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Further, find a continuous seminorm |-{,+; on B such that

[Blin+z = bl (beB),
lala+s 2 ldlrm+ 1) (aed),
1bllsss > max{l, C,}q,b) (beB),
[Blin+1 2 Pt 1(d) (beB).

Put
1BlG 1 = inf{|al s 1y + |b—alass: a€ A}

Clearly ||b|,+, = b, for all beB and n=1,2,... Let by, b,eB and

a,,0,A. Then
1By bslln < lag aglpm+ by ba—ay asll,
< |aylro+1 12zl oy 1+ @y By~ as)ll
+li(by —ay)a, [+ b, —a) (by— )i,
< aylpnt 1 1@alpn+ 1+ Gl 4u(by — 62)
+ by — 1) 4u{a}+ 2, (b1 — 1) 4, (b — 1)
€ 1yl rs+ 1 182l prat o 183 s 13 102 — @ llns s
10 =y lne 1 1@al poe 1y + 1By — @y lne 1 Bz — o llas 1
= [laylfe 1y + 1By — &y lw 1) L@al ety + Hby—azlluss].
Hence (b b, < 1By lhvs [B2llha-

It is a matter of routine to prove that |al;, = |a|;m (2€ A4, neN) and that
the seminorms [|-||5, n =1, 2, ..., define the topology of B. =
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Some remarks on the uniform
approximation property in Banach spaces
by
VANIA MASCIONI (Ztrich)

Abstract, We prove that if a Banach space X has the uniform approximation property with
uniformity funciion ky(n, K) = O(#) {for some constant K), then X* has weak type 2. Further, as
an application of our method, we also show that the uniformity function of L, (2 < p < o0} cannot
be O(n¥2) for any ¢ < p.

1. Introduction. Given a Banach space X, a finite-dimensional subspace
E of X and a constant K =1, let

ky(E, K) = inf{rank T T: X =X, |T|| < K, Té = for all ecE},
ky(n, K) = sup{ky(E, K): E< X, dimE =n}, neN,

X has the bounded approximation property (B.A.P.) if there is a K such that
ky(E, K) < oo for every finite-dimensional sabspace E of X, X has the uniform
approximation property (U.A.P)if there is a K such that k,(n, K) < oo for each
neN. ky(n, X} is called the uniformity function of X.

The U.A.P. was introduced by Pelczynski and Rosenthal in the paper
[17], where they proved that all L, (1 < p < o0) have it. More precisely, in [17]
we can find the estimate k; (n, 1+¢} = O((n/e)™) for some constant ¢ (this was
proved using an argument due to Kwapien)

Recently, Figiel, Johnson and Schechtman [4] proved that for pe {1, w0}
an upper exponential estimate is optimal in the sense that, in this case,
ky,(n, K) = exp[8{K)n], where 6(K) is a constant depending only on K. On the
other hand, trivially, we always have k; (n, K) = n, and so it is conjectured in
[4, 8] that, Tor | < p # 2 < o0, there exist constants K = K(p) and « = «(p, K)
such that k; (n, K) = O(n"). Lower bounds for k;_(n, K)(I € p < ) are not
known (see [4] for the case p== o), but in Section 3 we will see that
ky,(n, K) 5% O(n¥*) for all K and all 2< g < p <'cc.

In Section 2 we will give some characterizations of U.A.P, and, in Section
3, we will prove that, if ky{n, K) = O(n™), X has weak cotype 2o and X™* has
finite cotype. A stronger result holds if « = 1:in this case X is even K-convex
and thus, since X has weak cotype 2, X* has weak type 2. This fact may be
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244 V. Mascioni

considered as a step toward the solution of a problem posed by Pisier in [21].
As an application of our results, in Section 4 we will disprove a conjecture of
Pietsch.

Let us now fix some notation. Given a subset § of X (resp. of X*), let

St ={yeX* {y,x)=0 for all xeS§}
(resp. *S ={xeX: {y, x) =0 for all yeS§}).
Given an ultrafilter %, the corresponding ultrapower of X will be denoted by
{X)y. For the (elementary) concepts and definitions from the ultraproduoct
.theory we are going to use, we refer to the paper [6] by Heinrich.

