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On generalized canonical commutation relations
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Abstract. We prove that the generalized Heisenberg canonical commutation relation implics
the corresponding generalized Weyl canonical commutation refation if the momentum operator
possesses @ suitable set of analytic vectors,

1. ¥ntroduction. Let P and Q be two selfadjoint operators in a Hilbert space
H with domains D(P) and D(Q), respectively, and let ¢ be a real number.
Suppose that P, ¢ and ¢ satisfy the Weyl canonical commutation relation:

(WCCR) eisP eitQ - eicsteilQ e!sl’ (S, te R)

Then, as a simple argument shows, there exist various linear subspaces D of
D(P)~ D(Q) such that P(D)wQ(D) = D, the restrictions of P and @ to D are
essentially selfadjoint, and

(HCCR) PQf~QPf=icf

for any fe D. The latter identity is called the Heisenberg canonical commutation
relation, _

A question significant for applications in physics is under what conditions
on D, (HCCR) implies (WCCR) (cf. [P]). The present paper deals with this
problem in a more general setting in which the operators P and @ act in
a Banach space and the commutator of P and @ is an arbiirary (not necessarily
scalar) bounded operator commuting, in a natural sense, with P and Q. Such
a situation was considered also in [J-M7]. The main result of this paper asserts
that if all elements of D are analytic vectors for P (or for ), then the
implication in question bolds. That it holds if D is a set of analytic vectors for
both P and Q is a corollary to some results on integrability of Lie algebra
representations (¢f. [N, R, 8])

2, An auxiliary result. Let E be a Banach space and 4 a linear operator in
E. We recall that an element x of (2% D(4") is called an analytic vector for A i
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for some ¢ > 0.

1980 Mathematics Subject Classij’fcat:‘bn (1985 Revision): Primary 47103, 47D40.



176 J. Rusinek

THEOREM 2.1. Let E be a Banach space, and let A and B be two linear clo-
sable operators with common domain D such that A(DYUB(D) = D. Suppose that
each element of D is an analytic vector for A, and the closure A of A is the
generator of a strongly continuous one-parameter group (€' )‘ER Suppose, more-
over, that there exists a linear bounded operator Tin E such that for each fe D,

2.1 BAf—ABf=Tf, ATf—TAf=0.
Then, for each teR,
{2.2) ¢4(D(B)) = D(B)

and, for each feD(B) and each teR,
{2.3) B f = et4(B41T) f.

Proof. We first prove that for each teR, T commutes with e'%.
Given feD, let ro(f) be the radius of convergence of the series
ot A" |. Then for |f| < ro(f) we have

et‘zf 2 n'

Indeed, both sides are local solutions of the Cauchy problem du(z)/dt = Ault),
uf0) = f. Since 4 is the generator of a strongly continuous group the solution is
unique. 3

Since, by the hypothesis, r,(f) is positive, we see that ¢'! and T commute if
|} is sufficiently small. Now the general case follows upon applylng, for each
teR, the identity ¢! = (¢ with neN sufficiently large.

Given feD, let

r

r(f)=
We shall prove the following

min {ro(f), ro(Bf)}.

Fact 1. For each feD and each meN, we have
rold"f) =ro(N),  ri(d"f)=r(f).
Proof. The first statement is obvious. To prove the second, note that
24 BA™f— A"Bf = mTA™"'f.
Thus |
r1(A"f) 2 min{ro(f), rolA™ Bf), ro(mTam=11)}.

But, cleatly, ro(4™Bf) = ro(Bf). Moreover, | TA™ | < ||T| [ 4"~ 4f |, and so
ro(mTA™ 1) = ro(f), completing the proof.

Regard D(B) as being the completion of D under the norm 1|, = | f}
+ B (feD). ' '
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Now we prove the following

Facr 2. For each /E‘:D [f |If|<~r1(f) then the series ZFT 0 tn/H')Anf is
absolutely convergent in D(B) to ¢4 and, moreover,

BetAf = ¢A(B+1T) f.
Prool Let feD and |t <r (/). Then, in view of.(2.4), for any NeN,

e

) n!

------ A+ L G AL

ne ()

I we let N -+ t£>, then the first series on the right-hand side converges whenever
o] < i (B) and the second converges whenever |t| < r,(f). Hence both series
converge provided {t| < r{f). Noting that

X A1 ks I
BeAf =y -;;—A”Bj»%«TE 1)!,4" '
1 ={) n=1

= ¢ Bf 4t Tedf e ¢ 4B+ (T) f

completes the proof.

(1 <7

Given feD, let R(f) be the greatest element of Ru{+ o0} such that if
lt| < R(f) and meN, then
(2.5) ¢4 A" f e D(B)

(2.6) Bt A" = eA(B+1T) A",

Facts 1 and 2 ensure that R{f) > r,(f) > 0. Let |s| <'r,(f), It#! < R(f), and
meN, Since ¢4 A™f is an analytic vector for A such that the radius of
convergence of the corresponding series is not less than r,(f), it follows that

PACh fnA Amf l\j ""-A" 14 Amf

u‘?‘O
Moreover, for each N e N,
'l ,’n L]
2: . An(,lA A"'f Z ulAn + mf
ne g rl"'ﬂ()

is an element of D(H) and, in view of (2.6),

B 2: ‘2 ”,fAAnlmf Z " IEMBA“'"] ‘r'lGMTZ An-i my,

#e0 ! awo 1t

AF we et N - oo, then the second sum on the right-hand side converges to

t’é’“ 1}33}{ A"'_f‘ = tal Y TA’"_f,
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In view of (2.4), the first sum is equal to

i'l

tA n m
Z A BA™f+¢ 5
and converges, as N — o0, to
STIAB TS s d TR A7 f = 8P OA(B 4 ST) A"S.

