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On transition muitimeasures with
values in a Banach space

by
NIKOLAOS S. PAPAGEORGIOU (Davis, Calif)

Abstract. In this paper we examine transition muliimeasures, i.e., set-valued vector measures
parametrized by a parameter in & measurable space. First we establish the existence of transition
selectors. Then we define a set-valued integral with respect to a multimeasure and we show that it
generates a new transition multimeasure, for which we obtain a-characterization of its measure
selectors. Then we allow the parameter of the transition multimeasure to vary over a Polish space
and we obiain a set-valued version of Felier's property. Finally, we look at the action of the
transition multimeasure on measures defined on the parameter space.

1. Introduction. The theory of multimeasures (set-valued measures) has its
origins in mathematical economics and in particular in equilibrium theory for
exchange economies with production, in which the coalitions and not the
individual agents are the basic economic units (see Vind [25] and Hildenbrand
[15]). Since then the subject of multimeasures has been developed extensively.
Important contributions were made, among others, by Artstein [1], Costé [8],
[9]. Costé—Pallu de la Barriére {107, Drewnowski [12], Godet-Thobie [13],
Hiai [14] and Pallu de la Barriére [17]. Further applications in mathematical
economics can be found in Klein-Thompson [16] and Papageorgiou [197].

In this paper we study multimeasures parametrized by the elements of
a measurable space (transition multimeasures). Such muitimeasures turn out to
be the appropriate tool to establish the existence of Markov temporary
equilibrium processes in dynamic economies (see Blume [6]). '

2. Preliminaries. In this section we establish our notation and terminology
and we recall some basic facts from the theories .of multifunctions and
multimeasures that we will need in the sequel.

Let (2, %) be a measurable space and X a separable Banach space.
Throughont this paper we will be using the following notations:

Pro(X) = {4 = X: nonempty, closed, (convex)},
P (X) = {‘A & X: nonempty, (w)-compact, (convex)}.
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Key words and phrases: transition selector, Suslin space, measurable multifunction, Aurmnann’s

selection theorem, upper semicontinuity, vector measures, Polish space, Radon measure.
Research supportsd in part by NSF. Grant D.M.5.-8802688.



38 N. 8. Papageorgiou

Also by X« we will denote the dual of X endowed with the weak* topology
and by P, (X} we will denote the nonempty, w*-compact and convex subsets
of X#,

If Ae2¥\ (@}, we define |A] = sup {|luf: e A} (the norm of the set A),
o(x*, A) = sup {(x*, o): usA}, x*eX* (the support fumction of A) and
dix, A) = inf {|x—al: ae A} (the distance function from A).

A multifunction F: Q — P (X) is said to be measurable if for all xeX,
w — d(x, F(w)) is measurable. This definition is in fact equivalent to saying
that there exist measurable functions f: @— X st for all wel, F(w)
= ¢l {f (@)}nz . Furthermore, if there exists a complete o-finite measure u(-)
on 2, then both the above definitions are equivalent to saying that

GrF = {{w, x)eQx X: xeF{w) eXxB(X),

B(X) being the Borel o-field of X (graph measurability; for details we refer to
Wagner [26]).
By Si we will denote the set of integrable selectors of F (), ie

St={f()e}(X): f(w)eF(w) u-ae}.

This set may be empty. A straightforward application of Aumann’s selection
theorem tells us that if F: Q — P (X) is measurable and o — |F (w)| belongs in
L, (such an F() is usually called integrably bounded), then Sk # @. Having
this set we can define a set-valued integral for F(-) as follows:

[F@)du() = {[ f @)du(o): [eS}).
2 2

The vector-valued integrals of the right-hand side are defined in the sense of
Bochner. This integral is known in the literature as Aumann’s integral, since it
was first introduced by Aumann [4] as the natural generalization of the
Minkowski sum of sets. _

Next let X be any Banach space. A multimeasure is a map M: ¥ — 25\ {@)
st. (i) M (@)= {0}, and (i) for every {4,},»; < X pairwise disjoint we have
Mn(Un; . 4,) = Zn? , M (4,). Depending on the way we interpret this infinite
sum we get different types of multimeasures. However, all these definitions
coincide when M (-} is Py, (X)-valued (see Proposition 3 of Godet-Thobie (13
and Pallu de la Barriére [17]). This fact can be viewed as the set-valued version
of the well-known Orlicz—Pettis theorem (see Diestel-Uhl [117). So for the
needs of this work we can say that M: £ — P (X)) is a multimeasure (set-yalued
measure) if and only if for every x*e X*, 4 — o(x* M (A)) is a signed measure.
Similarly M: Z - P {X%) is an X ¥-valued multimeasure if and only if for all
xeX, A —-o{x, M(A)} is a signed measure.