If u: X — Yis an operator (= continuous linear map) and neN, the nth
approximation (resp. Gelfand, Kolmogorov) number of u is defined by

a,() = inf{lu—s|: v: X =Y, rankv < n},
¢ (u) = inf{|uJ3||: Z = X, codimZ < n},
d.fw) = inf{|Qkul: E< Y, dimE <n},

J¥ denoting the natural embedding Z — X and Q} the quotient map Y— Y/E.
We refer to the books [18, 19] of Pietsch for the main properties of these
numbers.

Ifo0<p<o 0<g< o and sefa, c,d}, let &5 ,(X,Y) be the quasi-
Banach ideal of all operators u: X — Y such that

B )= ( Z (kl.'p* /g sk(u))q)l"‘* < ®
if_ g < o0, TEsp.

B o (4) = sup kP s, (u) < oo

keN

if g = co. Once again, we refer to [18,19] for the main properties of these
ideals.

If u: I3+ X is an operator, let
o = (| T acuelf? dy(a)?,
RP k=1
where 7y, is the standard gaussian measure on R" and e,,.
orthonormal basis of I. If v: X -8, put

*(w) = sup{itr(vu)|: w: l'}—»X, lu) < 1},

According to [15, 21], X has weak cotype g (2
¢ such that

.., 8, is an

£ g < o) if there is a constant

Lo <cuwy Vu B-oX, ¥neN.
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X is K-convex if and only if X does not contain /{ uniformly (see [223}. X has
weak type p(l<p<2) if X is K-convex and X* has weak cotype
p*{= pfip—1)). X is a weak Hilbert space if it has weak cotype 2 and weak type
2. Concerning these “weak™ propertics, we refer to [14, 15, 21, 22].

Part of this paper was written while T was visiting the University of Paris
VIL I am grateful to Prof G. Pisier for his encouragement and hints.

2. Some characterizations of U.A.P. To prove the main result of this
section, we need a lemma. Given a function g: N—=N and EcF & X,
dim E < co, define

MNE,F,g)=inf{| T: T: F—X,
Te = e for all ecE, rank T'< g (dim E)}.

LemMa 2.1. For any finite-dimensional subspace E of X, and any function
g: NoN, we have ' '

ME, X, gy<sup{M{E,F,g): ESFcX, dmF < co}.

Proof We follow an idea of Kiirsten [9, Lemma 2.2]. Fix E ¢ X, and let
A be such that

sup{A(E, F,g): EGFc X, dmF < o} <1< co.

We will show that Z(E, X, g) < 4
Consider the index set

I={F:ESFcX, dmF < oo}

and let the ultrafilter % on I be such that {Gel: F < G}e% for any Fel.
Given Fel, let T,: F—=X be such that |T;| < 4, rank 7, < g(dim E) and
Tre=e for all ecE. Define T, = (Tp)y: (Flg —(X)g. We have then |Toff < 4
and rank T, < g(dim E) (use the same argument of the proof of Proposition
2.2(i)=(iii) below). Further, T,e =e for all ec E (we write again e for the
elements of {F),, and (X)g correspondmg to the constant family {e)g.;). Let now,

for xeX and for every Fel,
= xeF,
=00, x¢F.

Then, by x -+ (xz)s We define a linear isometric embedding J;: X —(F)y. On
the other hand, if G = TyJ,(X) and & > 0 is given, reasoning as in [6, Prop.
6.1] we can find an embedding J,: G—+X with |J,|| € 142 and so that E is
mapped pointwise onto itself by J,.

Finally, letting T=J, T, J,, we get [|T|| < (1 +z~:)l rank T< g(dim E), and
Te = ¢ for all e E. Since ¢ was arbitrary, we have 2(E, X, g) < A, which proves
the lemma. =
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ProposiTon 2.2, Let X be a Banach space, g: N—=N a function such that
g(n) = n. Then the following properties are equivalent:

(i 3K such that ky(n, K) = O{g(n).
(i} 3K, c such that, for all n = 2 and all operators u taking values in X, we
have

Apegen- 10+ 1 () € Kd,,(u).

