemma 2.

LeMMA 5. Let f 2 0 be K*-admissible with compact support and let 6> 0.
Suppose K(x, y) is nondecreasing in y and let K¥ f be defined b y (3.4). For each
keZ let Ef = {x: K} f(x)> 2*}. Then:

(@) If EY is a norempty set then it is the disjoint union Ef =
intervals with nonempty interiors.
(b) Either JinJ5™* =@ or JEc Sk 1,

() If bf= sup{t teJ¥} then b < oo and K¥ f(bh) = 2,

Uzj{‘c of
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{d) If I'*(k, j) = {i: J* < J* '} is a nonempty set then we can choose f§% so
that b% < % < BY for all iel™(k, j), {(BY, b~ ", is a disjoint collection of
intervals and K§ (% = 2%,

The proof of this result is similar to that of Lemma 3, only now we apply
Lemma 4 instead of Lemma 2. The details are omitted.

Proof of Theorem 2. It is not difficult to see that under our hypotheses
the inequality (1.6) is equivalent to the duval inequality

(1.6) o™ K*(gwll oy < Clglrenwins

where K* is the integral operator defined by (1.2).
Suppose that 1 < r < 0, v # o and take g 2 0, ge IV (w) with compact

for ali g,

-support so that gw is K*-admissible. It is sufficient to prove (1.6) for such g.

This reduction is similar to that in the proof of Theorem 1. It is accomphshed
by showing that g,w is K*-admissible, where g is nonnega‘uve gelf ' (w) and
9o = Glry +e.ep With &> 0 and x, =sup{x: [X o' ™" =0}

Let 6 >0 and define K} by (3.4). We will show that

(1.6)" . o le* (gw)| L~ w = < Clglise (s
where C is independent of 6 and g. Then letting §—~0", we get (1.6).
Applying Lemma 5 to the function f = gw, we get
o7 Kf (gw)zr < CZZ""( [t

[EX(gw) > 2}
—~CTY 3 ([#T)<L
j ek JF
where
B

1=CET(f o)

Using parts (¢) and (d) of Lemma 5, and recalling that K(x, y} is
nondecreasing in y we have

bt +a
= C[K}(gW)(B5)—KFgw)Bi~ N1 < C ﬂf K(y, Bg(y)w(y)dy.
Thus '
P t4a
ISCELL | Kby Bawiidy] H o]
PR LY

K

-
Mgl | 5277

-0

< e | K By

- C%; Iigx(ﬂ’;w,n’;“*m”” “w KD, ﬁ“’)x(ﬁ’j‘-m)
! . r g Yo

< CH zk:; “gx(ﬁ?_"‘a'b?_1+6)HLP',Q-{w) < CB [ glLraow

y (2.2), {1.5), part (d) of Lemma 5 and Lemma 1.
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Although the proof for r = 1 is similar to that found in Sawyer [8] for the
modified Hardy operators, it is worthwhile to include it here for the sake of
clarity. We have

o™ K*(gw)ll gy < SUP 107 1 - o pll o K* (gw) (@)

ack

=5up [0 Y- wllzew | Ky, adg(yw(y)dy

aeR

& Csup liv

acR

5 CB”g]!va.q-(w),

where the last two inequalities follow from (2.2) and (1.5) respectively, This
concludes the proof of Theorem 2.

" ol Lo LKV @)oo ) oy || 9 Lov iy

The proofs of Theorems 3 and 4 mimic those of Theorems | and 2. We
discuss this briefly.

Proof of Theorem 3. The proof of (1.8) when ¢ < oo is similar to that of
(1.6) in Theorem 2. And a simple modification of this proof deals with the case
of g = o0 and p < oo. Fmally, the inequality (1.8) in the case of ¢ =p == o0 is
easy (o establish.

Proof of Theorem 4. Under our hypothes1s the inequality (1.10) is
equivalent to

(1.10y o™t K{gw)lirr o) < Cl gl orons

This inequality in the case of r > 1 is proved similarly to Theorem 1. The case
of r = 1 for (1.10) is established with the method fot proving Theorem 2 in case
r=1

for all g.

4. A counterexample. In this section we prove that the converses of
Theorems 1 and 2 do not hold. Moreaver, our counterexample shows that the
converse of Theorem 2.1 of Andersen-Heinig [1] does not hold either. We start
with the following.

