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Almost everywhere sumumability of
cigenfunction expansions associated to elliptic operators

by
WALDEMAR HEBISCH (Wroclaw)

Abstract. Lat A be a positive-definite operator, with spectral measure E, on I*(X), where X is
a metric space with measure. We give suflicient conditions on A4, X, and a function X on R, which
imply
lim_[ KQ@AYdE(D) =] ae.

=0

for fe {X). As a special case we obtain the a.e. convergence of Riesz means of index greater than
¢/2 for A being either a positive-definite elliptic differential operator acting on sections of a vector
bundle on a compact g-dimensional manifold or a Schrédinger operator on RY with nonnegative
potential in Z_, p>g/2

1. Introduction. Almost everywhere summability of Riesz means. of
eigenfunction expansions of I' functions associated to various elliptic or
subelliptic operators have been treated by a number of authors. Let us mention
the classical result of L. Hérmander [3], [4] who has shown that for an elliptic
differential operator on functions on a compact manifold of dimension g the
Riesz means of index greater than g—1 of an I function are a.e. convergent.

Recently C. Sogge [8] improved greatly Hérmander’s result as far as norm
convergence goes, to show that for the same operators the Riesz means up to
the critical index {g—1)/2 of I! functions are norm convergent. Moreover, it
seems that Sogge’s method also gives ae. results.

On the other hand, a.e. summability results for eigenfunction expansions
of I' functions associated to Schrédinger operators with polynomial potentials
have been obtained by A. Hulanicki and Joe Jenkins [7].

The aim of this paper is to present an abstract theorem, very much in the
setting of E. M. Stein’s Topics in Harmonic Analysis... [97], which yields the a.e.
summability of the Riesz means of index grealer than ¢/2 of I} functions
associated both to an elliptic differential operator on vector bundles on
a cormnpact manifold of dimension ¢ and to Schrédinger operators o RY with
nonnegative potentials locally in IF, p > g/2.
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The rapid decay of the kernels of semigroups generated by the operator in
question which is basic for the functional calculus we apply, as well as some
smoothness of these kernels essential for Zo’s lemma are proved separately for
the Schrodinger semigroups and the semigroups generated by elliptic operators
on vector bundles on compact manifolds in Sections 7 and 8 (cf. (7.2)-(7.4),
{(8.11)(8.13)).

Several proofs in the paper are modeled on arguments due to other people.
For instance, for the idea to apply Zo’s lemma rather than to compare with the
Hardy-Littlewood maximal function we are indebted to E. M. Stein [10]. We
rely heavily on a functional calculus whose idea goes back to J. Dixmier [1]
and which, in the form adapted for convolution semigroups, is due to
A. Hulanicki [6]. The use of submultiplicative functions together with
hypoellipticity, which is essential for our proof of (8.11), was borrowed from
J. Dziubafiski and A. Hulanicki [2].

2. An abstract theorem. Let M be a metric space with metric d and a Borel
measure g Let B(x,#)={yeM: d(x, y) <r}. We assume that there are
constants C,, C,, g such that

u(Béx, 2r)) < C, u(B(x, ),

Let 4 be a nonnegative selfadjoint densely defined operator on
IZ(M, C*, u). By the spectral theorem, we write

Af= fAEQD) f,  eTAf=[e " dER)S.

u(B(x, _r)) £ C,r

We assume that

e f(x)= [e™ " {x, Y f () duly)

where the kernels e ~*4(x, y) (with values in M"(C), the space of n x n matrices
equipped e.g. with the Hilbert-Schmidt norm |-|) satisfy the foellowing estimates:
there exist positive numbers m, o and € such that

(21)  supfle™™(x, Ple™Ndu(y) £ € for all s, ¢ with s"t= 1,1 <1,
(2.2) sup fle” 0, VP du(y) < Ct79m - for all t< 1,

(2.3) le™™(x, y)—e ™" (x’, y)| < Cem@ramg(x, x'\*

forall t < 1 and all x, x’, ye M, or for every ball B there exists a constant Cjy
such that :