If M(-) is a multimeasure and AcZX, then we define

M| (4) = Sup; 1M (4,),

where the supremum is taken over all finite Z-partitions 7 = {A}p=; of A.

icm
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If M () < oo, then M (-) is said to be of bounded variation. Also by S, we will
denote all vector measures m: £ — X that are selectors of M('), ie
m{Aye M (A} for all AeX.

Now let (2, Z) and (T, F) be measurable spaces and X a separable Banach
space. A multivalued map M: Qx 7 - P, (X) is said to be a transition
multimeasure if

(1) for all Ae7, w— M{w, A) is a measurable multifunction,
{2) for all we@, 4 - M{w. A) is a multimeasure.

A selector transition measure or simply a transition selector of M (-, ) is
a map m: 2x7 - X st

(1) for all AeZ, w—m(w, A) is Z-measurable,
(2) for all we, 4 —-m{w, 4) is a vector measure,
(3) for all weQ and all AeZ, m(w, A)e M (o, A).

The set of all transition selectors of M(-,-) will be denoted by TS,,.
Similarly we can define an X¥~valued transition multimeasure M: Qx T
~r P (X%} and its set of transition selectors.

Let T be a Polish space and X a Banach space. By C, (T} we will denote the
space of bounded continuous functions on T and by C,(T)® X the space of
bounded continuous functions with values in a finite-dimensional subspace of
X. Also by M*(T, X) we will denote the space of X-valued vector measures of
bounded variation defined on (T, B(T)). Similarly we define M*(T, X} and
C,(T)® X* (see Sainte-Beuve [23]). Finally, if me M*(T, X) and Be B(T), yzm
is the vector measure defined by y,m(A) =m(4An B), AeB(T).

3. Transition selectors. In this section we prove a theorem that establishes
the existence of a transition selector for a transition multimeasure. Our result
extends Theorem 2.3 of Hiai [14] to transition multimeasures and also it
extends Theorem 5 of Godet-Thobie [13]. ’

So assume that (Q, X, p) is a complete, finite measure space, T a Polish
space with B(T) denoting its Borel o-field and X a separable Banach space.

THEOREM 3.1. If M: Q% B(T)— P, (X% is a transition multimeasure of
bounded variation and h: Q — X*. is a measurable map s.t. for some AeB(T),
hiw)e M (w0, A) for all we L, then there exists me TSy s.t. m{w. A) = hiw) for
all we. '

Proof. Let R : € — M*(T, X¥) be defined by
R (@) = {me M*(T, X}): me Sy, m(d) =h(w)}.
From Theorem 1 of Godet-Thobie [13] (see also Theorem 2.3 of Hiai [147),
we know that R, (o) # @ for all wefd
Next let xeX and consider the function ¢, QxM*(T, X¥) —>R
defined by '
¢A,x ((,0, m) == (xa m(A)—]’l(CU».
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Since by hypothesis A(-) is w*-measurable. o - (x, h(w)) is a measurable
R-valued function. On the other hand, recall that by the definition of
Co(TY® X, the w(M® (T, X%, C,(T)® X)-topology is the weakest topology on
M"(T, X% for which m— xom is continuous from M"(T, X%) into M"(T)
with the weak (narrow) topology; here xom(:) denotes the R-valued measure
A = {x, m(A)). Also from the Dynkin system theorem, we deduce that for every
CeB(T), the map 41— A(C) on M®(T) with the weak topology is measurabie,
Hence we finally conclude that m — (xom)(C) = (x, m(C}) is measurable.
Therefore we see that (w, m)— {x, m(A)—(x, () = ¢4 (w, m) is jointly
measurable on Qx M"(T, X} when M’(T, X¥) is endowed with the
w(M*(T, X3, C,(T)® X )-topology.