PROPOSITION. Let K be the integral operator defined by (1.1), where K(x, y)
= @x)y(y) with ¢ 20 and > 0. Suppose 1 <p,g< 0, g=1 if p=1,
l<r<co and r <min{p, q}. Then

(4.1) IES o wwy € ClSf Nlerwys  Jor all f,

if and only if '

(4.2) SUp [| @t a, ol el § W0t TP =B < o0,
acR —-m

where the second factor on the left side of (42) is thought of as
o™ x= w,mll L) i ¥ = 1, and, in this case, the hyporheszs v>0ae in(—c,q)
is added gf ”‘PX(a ) ||LP A{wy > 0.
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Proof. {(4.2)=(4.1). The case of r > 1 follows by applying Theorem 2 with
K(x, ¥) = ¢(x) and weights w and v ~"o. The case of r = 1 follows the proof of
Theorem 2 in the case of » = 1.

The proof of the converse is a simple extension of that given by Sawyer for
the modified Hardy operators (see [8], Theorem 4).

Our counterexample is as follows. For each 1 <r < p = g < oo we will
choose weights w and v and positive functions ¢ and  such that ¢ is
nonincreasing, i is nondecreasing, and (4.2) is satisfied while (4.3) is not, where

(4.3) inf sup (@) APl [0 %l Leon( | Ya= il =i = B < a0,

0£0<51 acR —o

Condition (4.3) is the sufficient condition found by Andersen—Heinig for

the case of K(x, y) = @(x)ij(y). Let
1 y=<1
=1 =4 ?
w . v {y,,l y=1,
where # > LA —~1). Let
1, x <1,
(,D()C) = {( Z 2“"(05"-_—1)/35“"')1/9, Xz 1,
n=1

where 1 <a, <2 and «,l;

1 y= -1,
vi = {lylv y< —1,

where y > 1/g+1/r.

It is rontine to show that [ @, ) llzeqw is bounded by 1if a 2 1, and equal
to (2—a&)'* if a < 1. The expression ([* , "' v* ~")*" is bounded independently
of a if az —1, and proportional to |a§1"’ Fif g —1,

Then (4.2} follows since if a € —1 then

a4
” (PX(a.m)“La(w)( J‘ l/{r'uﬂl—r’)llr' < CIa;l/q+ W=y & 00,
and if a > —1 the expression on the LHS is also bounded independently of a.
Finally, it is easy to check that (4.3) does not hold since for all real a the
norm - [ 0" ¥ wyllzay =0  when O0<f<1 and {2yt omyt-r
= £ ot' ™ = o when f=1
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An axiomatic definition of the entropy
of a Z'acticn on a Lebesgue space

by
B. KAMINSKI (Torus)

Abstract. We introduce the concept of a principal factor for a Z™action and we use
a charecterization of these factors to obtain an axicmatic definition of the entropy of a Z*-action,
d=2

Introduction. The notion of the entropy of a Z‘-action on a Lebesgue
probability space has been introduced by A. N. Kolmogorov in {9] for d =1
and then generalized by several authors ([1], [7], [11], [12]) to arbitrary d = 1.

In this paper we give an axiomatic definition of the entropy of a Z-action
for every d 3 2. Our result is an analogue of the result of V. A. Rokhlin ([147).

To obtain our result we first prove the existence of relatively perfect
partitions for a given Z%-action. Next we introduce a concept of a principal
factor and, using the above result, we give a characterization of principal
factors by means of entropy. This characterization and the generalized Sinai
theorem {[8]) allow us to obtain, by the use of the Rokhlin idea ([14]), our
axiomatic definition of entropy.

Our result i3 an example of a result of ergodic theory obtained by
a relativization method also used by other authors (see [2], [3], [1¢], [16],
£17]).

The author would like to express his thanks to A. M. Stepin for some
remarks which allowed him to improve the original text.

§ 1. Preliminaries. Let (X, 4, y) be a Lebesgue probability space, let
4 be the set of all measurable partitions of X and let 2 be the subset of
4 consisting of partitions with finite entropy.

We denote by s the measurable partition of X into single points and by
v the trivial measurable partition whose only element is X. = ...

Let < denote the lexicographical ordering of the group 74, d > 2. Let
eeZ? be the ith standard unit vector. We put

= {gm(ﬂ‘ll, ...,md)ézd;‘mi =L L= mn=0})
71 ={geZ’; g <0}.

1<n<d,
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