(2.3) fe™ (x, y)~e 70X, y)| < Cpt™r I d(x, X'

for all t <1 and all x, x’, yeB.
Let ! be a nonnegative real number. We denote by #4(R) the space of
Bessel potentials of order I, ie. fe #L(R) iff (I—A4Y*feL?(R).
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(2.4) TauorReM. Suppose (2.1)-(2.3) are satisfied. If Fe %L (R), | > g/2+41,
and for a nonzero @cCP(R,) and ¢ >0

IF, @l ot = Of(log )" ' 7%
where F,(1) = F(tA}, then F,(A) = ‘[F(ti)dE(l) is bounded on B(M), 1 <p g o
uniformly in t < 1, and the maximal function

F*f(x) = sup |F(A)f(x)

=y

as t—=om

[

is of weak type (1, [}
Remark. Sup of a family of yu~measurable functions on M always means
sup in the lattice of pu-measurable functions on M.

(2.5) THEOREM. Suppose (2.1), (2.2) and (2.3) are satisfied. Then for a function
F which satisfies the conditions above and F(0) =1 we have

lim F(A)f=f

1=+0
almost everywhere and in norm for fel’(M), 1 < p < w.

Remark. Let fel?, 1 € p < co. For a fixed ¢ we select a representative
from the class of a.e. equal functions F,fin L? such that ¢: (¢, x} — F,(4) f{x)is
measurable. One can prove that (2.1}, (2.2) and (2.3) imply that this can be done
in such a way that for almost all x, @ is continuous with respect to ¢,

Remark. Let (1 —2)% = R*1) be the Riesz kernel. One can check that for
u>I—1, R*e %}, for some p > 1. Thus for o > [—1 > ¢/2 the Riesz means -
of I! functions are a.e. convergent to f.

3. Banach algebras
DEFINITION. A continuous function @: M x M —R is calied ‘submulti-
plicative if for all x, y, z
e, 21, ok Yoeb, 2 = elx, 2).

Of course w, = {1 +d)", ", w," are submultiplicative.

Our functional caleulus is based on Banach *-algebras whose elements are
kernels K, K(x, y) being an operator on C" and |K(x, y)| its Hilbert-Schmidt
norm. For a submuiltiplicative function ¢ we write

1K | gy = max {sup [ IK(x, Wlo(x, yydy, sup[IK(x, yley, x)dx}

)J
and we define o Banach *-algebra with unit element by
B(g) = {K: |K|pp < o0} +CL
The multiplication is defined by
K Ky(x, )= [ Ky (e 9) Ko (s, ) duls),
and K*(x, y) = K(y, x).
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For a given kernel K we are going to estimate the norm of Ke™® in B(c,).
We will use the abbreviation |Kl, = | Kl s
(3.1) THEOREM. Assume that
K=K* [Klaews<Co supflK(x, y)I*du(y) < Cq.

Then for every a=0 there is a eonstant C, C = Cla, b, Cy), such that
le™ Kj, < C(L4 |27
Proof For ¢ <b and fixed a, taking ¢ = ¢®w, we have
1K [l 5y € C I K] perey < €Co

with some constant C. Let I =c¢™*|n|| K| - Then, since €% is a unitary
operator,

[le™ Kl (x, e e, dux) = [ + |

ey sl dxp)>l

< (L+0F (B, D)1 K, Mappam+e o e e K(, y)l,
< (L+IFu(B(y, DI e K(, Dlgate™ 7% Kl

< (LD Y K, Dl e K g e 150

< L+t C.

4. Zo’s lemma. The following is an easy generalization of a result from

[11].

Lemma (Zo [117). Let M be as above and let {K}ser be a family of kernels
which satisfies:

sup [ IK (x, ¥l du(y) < co,
X

sup  f suplK(x, »)— Ky, 2)|dulx) < co.

zy dQey)> 2d(p.2) §
Then the operator K*f(x) = sup,;|K,f(x) is of weak type (1, 1).

It seems convenient to define a norm on the space of families of kernels
which satisfy the conditions of Zo’s lemma.

DEFINITION.