(iii) IK such that ke, (n, K) = O(g(m)) for every ultrafilter 9.

(iv) 3K such that ky={n, K) = O{g{n)).

(v) 3K, ¢ such that, given finite-dimensional subspaces E and F of X with
E < F, we can find an operator T: F—X with

a) [T|<C
b) rank T'< ¢g(dim E).
c) Te=e for all ecE.
(vi) 3K, ¢ such that, for any neN and any n-codimensional subspace Z of
X*, we can find an operator T: X*—X* such that

a) ITH <K
b) T(X*) < Z.
¢} rank(idy—T) < cg(n).

Proof. (ij)=-(ii). Let E be a subspace of X with dimE <nand let u: Y= X
be an operator defined on some Banach space Y. Since X satisfies (i), there are
constants K, ¢, a function g{n) and an operator T: X — X such that |T| € K,
Te = ¢ for all e E and rank T< cg(n— 1). By definition of the approximation
numbers, we have

Cegin—13+1 @) £ Ju— Ti| == ||(idy — Tulf.

Since E < ker(idy—T), there exists an operator R: X/E—X such that
idy—T= RQE, [R| < |lidy—T| < !+ K. Then

(1 +K) Q¥ ull,

and thus (ii) follows after taking the infimum on the right-hand side over all
E as above. |

(ii)=(i). Let E be an n-dimensional subspace of X and let P: X - X be
a projection onto E. Since E = ker(id,— P), there is an operator §: X/E X
such that id,— P == SO¥. By (ii) and the definition of approximation numbers,
there is an operator L: X/E—X with rankL < cg(n) such that, for some
constant X,

Opegin- 131y (H) <

[S—L| < Kd,..1(S) < K|QFS| = K
= idyp. Define T= P+ LQF. We have
[T] = lidy—(S—L)QE] <

since 0% S

1+IS-Li € K+1,
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Te=e¢ for -all eek, and rank T'< rank P+rank L < cg(n) +n,
kyln, K4-1) = O(cg(n)+n) = O(g(m)

{(J=-(i). We use the argument of {11, Prop. 1]. Let X satisfy
ky(n, K) < cg(n) for some constants K, ¢, and let % be a free ultrafilter on an
index set I. Let E be an n-dimensional subspace of (X),,, and let {x* = (x¥),:
, xI'} and, for each 1], let
T: X—X be such that [T <K, TxF=xF for all 1<k<n and
rank T, < cg{n).

Define the operator T: (X)), -+ (X), by

T(¥)er = (Ty)er-

From the definition of an ultraproduct it follows first that |T] < K and
Tx* = x* for all 1 < k < n, where we put x* = (x¥),_,. It remains to prove that
rank T< eg{n). For every 1€], let {b!, b7, ...} be an Auverbach basis of T(X),
that is, a basis satisfying

therefore

max jo| < ||3 o b
k p

for all scalars a*.

Now, if y = (y)e e(X), we have Ty =3, afbF where
| < N Tyl < Kliwlls
< K |p|. This shows that o* = limg, f exists far all k, hence

Ty = (Z ocik bfc)lel' = Z Dck(b:c)m!o
k k

so that, for all k, |oF|

which shows that

((X)‘PI) = Spﬂn{ b )IEI ('q "l)}

e, rank T'< cg(n).

(i) =(iv)=-(i). By {6, Prop. 6.7] there is an ultrapower (X), of X such that
X** is J-complemented in {X),,. Clearly, since k., (n, K) = O(g(n)), we must
have kyw{n, K) = O(g(n), too, and so (iv) holds. (i) follows now easily from
local reflexivity,

(i)==(v) is trivial.

(v)=(i) follows immediaiely from Lemma 2.1. In fact, if X satisfies (v) then
there is a constant ¢ such that sup{(E, F, ¢y): ES F < X,dim F < o0} < oo,
so that, by Lemma 2.1, A(E, X, ¢g) is uniformiyv bounded for all finite-
dimensional subspaces E of X. This means that X satisfies (i).