We thus see that (2.5) and (2.6) hold with t replaced by s+t Hence
R(f) > R(f)+r,(f), and so R(f) = + co. Letting m = 0 in (2.6), we obtain for
any feD and any teR,

Be'df = ¢4(B+1T)f.
Moreover,

les s < Lf 1+ 1 3B7 1+ TR < Cle Il 15

where C is a constant depénding on ¢, which implies (2.2) and (2.3).
The proof is complete.

3. The main result. We now state our main result.

THEOREM 3.1. Let P and Q be the generators of strongly continuous groups
e and e'? respectively, acting in a Banach space E. Let D be a dense linear

subspace of D(P)D{Q) such that P(DYU Q(D) = D and such that the closures of

the restrictions of P and Q to D are equal to P and Q respectively. Suppose that
each element of D is an analytic vector for P. Suppose, moreover, that there exists
a linear bounded operator S in E such that for each feD,

3.1 QPf—-PQf=Pf, PSf—SPf=0, QSf~SQf=0.
Then for all t,seR we have
(3.2) g9 f = W5 F gl

Proof Applying Theorem 2.1 to A =P, B=0, T= Sand nextto 4 = §,
B =@, T=20 (notice that in the latter case each element of E is an analytic
vector for A), we obtain for any s, teR,

(3.3) e"D(Q) = e D(Q) = D(Q)
and for any s, teR and any fe D(Q),
G4 Qef=eT(Q+sS) f,  Qef=e"Qf.

Given seR and feD(Q), define a function G: R—E by setting
Gty =e e e SeP2f  (teR).

In view of (3.3) and (3.4). G is differentiable and G’ = 0. Hence G(f) =
each teR, which concludes the proof.

G(0) for
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4. The spectrum of the commutator. If P and Q in Theorem 3.1 are
bounded operators then by (3.1) (in this case trivially equivalent to (3.2)) and by
the Kleinecke-Shirokov theorem ([6]) the spectrum of § is equal to {0}. We
shall show that in the case of unbounded operators P and Q satisfying (3.2)
(with bounded §) the spectrum of § can be any bounded closed subset of iR.

ExampLi 4.1, Let M- be any closed bounded subset of R and let i be
a finite measure with support M. Let H be the Hilbert space I2(M =< R, ux1,),
where /, is the one-dimensional Lebesgue measure. Let D be the linear subset of
H consisting of all functions fi4, x) such that for all m, neN

H
sup|x émj;(/'l x)| < co.
AeM
xek
D is obviously dense in H. For feD let
. . d
(PINA, x) = idxf(d, x),  (Qf)}A, x) = a—i(h X,

and let U(f) and F(s) be the unitary strongly continuous groups defined by

US4 x) =M, %), V@O F (A, x)=f(, x-+t).
For each teR we have U)D = D, V(6)D « D, and for each teR and each
feDb,

dU (¢
WOI_ pos, Y0 - gvins

Thus by the de Lecuw theorem (cf. [L]) iP and iQ are essentially selfadjoint and
U@ = e and v{t) = &2, Moreover, for feD,

Q8/—5Qf=0,

QPf-PQf=13f, PSf—SFf=0,
where S is the bounded operator defined by
(Sf)(ﬂ‘: x) = M.‘f(ﬂ'! x)a ’

and for 1, se R we have ¢2ef = %2 &2 1t is clear that the spectrum of § is
P

equal to M.
Now we shall show the following
TeworuM 4.2, If P, Q, S are the generators of strongly continuous groups ',
'@, o respectively, satisfying (3.2), then the spectrum of § is contained in iR.
Proof By the Hille-Yosida theorem {cf [H-P]) for each strongly
continuous group ¢'¥ with generator § there exist M > 0 and w > 0 such that
@) | Jefs] < Melte;
moereover,

(4.2) if the group ¢* satisfies (4.1) then the spectrom of § is contained in
{A: Red| € w}.
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Let |7 < Mell®, |9 < M'el™. By (3.2) we have

e < MzM’Zexp(Z\/m(w+w’)).

Hence for any & > 0 we can choose M > 0 such that [[¢¥] < MM, In virtue of
(4.2) the spectrum of § is contained in iR, which concludes the proof.

In the Kleinecke-Shirokov theorem one assumes that S commutes only
with P {or only with ). The following simple example demonstrates that in the
case of unbounded operators such a generalization of Theorem 4.2 is
impossible.

ExaMpPLE 4.3. Let H = I*(R). Let D = CF(R) and let g be any function
from D. Let

(P)x) = g(x)f(x) (/eH),
(@N1x) = f'(x) {(feD)
(SN =g fx) (feH).

For feD we have

QPf—PQf =Sf, PSf—SPf =0.

P and S are bounded and iQ is essentially selfadjoint on D. The spectrum of § is
equal to the image of the function ¢'. Since ¢ was an arbitrary function from
CZ(R) the spectrum of § can contain any complex number, This example
together with Theorem 4.2 also shows that all three equalities in (3.1) are
essential in Theorem 3.1 :
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