1{K ;}serllze = max {SUP“Ka(X, ylduly),
x,4

sup [ sup|K,(x, ¥)— Kyx, 2)du(x)}

z,y dix,y)>2d{y,z) &

.For a fixed index set I, ||z, is a norm on the space of families of kernels
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indexed by I for which |- ||z, is finite, and this is a Banach space. It is easy to ses
that, if a,, del, are complex numbers, then

ey Kstaetllzo < suplagl 114 K s}l 20
P

and if f: I—-1I, then
HK jayaerllze € K 5} ser b zo-

(4.1) LemMA. if for some constants R > 1, M, a > 0, 0. > O, a fumily of kernels
(K, dnzo satisfies

1K e rpman = M, 1K, (x, ) — K, (x, 2) du(x) € MR™d(y, 2},
then for some C depending only on R, a,
[{Katizolzo < MC.
Proof. Let B = {x: d(x, y) > 2d(y, z}}. Now
IJ;IK,,(x, y)— K, (x, 2)| dulx)

< J 1K, 0, M dulx) + 1K (x, 2)| du(x) < 2MR™™d(y, 2)7°
B B

Then

ISUp{Kn(X, y)_ Kn(x’ Z)| dﬂ‘(x)‘g- ZI lK"(X, _]i)—"K"(X, Z)| dM(X)
B n

n B

< Y'min (MR™ d(y, 21, 2MR™™d(y, 2)™%)
]

S2M(I—-R™" '+ M(1-R™7 < CM.

5. Flementary kernels. Let 4 be an operator which satisfies the conditions
of Theorem (2.4) or Theorem (2.5). Theorem (3.1) will be applied to the
operators ¢”* ! which we identify with their kernels.

Thus we shall estimate the kernels

ey = exp [ine ¢ A e,
First we replace the metric d and the measure p by
do=t7tmd,  po=1"""p,
respectively, and the kernel e™'4(x, y) by
efx, y) = " e” 4 (x, y).
‘We notice that

ef = e,
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sup  le,(x, e dp(y) < Cq,
X

sup [le,(x, y)* dp(y) < Cq.

—td

Also, for the operator ¢”4 we have

eT 4 f(x) = [e,(x. ) f (M dp, ().

By an application of Theorem (3.1), with a constant C, independent of k and »,
we obtain

G.1) SUPflé'nk (%, PI{1+e ™ d(x, Py du(y) < Cy(1+n))#2+e.

Since we want to use results of this section in the proof of Theorems (2.4)
and (2.5) we introduce kernels e}, writing

nilx, ¥) = [exp {ine™* ™™} e7 Mix, s)u(s)-e ¢ *4(s, y) w(y)du(s)

where v and w are Lipschitz functions equal to 1 on large balls and hdvmg
bounded supports (we will specify this later).
By (2.1) and (2.3) we verify that for an £¢> 0 and o = g-—g

(5.2) [leGx, y)—e,(x, )| dp,(x) < Cd,(y, 2"
In fact,

J-Iet(xa y)'—et(xa Z)! dﬂt(x) < .[ + .[

delx.p)<ro  dxp)Zrg

< Cyrhd(y, 2)"+2sup [ e (x, y)| e dpu(y)-min(e ™o 42 1),

Thus with ro = d,7%(y, z) we obtain (5.2).
Now we write

I[en.k(xa y)"""en,k(xn Z)l d#(x)

< sup[lexp{ine™ "} e™¢ Mix, s)dp(x)y fle=¢ " (s, y)—e™ (s, 2| dus),

whence by another application of Theorem (3.1) and (5.2) (with ¢ = ¢™tm),
Vlen i, ¥)—eni(x, 2] din(x) < Co(1+-[n)}?* e ¥m gy, 2)7

Thus the family {e,, xtken satisfies the assumptions of Lemma 4.1) and so we

arrive at the main formula of this section:

(5.3) Henitienlzo < Cofl+|nlw2+a

for every a > 0.
The same argument also yields

(5.3 {entrentzo € Coyaw(14 o2 e,
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6. Functional calculns. In this section a functional calculus based on
estimates of Section 5 is described. We operate with functions ¥ on an operator
A which satisfies (2.1)}-(2.3) or (2.1), (2.2) and (2.3), and we place F in a Sobolsey
space #5(R) with p > 1 and [ > g/2+ 1, which seems to be the most convenient
space, being invariant under diffeomorphisms of R, good enough to estimate
max, |F(n)| and including the Riesz means R* First we assume that

(6.1) FeZl(R), suppFc[—e™!, ],
and we write
F(4) = F(t2),
(3 = A72F(—logld) fori>0,
b= 0 otherwise,
One can prove that
6.2) G, <CIFl,, for ¢ in [a,b], a>0,

where C is independent of F. We write F(4) f = | F(A)dE(A) f where E is the
spectral measure of 4. We also note

suppG, = [0,¢] if t=ze ™!,
F(A)y=F({td) = G,(e"")_e"”,
Fi0(d) =F, (1, A) = G, (e""**)e™ 224,
Let G,(A) =Y, G,(n)e™*. Then
Fre-u(d) = Gle™ ¢ " e 271 =3 G,(n)
and, of course, we restrict ¢ to the interval [e™ !, 1] = I. We estimate
H{F (Ao, zo = 1 {Fse-w(A)}ser renllzo

= ”{Z G@(n) en,k}seI,keN“Zo
< Q. sup |G| | {€n it renllzo-
o sal

since by (6.2)
G, () < e(L+{nl) ™! 16, < €Ol + )™ IFl

and by (5.3)
{enitenllzo < C{L+R)TZTE,

choosing & small enough, we obtain .
(6.3) HF (A a0, llze < CIF pr

Now we assume that F e &}, ,.(R) and satisfies the conditions of Theorem
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(2.4). We wnte

o

F=¢, F+ Z (Prr1— ) F

k=1

where @eC2(R), o) =1 for 2e[0, 1], @() =0 outside (—1/10, 3/2),
0<p <1 and ol =e27*1). Let

H {4) = [(ka-|~1—ka)F3(2k'1)-
Then supp H, < [~e¢™ !, €] and F(A) =3 H,(27* 1) with } \|H,c||_(f1 < oo, Con-

sequently,

Hy(A) = o (A) F(4),

(64) I{F A eo.llzo € L NHWZ ™ tA) }e0,1)] 200

Using (5.1) instead of (5.3) one can prove that sup, < 1||F,(A)i|zsL» < 00, which
ends the proof of (2.4).

We omit an easy but tedious proof that norm convergence takes place on
a dense subset of IP, 1 € p < 0.

By the spectral theorem lim,_o F,{(A)f = f1in L*? norm. By (2.2) each ¢'* is
bounded from L2 into L*® so e F,(A)f converges to e™f in L® and
consequently a.e. Since ¢ 1L? is dense in L? and L2~ I?, 1 < p < oo, is dense
in L7 we need only the continuity of F*.

Now, we are going to prove that F* ig continuous from L, pe[1, ], into
the space of p-measurable functions on M. To do this, it is enovgh to estimate
all operators of the form uF*, where u is a Lipschitz function with bounded
support. By the Marcinkiewicz interpolation theorem and L™ estimate we only
have to prove that each of the wF* is of weak type (1,1).

We write

Fie“"‘(A) Z G,(n)e;,k—kz G‘(H) (en,k_e:r,k) = I(t! k)"'l“J(ta k)

and, by [6,4), we see that | {I(t, k)}|[z, < oo. On the other hand, we are going to
show that for every bounded function u with bounded support there are v and
w {(cf. Section 35) su_ch that

M,,f(x): sup{|ux) [J(t, k) F1(x)I: te(e™t, 1), keN}

is of strong type (1, 1).

We select v and w in such a way that w(x}=1 if d{x, suppu) < 1
and v(x)y=1 if d(x, suppw) < 1. As in the proof of (6.3), it is sufficient
to show

§sup §1ee(x) [ene— ehad (x, ¥)| dpalx) < (14 |2+,

We write
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eyil, YW —anlx, y)

= [exp{ine™ *}ee T, =) (s)e " MG, y) wipduds).

