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An axiomatic definition of the entropy
of a Z'acticn on a Lebesgue space

by
B. KAMINSKI (Torus)

Abstract. We introduce the concept of a principal factor for a Z™action and we use
a charecterization of these factors to obtain an axicmatic definition of the entropy of a Z*-action,
d=2

Introduction. The notion of the entropy of a Z‘-action on a Lebesgue
probability space has been introduced by A. N. Kolmogorov in {9] for d =1
and then generalized by several authors ([1], [7], [11], [12]) to arbitrary d = 1.

In this paper we give an axiomatic definition of the entropy of a Z-action
for every d 3 2. Our result is an analogue of the result of V. A. Rokhlin ([147).

To obtain our result we first prove the existence of relatively perfect
partitions for a given Z%-action. Next we introduce a concept of a principal
factor and, using the above result, we give a characterization of principal
factors by means of entropy. This characterization and the generalized Sinai
theorem {[8]) allow us to obtain, by the use of the Rokhlin idea ([14]), our
axiomatic definition of entropy.

Our result i3 an example of a result of ergodic theory obtained by
a relativization method also used by other authors (see [2], [3], [1¢], [16],
£17]).

The author would like to express his thanks to A. M. Stepin for some
remarks which allowed him to improve the original text.

§ 1. Preliminaries. Let (X, 4, y) be a Lebesgue probability space, let
4 be the set of all measurable partitions of X and let 2 be the subset of
4 consisting of partitions with finite entropy.

We denote by s the measurable partition of X into single points and by
v the trivial measurable partition whose only element is X. = ...

Let < denote the lexicographical ordering of the group 74, d > 2. Let
eeZ? be the ith standard unit vector. We put

= {gm(ﬂ‘ll, ...,md)ézd;‘mi =L L= mn=0})
71 ={geZ’; g <0}.

1<n<d,
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136 B. Kaminski

Let @ be a Z%-action on the space (X, #, y), ie. @ is 2 homomorphism of
the group Z‘ into the group of all measure-preserving automorphisms of
(X,%, p)andset P, =P|ZI, 1 <n<d. Let T,= &%, 1 <i<d Itisclear that
& = T ... T where g = (m,, ..., m)eZ".

For a given set A = Z* and a partition Pe.# we define

P(A)=\/o°P.

ged
Let

Po=P(Z), P~ =Psg=PZ.), P'=P@) 1<n<d

Thus the partition P" is the join of all partitions Tinzt... THP where e Z,
n+1 < k<d In particular, P/ = P,

Now, let ae# be totally invariant, ie. $'o = 0, ge Z*, and let ¢, be the
factor of @ defined by o. For a given Pe.# we put

S d
P= AV T"P95, v o).
n=0 k=1
In other words, P is the tail partition given by P and 6.
Now we recall the concepts of the relative entropy and the relative Pinsker
partition ([6]).

The relative entropy h(®|o) of the action & with respect to ¢ is defined by
the formula

h(®lo) = sup{h(P, Plo); PeZ} where
h(P, o) = H(P|Ps v o), Pe.Jk.
The partition A

n(Pjo)=\/ P where A4 ={Pe%; h(P, Plo) = 0}
Pe.t”

is said to be the relative Pinsker partition of the action @ with respect to o.
tit is ea(t;}lf ;o cilbserve th}?t in the case ¢ = v the entropy h{®Plo) and the
partition n{&lg) reduce to the usual e i artiti
N oo ntropy h(®) and the Pinsker partition
- Now, let us note some properties of the relative entropy and the relative
Pinsker partition used in the sequel,
Let P, Q, Re? be arbitrary.

(A) h(P v Q, 0lo) = h(P, dlo) - H(OI0=
B 11 P ey a) =P, el +H(QI0 v Py v o).

lim H(P|Qe v T7 "Ry v o) = H(P|Qg v o).

"=

© F< (D).
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Let G, be a subgroup of Z¢ of finite index r and let @' be the restriction of
@ to G, r=1.

(D)} h(P, &o) < r-h(P, o).

(E) If Pe% is such that Py, v ¢ =g then h(P, ®jo) = h(P|o).

(F) h(®) = h(®,)+h(D|0).

(G) For any totally invariant partitions o, 1=1, 2,

h(P, ®ln(Plo,) v 0,) = h(P, Blo, v 0,).

The proofs of (A)~«(E) run in the same manner as in the case ¢ = v {cf. [1]).
(F) and (G) are proved in [5] and [4] respectively for Z'-actions. The proofs
for arbitrary 4 » 1 are the same.

(H) If P, QeZ and h(P, ®lo) = O then H(QIP) = H(Q|D).