(i)=(vi). By (i)=(iv), there are constants K, ¢ such that kyw(n, K} < cg(n).
Given an n-codimensional subspace Z of X*, let Ty: X**— X** be such that
1Tl < K, Tow =w for all weZ*, rank T -.<J cy(n ) Let §: X*—X* be such
that §* = T and define T'= idy*—S. Then it is easy to see that |T| < K+1,

T(X*) = Z, and rank (id »—T) = rank § = rank T, < cq(n)
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(vi)=(i). Let E < X be n-dimensional. Then E* is n-codimensional in X*.
By (vi), there are constants K, ¢ and an operator 7g: X*o X* with |1, <K,
T,(X*) < E* and rank(idp—Tp) < cg(n). Let T, = id e~ Ty so that, trivially,
IT, || < 1+K. Then, since T,(X*) = E*, for any ecE and any y e X* we have

<T0*es y> = <e: T0y> = 05
so that E < ker Ty and thus T,e =e for all ee E. Further,
rank T, = rank(id.— Tp,) < cg(n).

By local reflexivity, let §: Ty(X **)~X be an embedding with ||S|| =< 2 (say).
Then it is easy to see that T= ST JX" has the properties which show that
X satisfies (i). =

The next proposition characterizes the property which is dual to U.AP.
(see Proposition 2.2 (i)<(vi)): :

PROPOSITION 2.3. Let X be a Banach space and let g: N—IN be such that
g(n) = n. Then the jollowing are equivalent:

(i) There exists a constant K such that, for any neN and any
n-codimensional subspace Z < X, we can find an operator T: X — X with

a) |[T| <K
b T(X)cZ.
) rank(idy - T) = O{g(m)).
(i) There exist constants K, ¢ such that, for all ne N and for every aperator
u. defined on X,
Bregim-11+1 (1) < Ke(w).

Proof. (i)=(ii). Let Z € X have codimension < n, and letu: X — Y bean
operator to an arbitrary Bamach space ¥ Since X satisfies (i), there are
constants K, ¢, a function g: N—N and an operator T: X -+ X such that
1T €K, T(X) < Z and rank(idy—T) < cg(n—1). So we have

Biegin—1y+1 () < Jlu—u(idy— T = |uT| = [wJZ T{ < K[lusZ].

We get (i) after taking the fimum on the right-hand side over all
n-codimensional £ = X,

(ii)=>(i). Let Z be an n-codimensional subspace of X, and let P: X —Z be
a projection onto Z. By definition of the Gelfand numbers, we have
cn+1(P) < |PJE] =1 and so, by {ii), there are constants X, ¢ and a function
g{n) such that agguy+1 (P} < K. This means that there is an operator L: X —Z
with rank <T[cg(m)] such that [|[P—L| < K+1. Let T=J5(P—L). Then
ITI <K+1, T(X)s Z, and

- rank{idy— T) < rank(idy —J% P)+rank L= O{[cg(n)] +n) = O(g(n)),
so X satisfies (). :
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3. Spaces with k. (n, K) = 0{n*). As was mentioned in the introduction, the
property ky(n, K) = n is equivalent to X being isomorphic to a Hilbert space
[10]. On the other hand, if we take g: N—N with sup,n(g(n)—n) = oo,
Johnson [7, Example 2.27] has constructed nonhilbertian weak Hilbert spaces
X satisfying ky(n, K} = O{g(n)). In the next theorem we will see that a polyno-
mial estimate of ky(n, K) has consequences on the cotype of X and X*:

TaroreM 3.1 If ky(n, K) = O(n™) for some 1 < o < 0, then X has weak
cotype 20 and X* has finite cotype,

Proof Let u: Y— X be an operator, Y being an arbitrary Banach space.
By Proposition 2.2{(i)=-(ii) we have then

(1 B ya—1,K)+1{t) < Kd,\ (1)

for all » = 2 and for some constant K. Putting k,(0, K) = 0 and using (1), we
have