By definition m is a measure selector of M (e, -) (denoted by me Sy} if
and only f m(C)e M (w, C) for all Ce B(T). Since M (-,- }is Py (X ¥)-valued we
have (x, m(C)) € o (x, M (w, C)) for all xe X and all CeB(T). Note that gince
M(-,-)is a transition multimeasure, w — o(x, M(w, C)) is measurable while as
above we can see that m — (x, m(C)) is measurable from M®(T, X*) with the
w{M® (T, X&), C,(T)® X)-topology into R. Hence the map

Pex{®, m) = o (x, M(w, C)—(x, m(C))

is jointly measurable.

Now let {x;}1» be dense in X and let {Cu}nz1 be a field generating B(T),
ie. a({C,}s21) = B(T) (recall that since T is a Polish space, B(T) is countably
generated so such a countable fisld exists). Then by setting

P a0, m) = (x,, m(A)ﬁh.(cu]), Pax (@, 1) = 0 (x,, M {0, C))—(x,, m(C,)),

we can write

GrR, = [ {{w, mex MY (T, X%): ¢ (0, m) =0, P (w0, m) = 0}
E21
nz1

€ X x B(M®(T, X%,)).

From Theorem 3, p. 337 of Sainte-Beuve [23], we know that M (T, X
equipped with the w(M*(T, X}.), C,(T)® X}topology is a Suslin space. Thus
we can apply Aumann’s selection theorem (see Sainte-Beuve [22], Theorem 3),
to get r: Q— M*(T, X*) measurable s.t. r{w)e R(w) for all weQ. Set
Fl@)(C) = m(ew, C) for all {w, C)e Q x B(T). Then clearly m(-,-)is a transition
selector of M{(-,-) and m(w, A) w= hlw) for all weQ. u :

4. Integration with respect to a transition multimeasure, Now we turn our
attention to integration with respect to a transition multimeasure, extending
the work of Costé [8].

Let /2 QxT-R, be a measurable function st, flw, )e (T, 3) for all
weQ. Motivated from the definition of the Aumann integral (see Section 2), we
define the integral of / (-, ) with respect to a multimeasure M (LM, ) <2
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u-a.e., as follows:

J flw, M (w, di) = {{ f(w, &) m{w, d&i): me TSy}, CeB(T),
C < .

Note that w — [, f (@, 1) m{w, d¢) is measurable for every me TSy To see
this let 5,0 QxT—R, be simple functions st |s,(w, ) <f(w, £} and
s, (@, 1) = [ (w, ) px A-ae. Clearly w - [.s,(w, t) m(w, df), n > 1, are measu-
rable and by the dominated convergence theorem fesa(w, 1)y m{o, dr)
— o flw, 1) m(w, dt) p-ae Hence o — (o f(w, t) m(w, dt) is measurable.

Assume that (22, X, p) is a complete, finite measure space with {w}eX for -
all we®, T is a Polish space with B(T) its Borel ¢-field while A(-) is a finite
measure on (7, B(T)) and X is a separable, reflexive Banach space.

THEOREM 4.1. If M: Qx B(T)— Ps(X) is a transition multimeasure s.f.
Mim, C) = 1(C) W(w) with W{w)e P (X) for all weQ and

N(w, O ={f(», 1) M(ow, di),
C

then N(-,') is a P, (X)-valued transition multimeasure.

Proof From Theorem 3.1 we know that TS,  # @ and so N(-,-) has
nonempty values. Also since M (-,-) is convex-valued, 7§ is convex and so
N(-,") is convex-valued too. '

Now note that since by hypothesis {w}e2 for all weQ, we have

{§ flw, ) m(w, di): meTS,} = {[f(w, ) Mdt): MESra}-
C c

Fix weQ and consider a net {x,},.; € N(w,C) s.t. x,® x in X. Then by
definition we have

x, = [ [flw, ) i (dt), ¥, &Sy,
P /

But from Theorem 1 of Godet-Thobie [13], we know that Spy..
S M®(T, X) is compact for the topology of pointwise weak convergence,
denoted by w = w(M"(T, X), Z® X*). So we can find 2 subnet {riy}se; of
{it, }aer St n‘:ﬁi& HESyw, - We now claim that tjor gach x*e X'* anq each
Ce B(T), the map 1 — [x*, [ f(w, 1) m(dD))is continuous from S%(m_., with the
w-topology into R, To see this let f (e, +) be the simple function Zk= L %3 ()
Then we have

[ £, t) m(dt) = i a,m(C By
[ k=1

= m— (x*, | f(w, t) M{dt)) is continuous.
C . .
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Now let s, (+) be simple functions on T s.t. || f{w, )—s,(*)]; 20 asn— w0,

Note that for all #e Sy, .- we have
[oc*, RO < RO [x* W (@),  x*eX*
Therefore .

lim [|f(w, t}—s,(t} d|x*om|(d) =0 uniformly in me Sy, ,

n~oC

= lim [s, (1) d(x*om)(dt) = jf(w,‘ 1) d{x*om){dt) uniformly in meSy, .,
C

o O
where (x*om)(-) = (x*, m(-)).