Proof. For neN let ®" be the restriction of & to the subgroup
{(nmy, ..., nmp); (my, ..., mpeZ?}. Let PcZ and h(P, @|s) = 0. It follows
from (D) that h(P, "o) = 0. Set

P, =Py, P, =Pgn
Let e % be arbitrary. Using the property {A) we have
h(Pv @, @"0) = h(P, ")+ H(QIQ, v P, v a)
=h(Q, ®"e)+ H(P|P, v 3,V 0).
Hence A(Q, @"l¢) = H(Q|Q, v P, v o) and so
HQIP) =z H(QIQy v P, v o) = H{QIQ, Vo)

d .
>H(Q V T @), >l

Therefore taking the limit as n— oo in the last inequality we obtain H(Q|F)
= H(0|0), which completes the proof.

§ 2. Relatively perfect partitions, First we recall some notions from [4].
A partition { e # is said to be invariant if P < { for every g < 0. It is
easy to check that this is equivalent to ;7' <(, 1 €i<d
A partition {e.# is called strongly invariant if it is invariant and if
Vo' = Ao
ged geB
where the sets A, B form a partition of Z* such that g < h, ge A, he B, A does
not contain a greatest element and B does not contain a smallest element. It is
easy to show that this condition is equivalent to

A L= TIA0, 2<k<d.
=0
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A partition {e.# is called exhaustive if it is strongly invariant and {; = .

The results of Lemmas 1, 2 and of Theorem 1 together with some remarks
about their proofs in the case ¢ = v have been announced in [4]. However,
especially in the case of Lemma 1, the complete proofs even for g = v need
additional considerations. For this reason and for completeness we give the
proofs with some shortemings.

LemMA 1. If a partition {e.# is exhaustive and { = a then

A T > n@l).

n=0

Proof let P, Q,e ¥ and let r; be a positive integer such that
P, < n(®la), P,<Qimy, 25i<d,

Q_j g T_;'rj{:j7

The fact that £ > ¢ and the strong invariance of £ imply

1<j<d.

{1 O, < A\ Tl= TR
r=0

Since P, < @,—; < Ty*3{?™*, the property (C) implies h(P,, Plo) =0 and so

2 TP, <Y, BT Py, $lo) = 0.
By (1), (2} and (H) we get
(3} HQJIT ¢ Py = HQ0) = H(QITh (7Y,

Since Q; < Te{8 = TJ°{ we sec that the inequalities (3) are satisfied for Q,
running over a dense subset of the set

{(Pe%; P<{p, =01

Therefore they are satisfied for all partitions in this set. If we take in (3), in
particular, @, = T,~"f~*P, we obtain P, < Tyay' ~*{* %

Repeating this procedure we get

P, < T4t forall nz 1.

Using again- the fact that { is strongly invariant we have
P, < /\ '1:1:”1@—1 == TdilzC‘M-
n=0

Thus we have shown that P, < T,250%72 for P, < 0,y ie.
(4) Oor < TR

Repeating d—3 times the considerations above we get §, < Ty (',
h(P,, Plo) =0 and so
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H(Q,|T ™ P} 2 H{Q1100) = H(Q|TT LY.

Since 0, < T3*¢? the last inequality is satisfied for all Q, in a dense subset of
{Pe#:; P < (). Hence, as above, P, < A2 T7"L de. O, < Ao T 0
Thus using the equality A(P,, ®lo) =0 we get

(5} H(Q,iPy) = H(Q,10,) = H(Q4] ?\ ).
n=0

Since { is exhaustive, applying again the density argument we may take
Q, = P, in {5). Hence we cbtain

TR,

>z

P, <

n=0

which completes the proof.

LemMa 2. There exists a measurable partition n = o which is invariant,
generating and such that

(a) /\f=0T1M"7T(‘151|’?1) < n(®lo),
(b) h(®ic) = Hiyln "y = H@lT 'x).

Proof Let (P)e Z be a sequence such that P, ~ & Using the property (B)
we may construct, similarly to [15], a strictly increasing sequence (n;) of
positive integers such that

(6) H(Q,07 v o)—H(QIQ k41 v o) < 1T,
where @, = \/}=1 T7™P, and 07 = (@), 7> 1. We put

s=0,

<8

Q:

[}

0., #n=0vQg vou.

r=1

1t is clear that the partition g is invariant, generating, ie. 5, = ¢, and # > o.
Now we check (a). Since @7 vo 7 Q~ vo=r1n" the inequalities (6) give

(M H(QI07 vo)-H@ 7)< 1fr, r=1.