Hence

. - T, X —pk
Henew—enillo < llexp{ine ™ “he™ |y (1 —v)e ™ “wij,.

The first factor on the right is bounded by C(1+n|)#*** independently of k.
Since {1 —v)e ¢ (x, yyw(y) s zero i d(x, y} <1, (2.1) implies that

(L —w)e ¢ |y € Ce "
To estimate
(6.5)

we recall {3.1) and again for d(x. y) < 1, (6.5) is equal to zero.

e,y (1 —w)

7. Applications. Schrodinger operators. Let A be a Schrédinger operator
on R%:
A== —Ad4V,

where the potential ¥ is nonnegative and Ve I, p > ¢/2. Formulas (7.2)-(7.4)
show that our abstract theorem (2.5) is applicable to the eigenexpansions of
such Schridinger operalors,

By the Feynman—Kac formula we see that

(7.1) 0 e™Mx, y) < plx, ¥h
where p,(x, y) = (4n£) "4 exp (-~ |x —y|*/(41)). Formula (7.1) implies
(7.2) fem5(x, e Idx < Ce™,

(1.3} supe”4(x, y) < a”¥?

X, ¥

[le™ 4 (e, y)|? dx < et™92,
for some universal constants C and c.
Let A, = 4—V, where V(x)=tV(:'*x). For every t>0 we have

e# oy €1 for Rez >0, [l |ipe e <1,
so with some f =, (see [9], p. 67, Theorem 1 and its proof)
e osm S 1 for Argz < p.
Then the Cauchy integral formula gives
A e pore € Cp
Since e’ (-, »|i» € C we have

1A, €24, y)

l ir ‘g C'.'p

independently of ¢t and y,
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For a fixed ball B = B(0, ) with B, = B(0, rt**)and fort < 1 and p > ¢/2
we have
[ de*(, Yo < |4, 6%, ¥) + Vet (, WiLem

< | A e, Wleosy + 1 Voe™Co Wl

< A e W o+ Vill o sup e*(x, Y} < C
Also for t< 1 and p > ¢g/2

1V, o = Y2V | Loisy < 0V Loy,
Thus
le®C, YlLipuip, € Co @ = a(p),

because by e.g [5], pp. 123 and 246,

1 Lt S CollAS Lo+ 11 | Legs)-
Using dilations and translations we obtain

(74) le*(x, y)—e4(x', y)| € Cot™+ 2 d{x, x')
for all x, X' €B;;, and yeR

8. Applications. Elliptic operators on vector bundles. We consider an elliptic
differential operator of degree m acting on a hermitian vector bundle E on
a compact ¢-dimensional riemannian manifold M with riemannian metric
d and riemannian measure 4. We fix a sufficiently fine finite covering {U,} and
coordinate systems {U, ¢,;} on M, and we assume that ¢, are bounded
together with all the derivatives of ¢, and ¢;"'. We define the Sobolev norms
on sections: '

1f1Z =200 ool | frmecrys

where {y;} is a fixed partition of unity subordinate to {U}.

(8.1) THEOREM. If A is a nonnegative elliptic operator on E and e is the
semigroup generated by A, then the kernels e™**(x, y) satisfy (2.1)-(2.3).

We begin with two simple observations. By passing to coordinates and
dilating for every k> ¢/2 we have .

(82) sup [f1 < C A f o+ 1S o).
Also we note that for s> 1
(8.3) [ e =Y du(x) < cs™4,

M

(84) LEMMA. For every meN and x,e M, s > 1 there is a function ¢: M ~R
(which depends on x, and s) such that

le(y)=sdly, xo)l <1 for all yeM,
supid*(poe) < C,s%  for all i and o, 1 <o) < m
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Proof For every i
v==d(e, xgoe !

is a Lipschitz function on R? and so for a C¥ function v, with u,(x) = ¢ u(x/e),
p#u, is 2 C” function for which we have

0% % u ) = 10,0 % 8% u| < ce™ 11 { (0¥ u),.