Since the members of the uniformly convergent sequence are continuous
in m,we conclude that the limit is continuous in . ie m

- fof (@, 1) d(x*om)(dt) = (x*, [¢ f{o, 1) m(dr)) is continuous as claimed. So
we have

§ £ (0. 1) vy (de) = | [0, 0) ()
C C

= x= [ f(o, ) #idl), WSy
C

= Ni{w, C)eP, (X} for all (v, C)eQxB(T).
Also note that

Niw, €)= § f(w, 1) M, d) = (] [, § AldD) W(w)e Py (X)
[

¢

= N{w, C)e P, (X) for all (w, C)e Q2 x B(T).

Next let meTS, and x*eX* We have (vecall (x*om)(-)
= (x*, m{-})

(X, [ S (o 0y mien, d0) = | f (o, 1) d (x*omi(w, di) € J /@, 0 o(x*, Mw, dn)
{ «

!
= alx*, N(w, O) < [ f(m, 1) a(x*, M, dn).
5

Fix x*e X* and consider the following multilunction:
Hi{w) = {Me 8y, a(x*, Mo, C‘)] = (x*, (O .

Consider a well-ordering on X* (it exists by the well-ordering principle) and
give X the corresponding lexicographic ordering {sec for example Bourbaki
[77). Since by hypothesis M (+,- ) is P (X)-valued, we can find a lexicographic
maximum #i (C) of M (e, C). Then (x*, m(C) = o (x*, M (w, C)). We will show
that 1 {-)€ S,y According to Proposition 2 of Godet-Thobic [13].. it is
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enough to show that /(") is additive. So let B, B, be two disjoint elements of
B(T). Then, if by <, we denote the lexicographic order, then for all b, € B, and
all b,eB, we have

by < m(B), b, <,m(B,).

Since M (B, U B,) = M(B)+ M(B,), every element be M (B, U B,) can be
written as b = b, +b, with b, e M (B,) and b, e M (B,). Because the lexicogra-
phic ordering is clearly compatible with vector addition, we have

b < m(B)+n(B,)
= 1 (B,)+(B;) is the lexicographic maximum of M (B, U B,)
= (B, v B,) = m(B)+(B,)
= () is additive, thus it belongs in Sy, -
Hence Hiw}# @ for all weQ. Then we have
H(w) = {meM"(T, X): o(x*, M{w, B)) = (x*, m(B)),
#m(B)e M(w, B), Be B(T)}
> GrH = {(w, m)eQx M (T, X): a(x*, M (w, B) = (x*, m(B)),
w(B)e M{w, B), Be B(T)}
= GrH = () {{w, MeQx M*(T, X): o(x*, M(w, B)) = (x*, m(B)),

k
n

W

1
1
(zi¥, m(B,) < o(zF, M(ew, B}
where {zf}y» is dense in X* and {B,},», is a field generating B(T), i.fa.
o{B,: nz 1)= B(T) (again since by hypothesis T is a Polish space, B(T) is
countably generated and so such a countable field exists). Then, as in the proof
of Theorem 3.1, we find that GrH e Z x B(M" (T, X)) (recall that M"(T, X) i.s
equipped with the w (M* (T, X), C,(T)® X*)-topology). But M *(T, X) with this
topology is Suslin (see Sainte-Beuve [23]). So we can apply Aumann’s selection
theorem and get me TSy st

o(x¥, M(w, C)) = (x*, m(w, C))
= g(x*, N(w, C) = [ f(w, )d(x*om)(w, d)

= w-»o(x*, N(w, C)) is measurable.

QObserve that .
GIN(, O = () {{w, Ne2xX;: @, M < ozt Nw, O)eZxB(X)

k=1
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and since (2, X, u) is by hypothesis a complete, finite measure space, we
conclude (see Section 2) that N(-, C) is measurable for every Ce B(T). Clearly
C—o(x*, N(w, C)) is a signed measure, hence N (w, ) is a multimeasure,
Therefore we conclude that N (-, -) is a transition multimeasure with values in
(X). =m

wkc

Remark. An interesting and useful byproduct of the proof of Theorem 4.1
is that under the hypotheses of that theorem, we have o(x*, N{w, )
= [ flo, o (x*, M(w, d)), for all (0, C, x*)eRx B(T)x X*.