Let Pe# and P < Ao T, "n(®,int). The last partition is of course totally
invariant with respect to @ and so

Pq) '-<. /\ ﬂ;(@llq}_nyll) s‘ ﬂ:(dill(nl);y.)
n=0

The property (A) implies .
(8) (P, Blo) = h(Q,, Plo)—H(Q,|Q7 v Py v o)+ H(P|P™ v{(Q,)g Vv o).
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The use of () to the action P, gives
H(Q07 v Py v o) 2 H(Q)Q7 v n(d,[0r")7,) v o)
= m@,. #,|@)7. v 5(®,1(Y)7, v o))
= hQ,, ,|(@)7, v ')z, v o)
= H(QI0, va~ va)=HQ,ln"),

Applying this result and (7) in (8) and then taking the limit as r— oo we get
h(P, @lo) =0, ie. P < n(P|o). This proves (a).
In order to check (b) observe that

Pr “<~ Tl"rQr’ Qr g- T‘l—nipr VoLV T‘J“KPP

r=1.

P

Therefore (P,)g = (@,)s and so h(P,, @lo) = h(Q,, B|s). Hence, using the fact
that P, 7z and Q, Q0 we get

lim H(Q,/0. v o) = h(®ls),

oo

lim H{Q,In") = H(QIQ™ v o) = H{nly").

rerap

Then, taking in (7) the limit as r— oo we obtain (b) and the proof is complete.

DEFINITION. A partition { e .# is said to be relatively perfect with respect to
o if { is exhaustive, { = ¢ and

@ /\ff':o Tt = w(Plo),
(i) h(Ploy = H().

It is clear that a partition relatively perfect with respect to ¢ = v is perfect

(cf. [47).

THEOREM 1. For every positive integer d, every Zi-action on (X, #, 1) and
every totally invariant measurable partition of X there exists a relatively perfect
partition. with respect to this totally invariamt partition.

Proof We prove the theorem by induction on 4. The proof for d =1 is
similar to that of the Rokhlin-Sinai theorem {f. [157).

Suppose our theorem is valid for 4—1. Let & be an arbitrary Z“-action
and ce.# an arbitrary totally invariant partition of X. By Lemma 2 there
exists' a partition ne.# which is invariant, generating, n = ¢ and such that

© A T (@) < m(dlo),
n=0
(10 h(@lo) = Higly ™) = Hrl Ty )

Now we apply the induction assumption to the space X /m(®,|n?), to the action
@, and to the totally invariant (with respect to ®,) partition Ty 'x(P,|n').

icm
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Hence there exists a partition {e.# with the following properties:

{11) T (@) < { < m(@ylnY),
(12) { is strongly invariant with respect to &,
(13) (' = (@),
(14 A T = T (@, i),
n=0
(15) h(@ T P n(@yfn") = H{lia,) = HEIT ).

It follows from (11) that { = ¢ and Ty *{? < {. Therefore using (12) we see that
¢ is invariant with respect to @. The strong invariance of { readily follows from
{12}-(14). Now we check that

(16) /m\ T = n{Blo).
n=0

Since ¢ = o and [ is exhaustive Lemma 1 gives /Ao 77" = m(d|o). On the
other hand, (9 and (13) imply

e o
Tt = A T n(@4n') < n(Plo),
a n=0

n=

and so (16) holds.
It remains to show the egnality

h(@lo) = H({l{e) = HUT D)

It is clear that it is sufficient to show the inequality h(®le) < H({|T, 1)
First we show ‘

(17) B(®,| T (B, 1nY) = HolTe ).
Let PeZ and P < . The invariance of n and (G) give
h(@dT{ln(&bl!nl)) = h(P, @l]T{‘lﬁ@lml))
= H(P|P3, v T, 'n(®,n")
= H(Plng, v T ')
= H(P|T; 'n).

Let (P,) = & be such that P, ~#. Replacing P by P, k> 1, in the last
inequality and taking the limit as k—co we get (17).
Now, combining (10}, {15) and (17} we have

h(dlo) = HO T ') < R(DTT ' n(@,n") = HUTD),

which completes the proof.
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§ 3. Principal partitions and an axiomatic defivition of entropy

DermrTion. A totally invariant partition oe.# is said to be principal if
every strongly invariant partition {e.# with [ = ¢ is totally invariant,

A factor ¥ of the aétion @ is said to be principal if every totally invariant
partition ¢ such that ¥ and ¥, are isomorphic, is principal.

THEOREM 2. If an action ¥ is a principal fuctor of @ then h(D) = (V). In the
case h(P) < co the comverse theorem is also true.

Proof. Let ¥ be a principal factor of ¢ and let ce.# be a totally
invariant partition such that ¥ and &, are isomorphic. It follows from
Theorem 1 that there exists a partition {e.# with { > ¢ which is strongly
invariant and A(®e) = H({{|{7). By our assumption { is totally invariant and so
h{®|a) = 0. The property (F) implies

h(®) = h(P}+ h(Pla) = h(®,) = h(¥).

