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Abstract. The paper deals with the approximation of Besov spaces Bi,(R*)(s > 0). For every
hef0, 1]" the space B}, (RH) of functions acting on a rectanguiar mesh is defined. The linear
operators r, By (R") - By (R) and p, BS(Ri}— B3, (R" are constructed with the use of
multivariate box splings. It is proved that these operators are uniformly bounded. For every
funetion [ & B}, (R") the norm || f—p,r, f|| i3 estimated by an appropriate modulus of continuity of .

1. Introduction and notation, The aim of this paper is the presentation of
a method of approximation of Besov spaces B}, (R"), where s is a positive real
number. This is an extension of the results obtained in [5] for Sobolev spaces
W'(R"), m an integer.

Asin [57, the following definition (introduced in [17) of an approximation
of a Banach space X is.used. Assume that H' is a set possessing an
accumulation point denoted by 0, and H = H\{0}. The system
A (X, p, r) = {{X,, py» ¥ her 15 called a convergent approximation of X if the
X, are Banach spaces normed by {|-|,. p,: X,— X (prelongation), r,: X=X,
(restriction) are linear operators and

AM >0 VheH VfeX lrfi,<MIf|y
AM >0 VheH YueX, |puly < Mlul,,
(1.2) VieX lim|lf—p,rpflx=0.

h-+0

(1.1)

Similarly to [5]. our approximation is constructed with the use of
multivariate box splines,

Tn thig section some notation is introduced, the second one contains the
definitions of the spaces By, (R" and of the moduli of continuity. In Section
3 the spuces of discrete Munctions are defined and the prolongations and
restrictions are constructed.

- Section 4 presents the main results; it follows from the theorems that
conditions {1.1)-(1.2) are satisfied. The remaining part of the paper contains the
proofs of all the results.

Now, let us introduce some notation which will be used in the paper.
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The set of all positive real numbers is denoted by R, the set of natur
numbers by N, and Z, =Nu{0}.

A vector x € R” is written as the column (xy, ..., x 7. Hx, yeR", zeR"
then

|x! = ’Zl 'xz'ls

i=1

A n
7 =[] )"
i=1

x0y = [Xoyps o %0 dTs X2 = Dxafziens %207
The symbol ¢, denotes the unit vector of the ith axis, e = [1....., J".

2. Besov spaces. The spaces L, (R"), LR, W (R") (meZ,, 1<p=<o
are defined as usual. The norm in L,(R") 18 denoted by [, the norm ar
seminorms in Wy'(R") are given by o

1= L 1A= 1D

where D*f (keZ',) is the generalized derivative gl fekix, ... d%x,. The spa
C(R") is the set of all bounded uniformly continuous functions on R", C"(K
consists of all functions f such that D*fe C(R") for [k| = m; || |% is the norm
C™(R").
Now, let s =m+a, meZ,, 0<a<l,1<p<o0,1<qg<w, and let
define the following seminorms:
16, = { § 12| 7"~ 42 f |3 dz}

Rn
|11 = sup{lzi [ 42 1 l,; zeR™\{0}},
1f18 = 2 1D

[kt =m

if g < o0,

where

r

(2.1) A f =4 =3, (1S +ia),

=0

zeR".

The Besov space BS,(R" is defined as the subspace of W)"(R") consisting of

the functions f for which the seminorm |f}), is finite; the norm is given |
118, = 1FIE7 +1 (15

Some other definitions of the norms in Besov spaces can be found, e.g., iv |

(Sect. 2.3) and [2] (Sect. 6.2). For instance, if re N0 < 5 < r, @} is the modul

of continuity in L,(R") defined by

(2.2) ety £y =sup{l 411, |2l < £},

JeL, (R, t>0,
and '

Qua(f) = {7 M, £)de}'® (modification for ¢ = ),
.0 '
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then [ -[i ,-+ €257 is an equivalent norm in By, (R" (see 2], Theorem 6.2.5), and it
follows from the results of Sections 5.5 and 5.6 in [6] that there are positive
numbers M, M, such that

(2.3) VfeBL,(R") M QU (1) < /1y < MoQ55(f).
Let us now introduce the following moduli of continuity in Bj,(R"):
s, ) = sup{| 4. /19 1zl <t} feBh®R", i >0,
A, Sy == afit, f)et 7w, ), feBL, R, t>0.
We will also use the K-functional of Peetre (see {7], Sect, 2.4) in the special
case: if 4, B are normed spaces and B < 4 (continuous embedding) then
24 K. fi A, B)=inf{|f~gl.+tlglis: geBt,  [ed, 1>0
Moreover, let us define a modification of the K-functional for A = By, (R"),
B =Wy (R": if reN, 0 <5<, then
Kyit, f) = inf{|| f=g|$y+tlglf: ge Wy (R™},  feBp(R7), t>0

(an analogous functional with 4 = L (R") was considered by Johnen and
Scherer in [4]).