Next we will derive a useful characterization of the measure selectors of the
maultimeasure N(w,,), ws

THEOREM 4.2. If the hypotheses of Theorem 4.1 hold, then for all we, we
have

SN{m,-) = j‘f(w, E)m(ﬂ], dt) me TSM}
Proof. Recall that

fv()= _[f(co, tym(w, dr): me TSy}
= (50) = | £ (@, DrRlde): AE Sy} = I'(w).

Clearly I'(w) is convex for all we. Also in the proof of Theorem 4.1 we
saw that i — (x*, [, f (@, 1)#{ds)) is continuous on Sy, With the topology of
pointwise weak convergence (i.e. with the w = w(M*(T, X), Z@X*)-topology).
Furthermore, recall that Sy, . is W-compact. Combining those two facts, we
can easily check that I'(w) is w-closed in M"(T, X).

Next let v,, v,el" (w). By definition we have

= [ flw, Dy (df), 1, €Spray, BeB(T),
B

= [flw, Dy (d), 1, eSywy. BeB(T).
B

Then if (B, B,) is a Borel partition of T, we have

(Xp, 01+ Xg, o)) = _[f (0, &) g (d2)

where riy = yp, M, + 35, M. Clearly miy€ Sy, and so Xg, Oy + X, Ua €T (W)
Here for every weQ, I'(w) is a nonempty, w-closed, convex and decomposable
subset of M*(T, X). Thus Theorem 2 of Pallu de la Barriére [17] tells us that

I"(@) = Sy, @yy> Where Ny (w)(): B(T)— P (X} is a multimeasure. But clearly
I'(@) € Sy = Ny (@){) = Nw, ) =N, (w) (") 15 P, (X)valved. Also from
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Theorem 1 of Godet-Thobie [13] we know that for all CeB(T), we have
{jf(w, Jir{de): Mme Sy} = {jf(a),t)m(w, dt): me TSy}

= N ()(C}= jfa) )M (w, dr)

= N, (@){C)=N(w, C) for all (w, C)e@xB(T)
= I'(w) = Syw,y for all wef2, as claimed by the theorem. =
An immediate interesting consequence of Theorem 4.2 is the following fact:

CoroLLARY. If the hypotheses of Theorem 4.2 hold, h: @— X is measurable
and jor some Ce B(T}, h(w)e N (w, C) for all weQ, then there exists me TS, s.t.
= [ flw. ) m(w, dt) for all wel.

Prool From Tneorem 3.1 we know that there exists neTSy st
n{w, C) = h{w) for all we Q. Then applying Theorem 4 2, we see that for some
me TS, and for all BeB(T), we have

n{w, By = | f(w, Ymiw, d) = h(w) = | f(o, ym{w, di) with me TS5, =
B C

&, The multivalued Feller property. In this section we turn our attention to
transition multimeasures for which the parameter varies over a topological
space. Hence instead of simple measurability with respect to that parameter, we
can require a continuity type property. Recall (see Klein—-Thompson [16]) that
if ¥, Z are Hausdorff topological spaces, then a multifunction G: Y —2\{@} is
said to be upper semicontinuous (n.s.c.) if and only if for every U = Z nonempty,
open, G¥ () ={yeY: G(y)< U} is open in ¥ So if Z is a Polish space,
Theorem 4.2 of Wagner [26] tells us that an us.c. multifunction G: Y~ P (Z)
is automatically B(Y)-measurable.

If Y, Z are separable metric spaces, m(y, dz) is a continuous stochastic
kernel (i.e. a continuous transition measure) and /' € C(Yx Z), then according to
Feller’s property y—+n () = [, f (v, z)m(y, dz) is continuous. Feller’s property
is crucial in establishing the existence of invariant probability measures for
transition probabilities.