Now, suppose #{P) < co. Let ¥ be afactor of & such that h{(¥) = h(®P) and
let o be a totally invariant partition such that ¢, and ¥ are isomorphic, Using
again (I} we have

h(P|6) = h{B)—h(¥) = 0.

Let{ > o be a strongly invariant partition. Since H({|{™) < h{®|o) =0 and { is
invariant we have T;"'{ = {~ = {. This equality and the strong invariance of
{ imply { is totally invariant, which means that ¥ is principal.

COROLLARY. If h(®) < oo and &, is an ergodic factor such that every element
of ¢ is u finite set then &, is principal. '

Proof. It follows from our assumption and the Rokhlin theorem ([13])
that there exists a finite partition P such that P v ¢ = & Using the property (E)

we have h{®|o} = h(P, &|o) = 0 and so, applying (F) and Theorem 2, we got the
result.

The following example shows that Theorem 2 fails to be true if we replace
strong invariance by invariance in the definition of a principal factor.

ExAMPLE. Let (Y, #, A ¢) be an arbitrary dynamical system with
h(p)=0. Let (X, 4, u, T) be a Bernoulli dynamical system with state space
(¥, #,4). Let @ be the Z*-action on X defined by the formula

¢ =TS, g={,jek

where (S, x)(n) = (px)(n), ne Z. It is known (cf. [1]) that h(®) = h(p) = 0. Let
o=v. It is clear that h(®) = h(D,).

We want to show that there exists an invariant partition { of X which is
not totally invariant. Let Q = {Q,, Q,} be a nontrivial partition of ¥ and let
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P = {P,, P,} be the partition of X gven by

P, ={xeX; x(0eg}, i=0,1

The partition C\:» P v Pg is of course invariant and, since k(g) = 0,_we h-ave_
§-1¢ = {. However, { is not totally invariant. Indeed, if ¢ is totally invariant
then T~ =, ie. Pgv (Pgy = (Poy . 1t follows from the definition of u t.hat
the partitions Py and (Ps)y are independent. Therefore P is a trivial partition,
contradicting the nontriviality of Q.

We denote the set of all ergodic Z*-actions on Lebesgue probability spaces
by ActZ’. Let @, be the Bernoulli Z-action defined by the ve‘ctor &, .

Applying the generalized Sinai theorem concgrn?ng Bernoulli factors ‘(cf.
[8]) and Theorem 2 we may prove, using the Rokhlin idea ([14]), the following

COROLLARY. Let H: ActZi—[0, oo] be a function such that H($,) =log2
and for all ®, ¥eActZ? the following cqnditions are satisfied:

G) if ¥ is a factor of & then H(®) > H(?),
(il) if ¥ is a principal factor of @ then H(®) = H(¥),
(i) H(®x )= H(®)+H(P).

Then H(®) = h(d), PeActZs
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Boundedness of classical operators on classical Lerentz spaces

by
E. SAWYER* (Hamilton, Ont.)
Abstract. The classical Lorentz space A ,(v) consists of those measurable functions f on R”

such that ([ /*(x)ye(x) dx)? < co. We characterize when a variety of classical operators, including
Hilbert and Riesz transforms, fractional integrals and maximal functions, are bounded from one

" Lorentz space, A ,{v), to another, A _{w). In addition, we give a simple and explicit description of the

dual of A,(v) and determine when A,(v) is a Banach space.

§ 1. Intreduction. For 1 <p < oo and v{x) a nonnegative function on
(0, co), the classical Lorentz spaces A ,(v) on R", introduced and studied by G.
Lorentz in [7] for the intervals (0, ), 0 <1< oo, are given by
A, (v) = {f measurable on R™ ([ /*{x)"v(x)dx)'” < co},

0

where f*(x) = inf{A: |[{teR": |f ()] > 4}| < x} is the nonincreasing rearrange-
ment of f on (0, oo) with respect to Lebesgue measure on R” (|E| denotes the
Lebesgue measure of a set E). M. Arifio and B. Muckenhoupt observed in [2]
that the Hardy-Littlewood maximal operator M, defined by

Mf(x) == sup{|Q17* [1f(»)dy: Q is a cube in R" containing x},
2

is bounded from A4,(v) to A (w) il and only if

(1.13 (j (x~*frf@ dt)"w(x)dx)”‘f < C(f f (=) v(x)dx)'?

0 0 0

for all nonnegative and nomincreasing functions f on (0, o). Indeed, this

follows immediately from the rearrangement inequality for the maximal

function ([6], [12] and [15])

Cyx~1 [f*(0) dr < C,(Mf)*(x),
0

(L2) {MfP(x) < x>0,
coupled with the fact that every nonincreasing functibn f* on (0, oo) occurs as
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