2) 2 20 (1) = SUP 12 q, (4) = sup sup it g (w)

nzl nZzl kxin— 1 K)y<i<kx(nK)

< sup(ky(n, K)2* Gyinm 1.0+ 1 (4}

nzl
K 1/2a
M) sup n'/2d (u) < Ke'?= 4, (),

nel

< K (sup 77
nl h

where ¢ is a constant such that k,(n, K) < en®. Now, if we take ¥ =[5 we can

apply an inequality of Pajor and Tomczak-Jaegermann [16] which states that

(3) B < xl(u)
for some universal constant x. (2} and (3) together give finally

B o) < Ke* P2 xl(u), Vu: B5—X,
which says that X has weak cotype 2u.

Let us now prove that X does not contain the /§ uniformly complemented.
Suppose the contrary. Since ky(n, K) = O(n®), it is easy to see that there must
be constants K, ¢ (not depending on n} such that, for any subspace E, of 15",
there is an operator T,: 13" — 3" such that |T,| < K, T,e =efor all ec E,, and
rank T, < ¢(dim E)*. Taking E, to be the space spanned by the first » Radema-
cher functions in /" we find, by a special case of [4, Cor. 1.5], that
rank T, = exp[c(K)n], where ¢(K) > 0 is a constant depending only on K.
Since exp [¢(K)n} < cn® cannot hold for all n, we have a contradiction.

So, X does not contain the # uniformly complemented and thus, by
duality, X* does not contain the I, uniformly. By the Maurey—Pisier Theorem
[14], this means that X™* has cotype ¢ for some g < 0. &.
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Theorem 3.1 has a direct application to the local theory of L, spaces. To
illustrate the meaning of the next corollary, let us first recall that, for
a subspace E of L, and K2 1,

my(E, K)=inf{m: 3F € L, withE = F and d(fy, F) < K]},
m,(n, K} = sup{m,(E, K): dimE = n}.

As remarked in [4], by the Dor-Schechtman Theorem [3, 23], for each
1 < p < oo there is a constant K, > 1 such that every K-isomorph of an
I space in L, with K < K is f{p, K)-complemented in L, and f(p, K)—1 as
K—1. It follows that, if K <K, then

ke, (n. 1 (p, K)) < myn, K).
As for my(n, K), it follows from an euclidean section argument that
8(p, K)n==bPi% < (n, K).

The above inequalities suggest that the lower bound for k, _{n, K) might also be
of the form 5(p, Kyn™* P13 §f K is big enough (in fact, for small values of
K the sitnation might dramatically change, as is shown in [1]). If p > 2, this
conjecture is supported by the next corollary:

COROLLARY 3.2. If2 < p < o0 we have k; (n, K) # O(n%*) for all K and all
2< g <p< oo, In other words,

limsup k; _(n, K)/n"* = co

n—+op

for all K, g as above.

Proof. If we had k,_(n, K) = O(n**) for some ¢ < p and some K, from
Theorem 3.1 we would deduce that L, has weak cotype g, which could hold
onlyif g=p =

As might be expected, assuming ky(n, K) = O(n) has deep implications on
the geometry of X (recall that ky(n, K) = n if and only if X is isomorphic to
a Hilbert space [107]). In fact, Pisier [21] asks if the property ky(n, K) = O(n)
has something to do with X being a weak Hilbert space (see alse [2, Problem
Af13]). The following theorem can be regarded as a first step toward an answer
to this question.

THeoREM 33. If ky(n, K) = O(n), then X* has weuak type 2.

Proof. Since X* has weak type 2 if and only if X has weak cotype 2 and is
K-convex, by Theorem 3.1 we only have to show that X is K-convex. Now, by
Theorem 3.1, X* has cotype ¢ for some finite 4. Consequently, X having weak
cotype 2, it has cotype 2+¢ for all ¢ > 0, and thus we can choose & such that
(2487 4+¢~' > 2L This condition together with the BAP, of X finally
imply that X is K-convex, by the main result of [20]. =
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Remarks. (i) Notice that if there is K such that ky(n, K} = O(n) and
kes(n, K) = O(n), then X must be a weak Hilbert space. So, if the property
ky(n, K) = O(n) were self-dual, we would have solved part of Pisier’s problem.
Unfortunately, this self-duvality is open.