Qur next theorem derives a muliivalued version of Feller's property. So
assume that: (i) § is a Polish space with a Radon measure 4 (-) and B(S) denotes
the completion of the Borel o-field B(S) with respect to p(), (i) T is another
Polish space, with Borel o-field B(T) and A(-) a Radon measure on (T, B(T)),
and (iii) . is a separable reflexive Banach space, Also a transition multimeasure
M: Sx B(T)~ P,(X) which is us.c. in the ¢ variable from § into X, will be
called an ws.c. transition multimeasure, Finally, we will say that M ( T) is
scalarly continuous if s— o (x*, M (s, T)) is continuous for all x*eX™. This is
trivially satisfied if for instance M (s, T) is independent of s.
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THEOREM 5.1. If M: S x B(T)— P (X) is an us.c. transition multimeasure
st. M(s, A) s A(AW(s) for all (s, AyeSx B(T), with W(s)e Py (X), and
M (-, TYis scalarly continuous, f: § x T —R_ is an u.s.c., bounded above function
st f(s, Vel (T) for all seS and

N(s, Cy={f(s,0M(s,dt) for all (s, C)eS=xB(T),
c

then N (-, ') is an wsc., P (X)valued tramsition multimeasure.

Proof That N(-,-) is a P-valued transition multimeasure follows
immediately from Theorem 4.1. Also from the same theorem (see the remark
following the proof), for any x*eX™* we have

o(x*, N(s, O) = [ £ (5, Do(x*, M(s, di)).

Let ¢,: S—M"(S) be defined by ¢,(s) =05, where 4,(-) is the Dirac
point mass measure at s€S. It is clear that ¢, (-) is continuous from § into
M?(S) with the weak topology. Also let ¢é,: S— M"(T} be defined by
¢, (5) = o(x*, M(s, ")) If s,~»s1in S and K is a closed subset of T, from the
upper semicontinuity of M (-, K} we have

limsup o (x*, M (s,, K)) < o(x*, M (s, K))
(see for example Proposition 2, p. 122 of Aubin—Ekeland [3]). Since K was any

closed subset of T and o (x*, M (s,, T))—=o (x*, M (s, T)) (M (-, T) being by
hypothesis scalarly continuous), we deduce that

o (x*, M (s, )~ o{x*, M(s, ")) in M?(T)
= ¢,(-) is continuous into M®(T) with the weak topology.

Therefore the map ¢p: S— M?(S) x M®(T) defined by ¢ (s) = (¢ (s), ¢, ()} is
continucus into M?(S)x M®(T) with the product weak topology.
Now let @: M?(S)x M*(T)—M?(Sx T) be defined by

@(m, n) = m®n.

From Theorem 3.2, p. 21 of Billingsley [5], we know that ¢ is continuous for

the weak topology. So h=qgpo¢: S—M"?SxT) is continuous. Also let
p%: MP(Sx T)—R be defined by

piy= | fis, tav.
_ sxC
_ Re.call that the upper semicontinuity and houndedness from above of f(, *)
is equivalent to the existence of f,(-, )& C, (S x T} s.t. f, | f (consider for example
the “Weierstrass needle functions” f,(s, £) = sup es v [f (', t)—ndg(s, 5
—ndy(t, t)]). Then let
pia) = | f, (s, t)dv.

sxC
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Clearly from the definition of the weak topology on M*(Sx T), pf..(-) is
continuous for all # = 1. Then by the monotone convergence theorem we have
PSad p% and so conclude that p$(-) is us.c. Hence the composite map

PR () = £f(s, tyo(x*, M{s, di)) = o (x*, N (s, C)

is us.c. in s Since N(-, ) i8 P {X)-valued, Theorem 10, p. 128 of Aubin-
Ekeland [37], tells us that N(, €) is us.c. from § into X,,. =

Remarks. (N H/eC,(Sx T), dimX < co and M{, -) is as in Theorem 5.1,
then N(, €) is continuous in the Hausdorff metric. This follows from
Corollary 3A of Salinetti-Wets [24].

(2) This result can be useful in establishing the existence of stochastic
equilibria in dynamic economies.

6. Integration with respect to the parameter. As stochastic kernels act upon
probabilities on the parameter space, by integration with respect to the
parameter, a similar action can be defined for transition multimeasures. So for
a transition multimeasure M: S x 7 — P, (X) and for Ce B(S)x 7 we consider
the Aumann integral [ M (s, C (s)} (ds), where C(s) is the section of C by s and
u(*) is 2 measure on (S, B(S)). To guarantee that the above set-valued integral
will be nonempty, we need to know that the multifunction s — M (s, C(9)) is
measurable.