The relations between the functionals introduced above and the semi-
norms are described in the following lemmas, which are proved in Section 6.

Lomma 1. Let reN, 1€p< o, 1€g< w, 0<s<d<r There exist
constants M, to Mg, such that for every te(0, 1)

25) Y eWIRY)  whlt, J)< MtIfI9, @iy, 1< M7,
26) VieBLRY  alt, H< M| [, oy, 1)< Mt flgy

Limva 2. Let reN, O<s<r 1<pg oo, 1 <g<oo. There exist
constants Mo, My such that for every function fe By, (R") and each te(0, 1)

2.7 Mo (e, £ S K5, 1)< Mgdgi(t, f).
Moreover, if g < oo then '
(2.8) s, =0 as t—0,

3. Spaces of discrete functions; restrictions and prolongations. Similarly to
[5], the operatots of restriction and prolongation are built with the use of the
integral and discrete partitions of unity, ie., the functions belonging to the sets

P, 5= {AeL,, (R"): suppA is bounded, §A(x)dx =1},

#,={BeL,(R": suppB is bounded, ¥ B(x+k)= 1 almost everywhere},
keZ®

respectively. Examples of discrete partitions of upity are the box splines defined
below (cf, e.g., [3]).

6~ Studix Mathemative
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Let x'....,xeR" and consider the matrix X = [x, ..., x"]. Let
¢X) =span{x',..., x"} = R" The multivariate box spline By is the function
satisfying the identity

[ By(x)f(x)dx = [ f(Xz)dz for every FfeCRY.
Bn [C.1]"

In the forthcoming considerations we restrict ourselves to the integer-
valued matrices. Let & ={X: X =[x",...,x7T, xieZ” (r arbitrary,
1<ig ) IfX, Ye& and X is a submatrix of ¥, then we write X « Yand we
denote by Y\X the complementary submatrix of ¥. It follows from the
definition that if X is obtained from Y by a permutation of columns, then
By = By.

Finally, following [3] we define the number

d(X} = max{m: for all Yo X,1Y| =m implies <X \Y) = R"}

(where Y| is the number of columns of Y).
The following matrices E, are used in our considerations:

3.1) Bl s €1y €y 8y 8] (KEZY).
e ———
ky times k3 times Jew limes

For the purpose of the construction of an approximation, we introduce the

following classes of integer-valued matrices:
52 & ={Xe¥: E,.cX,dX)=2m} (mel,),
. F={Xe¥,: |det¥| <1 for each Y X such that |¥} = n}.

The spaces used for an approximation of Besov spaces consist of functions
defined on a mesh. The mesh R? is defined as in [5]. Let H < R be a bounded
set of parameters with 0 as an accumulation point. For fixed he H, let

R; = {xeR": x=loh, leZ"}.

The set of all functions w: R} —R is denoted by m(R}).
Now, let Ae#?,, Xe¥,, and define the operators

pX: mRY) =L, (R™°,  rff: L (R —m(R})
by the formulas

(3.3) Vuem®) pfu= 3 By(-/h—bulich),
: leZn
(34)  VfeL RV VieZ' (i f)loh) = h~ | A(x/h—0f(x)dx.
. R»

These operators can be used as prolongation and restriction in the construc
tion of an approximation of By (R").

Let us now define the spaces approximating B}, (R"). First, we recall somu
definitions from [5]. .

icm
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The space L,(R}) is defined as the set of all functions we m(R}) for which
the number
liwll, = {h¢ 2. lgx)lr3e
xe Ry
(with the usual extension for the case p = o) is [inite, normed by |-, The
space W(Ry) (meZ.) is the set L,(R}) normed by

it

lully? =3 1l

= 37 Né*ul,
{0 |

P
where the operators of finite differences are defined in the following way: if
uem(RY), keZ’., then

aku . h‘“k E (__, 1)'&.}[{?)”(- .l_.]oh)'

tENEY]

Further, it is shown in [5] (Theorems 3 and 4) that if Ye &, and pi is
defined by (3.3) then

AC >0 YheH Yue W'(R]

Hence, we introduce the following definition.