(i) It may well be that a polynomial estimate for ky(rn, K) forces X to be
K-convex. In this direction, because of the same result of Pisier quoted above
[20], we have:

COROLLARY 3.4. If ky(n, K) = 0(n*) and ky+(n, K) = O(n") for some 1 < o,
B < oo such that ™' +p~1 > 1, then X is K-convex (and thus has weak cotype
20 and weak type 28/(2f—1), by Theorem 3.1).

(iii) By the definitions and the method we used to deduce inequality (2) in
the proof of Theorem 3.1, it is not hard to see that the following holds:

COROLLARY 3.5. If ky{n, K) = O(n), Yis any Banach space, and 0 < p < oz,
0 <g< o0, we have

L5.4Y, X) = Z7,(Y. X),

Le., there is a constant x depending only on X such that, for all operators u taking
values in X, we have

18 (1) < wlf o ().

{iv) Of course, we have a similar statement for the property discussed in
Proposition 2.3: if a Banach space X satisfles (i) of Prop. 2.3, then

LhaX, V)= L5(X, Y)
Jor all 0 <p< , 0 <g< oo, and all Banach spaces Y.

4. Two examples and a conjecture of Pietsch. Concerning the study of the
property ky(n, K) = O(n), it may be useful to keep a couple of examples in
mind. Both of them were constructed by Johnson in [7]. Let us briefly recall
the definitions:

(i) T*® is the completion of the finitely nonzero sequences of scalars under
the norm ||-|| satisfying the identity

k?l
il = max {I1x]l.,, 27 sup( Y 4, x4,
i=1

where the sup is over all n and all pairwise disjoint sequences (A, of subsets
of N for which

&n
(=1

and (k,)en is a sequence which tends to oo sufficiently fast (see [7] for details).
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(i) X, = (3,51 &), where p, = 2, and p,—2, k,— o fast enough (this
example is also described in [12, 1.g.7]) .

Remarks. (i) The properties of T* show that it is a nonhilbertian weak
Hilbert space satisfying kym(n, K) = O(n). By the way, T® is the so-called
“2-convexified Tsirelson space” (see [2, 22]).

(if) X, is not a weak Hilbert space (though having type 2 and cotype 2+
for all positive £), but has the remarkable property that every subspace of every
quotient of X, has U.A.P. Now, by Theorem 3.1, ky,(n, K) # O(n) since X,
does not have weak cotype 2.

The results of Section 3 together with the space T? above allow us to
disprove (and update) two conjectures made by A. Pietsch several years before
the introduction of the “weak” properties [18, 28.3.7]: he conjectured that

(1} X is isomorphic to a Hilbert space whenever %5 ,(, X) = %% »(-, X).
(i) X is isomorphic to a Hilbert space whenever %% 5(X,") = £5 (X,
We have the following
ProrosiTioN 4.1. There is a nonhilbertian weak Hilbert space satisfying
yap'q(':X): .Sfi,,,(',X), ,@’;,q(X*,-)= E;_Q(X*,-)’
Jor al 0 < p< oo, 0<g<oo.

Proof. Consider the space X = T'®, Then (among several other proper-
ties), there is a constant K such that, for every finite-dimensional subspace E of
X, we can find a projection P, from X onto a subspace F of E with
dim F 3> (dim E)/2 and a projection P, from X onto a subspace G containing
E with dim G < 3(dim E)/2, both projections having norm < K.