So assume that: {i) § is a Polish space, (ii) (T, &) is a measurable space, and
(iii) X is a separable Banach space.

TeEOREM 6.1. If M: SxJ Py (X) is a transition multimeasure,
CeB(S)x 7T and C(s)={teT: (s, )eC}, then soFo()=M(s, Cls)) is a
measurable multifunction. .

Proof From Fubini’s theotem, we know that C(s)eZ for all seT. So
M(s, C(8)) = Fc(s) is well defined.
Next consider the family

¥ ={CeB(S)xT: Fc() is a measurable multifunction}.

Clearly C = §x Te . Also assume that C;, C,e & and C, & C,. Then
for x*e X*, we have

o(x*, M(s, Cy{9) = a(x*, M (s, Cy (NCyfs))+o (x*, M(s, C, (s))

= o(x*, M(s, C; (INC, () = o (x*, M(s, Co(9))—o (x*, M(s, C,(s)

= g—ra(x*, M(s, C, (s))) is measurable.

Since M (-, I-) is P,z (X)-valued, as in the proof of Theorem 4.1, we see that
s—+M(s, C; (s\C,(5)) is measurable.
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Finally, let {C,},»; €%, C, < C,=... Then s—o(x*, M(s, C,) is
measurable for each n 21 and each x*cX®. Let D, (s)= C,(s) and D,(s)
= C,(s\C,_,(s), n = 2. Then we have

o(x*, M(s, gl C,l(s))) = o(x*, M(s, ngjl Dn(s))) =3 a(x*, M({s, D,(s)))

nzl
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= o (x*, M(s, C,(s)))+ Zz (o(x*, M(s, C, () —o(x*, M (s, C,_, (3))))

= s-a(x*, M{s, {J C, (s))) is measurable,

nzl '

= s-+M(s, || C,(s)) is measurable,
n=1
= U C,e#.
nzl
Thus we conclude that # is a Dynkin system (see Ash [2]). Clearly
# 2R ={E xE,: E €B(S), E,e7}. Therefore invoking the Dynkin system
theorem (see Ash {2], Theorem 4.1.2, p. 169), we conclude that

cR)=B(S)x7 =¥
= s-»Fo(s) is measurable for all C eBS)XT . m
Now we can integrate with respect to the parameter seS.

THEOREM 6.2. If the hypotheses of Theorem 6.1 hold and in addition u(-) is
a measure (S, B(S)), A(") is @ measure on (T, F) and for all Ce T, M(s, C)
S AC)W (s) with W. §— P, (X) integrably bounded, then

N{(C)= [ M (s, C(s)) uu(ds)
8

is a multimeasure with values in P (X).

Proof. From Theorem 6.1 and our boundedness hypothesis on M (s ")
we deduce that s—M(s, C(s)) is an integrably bounded multifunction.
So the corollary to Proposition 3.1 of [18] tells us that N(C)

= fcM(s, C(s) u(ds)e Py (X). Then for x*eX* we have

o(x*, N(C)) = id(x*, M (s, C(s))) t(ds)

.

{see Proposition 2.1 of [20]), from which we deduce that o(x*, N (") is a signed
measure, hence N(-) is a multimeasure. a

We can characterize the measure selectors of N () using the elements of
TSy So assume the following: (i) § is a Polish space with Borel o-field B(S)
and a Radon measure u(') on (S, B(S)), (i) T is a Polish space with Borel
o-field B(T) and a Radon measure 4(-) on (T, B{(T)), and.{iii) X is a separable,
reflexive Banach space. '
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THEOREM 6.3. If M: Sx B(T)= P, (X) is a transition multimeasure s.i. for
all CeB(T), M(s, C) < A(C)W (s} with W(s)& Py (X) and,

x&éN(AxB)= [ M(s, Byulds) for some (A, B)e B(S)x B(T),
A

then there exists me TSy, st. x={,m(s, B)u(ds).

Proof From the definition of the Aumann integral, we have x

= [, f()uds), f &S m Applying Theorem 3.1 we can find meTS,, s.t.
m(s, B) = f(s). Hence x = [, (s, B)u(ds). m

7. Radon—Nikodym theorem for transition multimeasures. The Radon-
Nikodym theorem for transition multimeasures is an interesting problem and
can have useful applications, like the corresponding result for regular multi-
measures (see Hildenbrand [15], the core of economies with production and
with a continuum of agents).