Clal§™ < Ipbulf” < liully™

DeFiNTIoN 1, Let s> 0, | € p< oo, 1 € g < oo, and Jet m be an integer
satisfying m > s. Let Y be a fixed matrix from &, The space By, (R}) is the set
of all functions uem(RY) such that [[pfu|¥, is finite; the norm is defined by
”uH(rf.]q = i‘pflx,u”ﬁ.)q'

The norm defined above depends on the choice of the matrix Ye #,, but it
follows from Theorem 1 that the norms generated by dilferent matrices are
equivalent, that means, if ¥, Ze%, then

¢, ¢" >0 YheH YueB, R}  Cpiulpy < pful®, < Clipfullb.

4, Main results. In this section, the properties of the operators defined by
(3.3) and (3.4) are investigated. The first theorem shows that the operators
rt and pf satisly condition (1.1),

Triorsm 1. Let Ae#, Xe¥,,0<s<m |l<pgw, 1<ggw. If
fe B (R") then rf f & By (RY); if ue By, (Rj) then piue B, (R"). Moreover, there
exist constants C,., C, independent of h and such that

@1 Y/ eBi, R i S5, < Cy HJIHE;)r.‘,
: VueB,R)  Ipfully < Cyluli-

If Xe&,,, then

4.2) 30, > 0 VueB,RD  lul¥, < Cyllp¥ull,-

The rate of convergence of the approximation (condition {(1.2)) can be
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if the function Ae#, and the matrix X €., satisfy the additional condition
obtained
(4.3) Vgell (R  pirig=4

(where IT,(R" is the set of all polynomials of degree not greates than r). Note
that for every A and X condition (4.3) is satisfied with r = 0; it is proved in [5]
that for every X € &#,, there exists A€, such that (4.3) is fulfilled with r = m.

THEOREM 2. Let Ae#, X &Y, 0 <s<m 1 <pLw, 1€ ¢ < o, and let
condition (4.3) be satisfied with r z m—1. Then

|f=plrit 15 < Cadpia(hl, f).

Thus, if ¢ < o then it follows from Lemma 2 that for every feB;, (R,
| F—pirit £11%, —0 as h—>0. Hence, condition (1.2) is satisfied. Combining this
with Theorem 1 we obtain the following corollary.

(¢4 3C, >0 VheH VfeB,R"

COROLLARY. If ¢ < oo and the assumptions of Theorem 2 are satisfied, then
the system {(BS,(Ry), pf, ri)}sen 15 a convergent approximation of Bh (R").

5. Auxiliary definitions and formulas, The [oliowing difference operator will
be used togsther with 4% if f eL (RY*, zeR", ke’ then

Stf= ¥ (~0FIGSC+ioa)

0Lk

Let r = |k|, and denote the columns of the matrix E, (defined by (3.1)) by
[Ay, ..., 4] Then '
Sk =1 4* (4,02 .
=1
Applying Lemma 2 from [4] we thus obtain the formula
(5.1) |ISESfl, < . Y oA, rr={1, 0 ve= 3. "t A0z

=Fer ) jeF

The next formulas follow from the results of [5].
If leZ, || =r, Xe5,, then

(5.2) D'By = (— 1y SL. Bxgy
If de?, Xe&,, reZ, 0 <r<m, then pirg: Wi(R")—W;(R"} and

lpirit S5 < By f157s

X() = X\E,.

(53)  3F, >0 YheH YfeW(R")
if, moreover, (4.3) holds then

(54 3P, >0 VheH Ve W, "R [f=piri fil, < F lA ST,
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Tt can easily be shown that if fe W/ (R") then

3 .
rr v E
AL =1t Y G T DG+ zydy;
Jel=r % (0,17

the application of Hélders inequality yields the estimate
(5.5) VzeR" AN}, < W'l 1S10.

Further, if zeR", reN, then
(56)  VSeL, R BAS, <2 U VieB,®RY) A7, < 2|71,

The second part of this section is connected with t 1 interool

. § 5 8 0 with the real interpoiation

method. For the purpose of the paper, it suffices to consider the intcrgolation
.Of two B.:tnzwh. spaces A, B only in the case when B is continuously embedded
into 4. Let us introduce the following definition (cf. [7], Sect. 24) if 0 < § < 1
lgg< o0, thm} the space (4, B)y,, is the set of all functions from 4 for which‘
the number || fll(4m,, defined by

“jl”(/lumb\r; = {(j} UKL, S AL BY dl;'}sm if g<co,
(5.7) . ‘
Hf H(A‘Il)n,.m = SLIP{ILW”K(IL/‘; As B)' tER-I—-}u

is ﬂniﬂtc; I ¢a,my0,, 18 the norm in (4, By, (K is defined in (2.4)).