Now, the existence of P, for all E means that X is a weak Hilbert space
[21, Th. 2.8], and the existence of P, for all E implies that X has the property
ky(n, K)= O(n). By Corollary 35 we have, in particular, &5.20, X)
= %4 .2(-, X). Further, since X ** satisfies ky(n, K) = O(r) (by Proposition 2.2)
and by the duality between the ideals %4, and %5, (see [19]), we have

2,2(X™, ) = &5 »(X™,"). Finally, since X does not contain isomorphic copies
of I, [7], it certainly fails to be hilbertian, and thus the proposition holds. m

We conclude with an “updated” version of Pietsch’s conjectures (compare
with Corollary 3.5):
CONJECTURE 4.2. (i) X satisfies ky(n, K)= O(n) for some K whenever
Loals X) = Z5,(, X}
Jor al 0<p< oo, 0<g< oo,
(i) X satisfies ky(n, K) = O(n) for some K whenever
o X* ) = & (X*,)
Jorall 0 <p< o, 0<qg<co.

icm

Usiform approximation property 253

Relerences

[T A. Arias, [ superspaces of spans of independent random variables, Israel J. Math. 63 (1988),
139--148.

(2] P. G. Casazza and T.J. Shura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer,
1989.

[3] L. E. Dor, On projections in L, Ann. of Math. 102 (1975), 463474,

[4] T. Figiel, W. B. Johnson and G. Schechtman, Factorization of natural embeddings of
I into Ly, I, Studia Math. 89 (1988), 79--103.

[5] S. Heinrich, Finite representability and super-ideals of operators, Dissertationes Math. 172
(1980} ‘

[6]1 —, Ultruproducts in Banuch space theory, ). Reine Angew. Math, 313 (1980), 72-104.

[7] W. B. Johnson, Banach spaces all of whose subspaces hgve the approximation property, in:
Séminaire d'analyse fonctionnelle 79/80, Heole Polytechnique, Palaiseau, exp. 16, Sec also:
Special Topics of Applied Mathematics: Functional Analysis, Numerical Analysis and
Optimization, Proc. Bonn 1979, North-Holland, Amsterdam 1980, 15--26.

[8] W. B. Johnson and G. Schechtman, Sums of independent random variables in rearran-
gement invariant function spaces, Ann. Probab, 17 (1989), 789-908.

[9] XK. D. Kiirsten, s-Zailen und Ultraprodukie von Operatoren in Banachrdumen, thesis, Leipzig
1976.

(10] J.Lindenstrause and L. Tzafriri, On the complemented subspaces problem, Israsl J. Math.
9 (1971), 263-269. .

[11] ~—, ~, The uniform approximation property in Orlicz spaces, Israel I. Math. 23 (1976), 142-155.

[12] =, —, Classical Banach Spaces II: Function Spaces, Springer, Berlin 1979,

{131 V. Mascioni, On weak cotype and weak type in Banach spaces, Note Mat. B (1988), 67-110.

[14] B.Maurey et G. Pisicer, Séries de variables aléatoires vectorietles indépendantes et propriétés
géométrigues des espaces de Banach, Studia Math, 58 (1976), 45-90.

[15] V.D. Milman and G. Pisicr, Banach spaces with a weak corype 2 property, Israel J. Math.
54 (1986), 139--158.

[16] A. Pajor and N, Tomezak-Jacgermann, Subspaces of smull codimension of finite
dimensional Banach spaces, Proc, Amer. Math. Soc. 57 (1986), 637-642.

[17] A. Pelczyhskiand H. P. Rosenthal, Localization technigues in L, spaces, Studia Math. 52
(1975), 263-289.

[18] A. Pictsch, Operator Ideals, North-Holland, Amsterdam 1980.

[19] —. Eigenvalues and s-Numbers, Cambridge Univ. Press, Cambridge 1987,

[20] G. Pisier, On the duality between type and cotype, in: Martingale Theory in Harmonic
Analysis and Banach Spaces (Prac. Cleveland 1981), Lecture Notes in Math, 939, Springer,
1982, 131144,

[21] —, Weak Hilbert spaces, Proc. Tondon Math, Soc, 56 (1988), 547-579,

[22] —~, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press,
Cambridge 1989,

[23] G Schechtmun, Almost lsometrie L, subspaces of L, {0,1), J. London Math. Soc. 20 (1979),
516528,

INSTITUT FUR ANGEWANITE MATHEMATIK
UNIVERSITAT ZURICTH
Ritmilstr. 74, CH-8001 Zirich, Switzerinad

Received April 18, 1989 (2553)

Revised version June 12, 1989