So assume that (i) (2, X, p} is a complete o-finite measure space, (ii) T is
a Polish space with a o-finite measure A{-) on B(T), and (iii) X is a separable,
reflexive Banach space. We start with a proposition that we will need in the
proof of the main theorem.

ProrosiTioN 7.1. If m: @x B(T)—=X is a transition measwre of bounded
varigtion st m(w, ') € A pae, mle, ) < alw) pae, a(Yell,, then there
exists o measurable function f: QxT—X and NeXZ with g(N)=0 st
flew, el T, 4, X) for every weQ and

m(w, O) = fcf(w, 1)A(d1)
Jor all we N and all CeB(T).

Proof. Since by hypothesis m{w, ) is of bounded variation, m(w, *)
<€A for all we®\N, p{N}=0 and X 1is reflexive (hence has the Radon-
Nikodym property (RNP)), for weQ\N there exists [ (w, )e L' (T, 1, X) s.t.
m(w, C) = [ f(w, HA(df). By redefining w— f{w, ) on N, we may assume
that f (w, *)e L' (X)) for all e>e Q. Then for every x* e X* and Ce B(T) we have

Sleay ) 2o x*y = (x*, m(w,.C))

where ¢-, > denotes the duality brackets for the pair (LT, Z, X),
LT, A, X*) = [LN(T, A, X)]*). Hence w—{f{w,"), xox*> is measurable.
Since countably valued functions are dense in L™ (T, 4, X*) (see Corollary 3, p.
42 of Diestel-Uhl [117), we deduce that w—{f (w, ), u)> is measurable for all
ue L*(T, 4, X*) = w~ f(w, ) is weakly measurable from Q into I'(T, 4, X)
and since L' (T, A, X) is separable, by the Pettis measurability theorem '(see
Diestel-Uhl [117, p. 42), we find that w— f(w, *) is measurable from £ into
ILMT, 4, X), hence f(-, *) is measurable from 2x T into X. w

Now we can state the Radon-Nikodym theorem for transitiop_ multi-
measures. The hypotheses on the spaces remain the same as in Proposition 7.1.

4w Qirdia Mothamatina 0T 1
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THeorEM 7.1 If M: Qx B(T)— P,,..(X) is a transition multimeasure of
bounded variation s.t. |M|(w,) € A prae, M|(w,) < alw) pae, a()ell,
then there exists a measurable multifunction F: Qx T - P, (X} and Ne X with
£(Ny=0 st. Flw, "} is integrably bounded for every wef2 and
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M(w, C) = [ Flw, )A(dt), weQ\N, CeB(T).
C

Proof Let h,: 2—X be measurable functions s.t. M (w, T) = cl{h, (w)}
for all w Q. Invoking Theorem 3.1 of this paper, we know that we can find
m,e TSy st h(w)=mw, T), n= 1 for all we. Then for every CeB(T)
we have

{}nn (CD, C)+mn(w’ CC)}n?] = {hn (w)}nZJ == M((‘Un T) = M(U), C)'I""M((D, Cc)’

{m, (@, C)+m, (@, C,ss < conv {m, (@, C)},» 1 +conv {m, (@, Cs ;.
Since m,eTS,;, n 2 1, we deduce that
conv {m,(w, C)},z, = M(w, C).

Applying Proposition 7.1 above, we see that there exist N & ¥ with u(N) = 0
and f,: @x T— X measurable s.t. for all n = 1, £, (w, )eI}(T, A, X) for all
we® and m, (0, C) = [ f, (w, 1) A(dt) for every weQ\N and every CeB(T).
Set F{w, 1) = conv {f,(w, )},5,. Clearly then F: Qx T — P,.(X) is measu-
rable and

gdlMl(m, 9

[F{w, 1) 1

HxAae

Since d|M|(w, -)/dle L' (T), we deduce that F(w,") is integrably bounded
p-ac. and by redefining it on the p-null set we can have F(w, *) integrably
bounded for ail weQ. Finally, using Proposition 2.3 of [20], we have

conv {m, (@, Ot = E&?{if,,(w, HA(@d}z1 = [conv{f, (@, Oh»12(d)
(4

]

[ F(w, 0y A(de),

C

we\N, CeB(T). m

Remark. If f @x T—R is a bounded measurable fonction, then we have

{fw, OM(w, dy = | f(w, ) F (@, ) A(d) for all wef\N, CeB(T.
C c
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