The Besov spaces can be considered as an interpolation of Sobolev spaces
Namely, it follows from formulas (2.5.7/12} (2.5.7/13) in [7] that if }neN.
l€paow, 1 g oo and 0 <0< then ‘ ' ,

(58)  BR) = (L,R"), WrR"o,,  BURY = (CR), C"(R"),,

(the second formula is written in [ 7] only for ¢ = w0, but the proof for g < oo is
analogous). In the same way it can be proved that if >0, 1 <p<w
I€gsw, 1€g, 50, 0<<1, then ,

(59)  Buy(R") == (L, (R™), By (RM)gys B (R) = (CURY), By, (R)),,.
remsl\é,();fti ]:::IL; :;:.i),! lj;:;; l;z) ;\ rx_,a} ii: q; u:’ 4 $Z‘rx_n. 'Hl’lwr_l it follows from Theo-
e {.L 'Commmujﬂj Hugﬁ [;:i:: rom” (2.3) that By, (R") « B, (R" and there
(5.10) Ve B, RN |f }f,",l 5 1.

Finally, we prove the fullowing inequality.

IfBed 0w, sgs o, then there is a number ¥, such that
(s.11) VieB Vim0 | M, s Falt" 1 e 0110

Proof Let /e B and let ¢ > 0 be a fixed n ', Sertl '
_ o, Lt fe By [ ) mumber, Setting g == f and g = 0
in formula (2.4) we obtain the inequalities A '

Kl fo A By =1 fllge Kt i A B < 11,

Now, using the first estimate for + < &, and the second for £ > ¢, we deduce from
(87) that if ¢ « w0 then
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I/ liamr0,0 S {llfﬂﬂt"‘““"’qdﬂllfll% f R

Thus, inequality (5.11) holds with F, = max({(1 —0)g) "', (0g)~ )~ 14). The proof

in the case g = oo is analogous.

6. Proofs

Proof of Lemma 1. The first inequality in (2.5) can be obtained from
estimate (5.5), M, = #". Further, formulas (3.8) and (5.11) yield the ineguality

I4L FIS, < Fal " 1AL f 15+ 67 [ 421 1).
Using (5.5) and the estimate
1A < NS i el <1

which follows from {5.6) and (5.5), and taking ¢ = |2/, we obtain the second
inequality from (2.5).

Now, let f € B%,(R". Applying (5.10) and (2.3}, we obtain the sequence of
inequalities

/1 > 31110 = P37 M 24,1,

Since for every ¢ > 0, wh(t, f) < 122, (f), the first estimate in (2.6) holds with
Mg =F,(d, p, q. 0)/M,(r, d, p, ). The second inequality can be obtained
from the first one by the application of {5.9), {5.11) and (5.5).

Thus, Lemma 1 is proved.

Proof of Lemma 2. Let us start with proving the first inequality in (2.7).
Let f & B3, (R") and g € W; (R"). The inequality can be obtained from the triangle
inequality A55(t, f) < 35, f—g)+Ap5(t, ) and estimates (5.6}, (2.6} and (2.5);
the constant M, equals 1/max(2’+M 5. M3+ M)

Now, we ha.ve to prove the second inequality in (2.7). As in the proof of
Lemma 3 in [4], for every t a function g satisfying the inequality

(6.1) 1f~gl5%+t %1915 < Mg Agie. f)

will be constructed. The construction is done with the use of mmultivariate
splines.

Let X be an arbitrary element of %, (see (3.2)) and let By, be the
corresponding box spline. We use the notation

N = Ny = supp By, vlzsup{lxi: xeN}, vix =VolNy.

Let the functions 7 f, N, f (8, 0> 0) be defined by the formulas

r

-~ 2 (wi) ‘Al .

=1

6.2) MEf = jBX Wt 4epdy, A, f=

icm
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(Observe that if X = E,, then .4, fis the function g, (the Steklov means) used in
the proof of Lemma 3 in [4])
The following formulas can easily be checked:

(6.3) VieN, VzeR'  AL#F[)= aX(4]),

(64) J=Hof= (1Y [Be(0 40y /1y

(the difference operator AL is deﬁncd by (2.1)). Applying Hoider’s inequality to
formulas (6.2), (6.4) and using (6.3) we obtain

(6.5) [ AT SN o S NSy 1Y SIS < NoISI8y Ny(X)=
(6.6) LF= A L5 < Nywlive, f).