Now taking ¢ proportional to 1/s and small cnough for v« u,00; to be defined
on suppy;, we put

0 =8y W (v*u0p).
(8.5) Lumma. Let A be u differential operator of order m on E, let ¢ be the

function of (8.4) and let n = ¢”% For every ¢ > 0 there exists a constant C(z)

independent of ¢ such that for all s > 1

(AN =1(AN), 0} < elnfllagz +C s Inf113.

Proof We write A = >, 4 and we reduce the lemma to a compactly
supported scalar oporator. A multiple application of the formula #d,f = 8,(nf)
+{8,0)nf yields

Anf)~n(Af) = 36" ar [1(29 o) 8*(nf)

where the g, are functions which depend only on the coefficients of 4, and the
summation runs over |af < m/2, |Bl < mf2. o+ B+ Y [ () < m, [y(j)] > 0. By
Lemma (8.4), we have

sup ‘11(670) Q)| < CS“",

where y =Y y(j). Consequently, ‘
(87 (a, TT(2 @)-2%(nf), nf)| < CsM-suplad-|nf L 107 11g
< Cs||nf |70 0 i £ 3o
< elnf e+ CEs™ nf 118,
where @ = m~—|oj~|fi] = |7].

Proof of Theorem (8.1} Lemma (8.5 and Gdrding's inequality yield
(8.6) Re(nAf, nf) = Re (4w, nf)—In, ALL nf)

2 Cy Inf 7~ Ca 5™ Inf 1.
Hence
Re (nAf, )+ Cs" |nf1§ 2 elnflliy

and since Im(nAf, #f) = Im{{n, A1f, n/), we have

Re (nAf, nf)+Cs" [nf 11§ 2 AminAf, nf}.
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This means that for Rez > |Imz| the operator
(8.7) —z{4A+Cs™I)

is dissipative on I2(E, #* ). Since M is compact, [7(E, #* ) is isomorphic to
I2(E, ), whence the semigroup gencrated by (8.7) on J.Lz(E, ) czleﬁnesza semi-
group on IX(E, #* ) and thus, since (8.7) is dissipative on L (I?,::q ',u) _lt is
a semigroup of contractions. Therefore ——(A+C‘.<>'"t I s the mfmltesuna}]
generator of a holomorphic semigroup of contractions in {z: Rez> |lmz]},
and

(8.8)

- CsMR
€™ * M Lzqa . LaEanr S €0

Hence by the Cauchy integral formula, for all t >0, we have
(89) HAk e—tA“_LE(E‘,,,ZM,LZ{E',]?,“) é Cl I_k eC;rs"".

Now for a k=1 such that mk > g/2, by (8.2) we have

n(xp)le 1) (xo)| < CAT2 (2™ [lne ™ f o+ €™ Fo)-
Therefore by an application of (8.6) with A% in place of 4, we obtain
(o) (e ) (x,) < Cy A2 {2 [Re(nA* e ™1, ne™"f)
+C, 5™ e f 1512 + e Yo}
< CATI2 {im* |na &= 4 £ | e 41 142
+ (1) [ne 4717
Thus with 1™ =t < 1, using (8.8) and (8.9) we obtain
I (xe) (e TN} x) € €y ™4™ (14157 +1) e nf
< Cy 7 e | o
This yields
(8.10) (fle™ " (xo, Y072 () du(p)t* < Cyrm M ™,
Since, by (8.3), fnd,u < Cs79, for s™t = 1 the Schwarz inequality implies
fle ™ (x, Ylin™ () duly) < CLmHm §= 2 = < o™,

To summarize,

(8.1 1) j‘!e—m(xo‘ y)|esd(xn.y) d,u(y) < Ce™™ .
Putting s =1 and dropping # in (8.10) we obtain

(8.12) fle~Ax, VP du(y) < Ct~¥", for 1< 1.

icm
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Now (8.12) and (8.9), in virtue of Gérding’s inequality, yield

lle™0c, Hi € et™a@mp=hm - for 1.
Since for 0 < & = k—q/2 < 1 the space H* is contained in C* (cf. [5], p. 123) we
obtain for ¢ < 1

(8.13) le™ 4 (x, p)—e M, 2) § et TN gy, ),
)
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