Let us now estimale .47, f19. Let le Z%, |l = r. It can be deduced from
definition (6.2) and formula {5.2) that

DAY f = 7" [ D'By(3) (- +ey)dy = s HEO(SL, f),
N

H BX” r v%{gfa

where X ([} = X\E,. Hence

DA, S = —"2(4 V() ie) ™ A (Shhe S

i=1
Applying inequality (6.5) we deduce that

¥

)Y, 6" 1Ske ST,

6.7 (DA, fll, < 07" Ny(X

Now, we can use formula (5.1) with z = ige. For every F < »* we have

el = {32007 Aie] < ie

jeF J=1

Y5 r(1+1nr)e,

and hence

185 /1l € 2 wiy(r(1+Inr)e, f).
Substituting this inequality into (6.7) we obtain
(6.8) |, f15) < @ "Nywh(r(l +1nrg, f),

Nym= 2"”'2 Ny (X (1) ax Mi~".
vy w7 ]

Thus, if we take ¢ == t/max(v, r(l+Inr)) and g = .#, f, we deduce using (6.6)

and (6.8) that {6.1) is satisfied with M= N,+N,ymax(v, »(1 -+lar)).
Therefore, both inequalities in (2.7) are proved. Let us now turn to formula

(2.8). Let z be an arbitrary vector from R" and let |z} < £. Then, by (2.3),

(54

(6.9) ARSI, < NALf I+ M { [ o7 Mavg (e, A f)de}
' 0
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According to (2.2), whit, 45 ) =sup {1447/, Wl < t}. Now, if © < ¢, then
we use (5.6) for 4%, and in the opposite case for 4%, Thus,
whit, 45 f) < 2 wilt, f)
iz, ANy < 2| AL 1l

if ©=<t¢,
if >t

Putting these inequalities into (6.5), we obtain

1AL f 5% < IEAZfllp+2'Mz({§f”1_“03;(1, Py e (sq) AL )

Hence,
b

(6.10) ol N< (14 C 1 Hwpit, f)+2’M2{jr“1‘“‘m§,(-c, f)‘lclr}”q,
o

Since for every f € BS,(R”) the integral [§' 7~ L= epr (¢, )% dris finite, both terms
on the right-hand side of (6.10) tend to 0 as ¢t goes to 0. Therefore, the proof of
Temma 2 is finished.

From now on, the mesh size h is fixed, and hence the subscript h is
suppressed.

Proof of Theorem 1. We have to prove estimates (4.1) and (4.2). First,
according to Definition 1, we have

I FU% = 1p*r £ 5.

Define the operator T L, (R"Y*°~» L, (R}** by the formula Tf = p*'rf. Accord-
ing to (53), i feW,R) then TfeW;(R"} and | Tf IS < Fy | F11P
(0 <r < m, reZ). Thus, applying (5.8) and Remark 2.4.1/3 from [ 7], we deduce
that if £ & B (R") then Tfe B, (R") and | TS5, < F,| f11%,. Hence we have
proved the first estimate of Theorem 1.

Note that the above estimates are true for every Y &%, and not only for
Ye&..

Now, let us estimate |p¥ull),. It follows from Theorem 4 in [5] that, since
Ye &, there exists a function Be2; such that r’p’u = u for each uem(Rj).
Hence, p¥u = p*r®p'u, and using the estimate just proved, we obtain

IP¥rp¥ull, < Fy(B, p)Ip*ulfy = Fy (B, p)ul$h.

Thus, C, = F;(B, p) and formula (4.1} is proved.
Inequality (4.2) can be proved by interchanging the roles of X and Y. This
completes the proof of Theorem 1.

Proof of Theorem 2. In order to prove (4.4), take first an arbitrary
function ge W(R". By (5.3) and (5.4), we obtain

g —p¥rigll, < Folh™gls?,  lg—p r*glly™ < (Fy+mF )¢l

icm

Approximation of Besov spaces 193

Applying (5.8) and (5.11) with & = A", we deduce that
611y g =P rtglh = NaA™ Sl Ny= F (F -+ (m+ D) F).
Let now fe B, (R"). Then

I [ pr et s, =

The second term on the right-hand side cun be estimated from (6.11), the third
with (e use of (4.1). Hence

If=p¥ et 150 N UL gl 5%+ IR Mals™), Na e max(-F Ny
The function y was taken arbitrarily, therefore we have the estimate
L= pX et 10, s N Ky (R, 1),

and inequality (4.4) can be oblained by applying Lemma 2. This completes the
proof of Theorem 2.

Sogl L= pX et g+ I e g — 5,
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