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This is because weakly null sequences in B lift to weakly null sequences in
A. Indeed, let g: A— B be the quotient map and (b,) weakly null in B with
g(a) = b, and (a,) bounded in 4. Let (1) be a countable approximate unit for
kerg and put ¢, = (1 —u,)a,. Then g(c,) = b, and (c,) is weakly null in 4. For
the latter, let p be the support projection in A** for kerg, so that p(1 —u)—0
strongly in A**, which implies p (1 —u,)a, —0 strongly. Hence, for fe 4%, we
have f(c,) = f(pe)+f(1—ple) = fp(t—u)a,)+f (1—p)a,)—0. Now we
have:

THEOREM. A separable C*-algebra A has the Dunford-Pettis property if and
only if A* has this property.

If A has the property, then using the lemma and the proof of Theorem 7,
A is type 1. Moreover, A has only finite-dimensional irreducible representations
for otherwise K (I,) shows up in a quotient of A. Hence A** is type I finite (cf.
Theorem 1 in Hamana's paper).
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Interpolation of compact operators by Goulaouic procedure
by
FERNANDO COBOS (Madrid)

Abstract. We show that the classical Lions-Peetre compactness theorems for Banach spaces
{which are the main tools for proving all known compactness results in interpolaticn theory) fail in
the locally convex case. We also prove a positive result assuming compactness of the operator in
both gides.

1. Setting of the problem. Motivated by certain problems in the theory of
partial differential equations, Goulaouic studied in [6] and [7] a procedure for
extending any interpolation functor for Banach couples to more general
couples of locally convex spaces. Let us briefly review this procedure.

A (Hausdorff) locally convex space E is said to be the strict projective limit
of the family of Banach spaces () if the following conditions are satisfied:

1) E == ﬂie! E,.

2) E is equipped with the projective limit topology.

3) For each iel, E is dense in E,.

4) The family (E,),; is directed, i.e. given any finite subset J < I, there exists
kel such that for all jeJ the embedding E, < E; is continuous.

We then write E = L1§n =E,.

Let now (4,, 4;) be a (compatible) couple of locally convex spaces
(meaning that they are continuously embedded in a Hausdorfl topological
vector space). We say that (d,, 4,) is the strict projective limit of the family
(Ao A1 Japerxs Of Banach couples provided that the following conditions
hold:

1) Ag=Lim Aqy, 4y = Lim A, ;.
iel i Jet
2) All spaces Ao, 4,,; are continuously embedded in a common Hausdorff
topological vector space .o,

3) For each (i,j)elxJ, Ay Ay is dense in Ag;n Ay, (the norm in
AO,iﬁAl,J being max {”aHA().i" “““41,1})'
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66 F. Cobos

If this is the case, we write

(Ao, Ap) = ,TI;iEE(Ao'n Ay

i.f

Any interpolation functor for Banach couples F can be extended to
projective limit couples by defining the interpolated space as the projective limit
Of the fam]ly {F(Ao,iv Al,j)}(f.j)EfKJ:

F(dy, Ay) = ,I;_i@F(Ao.ia Aj).

I

As an example, consider the Schwarz classical space #,, of all infinitely
differentiable complex functions f defined in R”, with D* fel, for every
multi-index « Then we have
(%) (@Lm: 9.r_m)o,p =9y,

P

Here 1 < pp.p; <00, 0<8 <1, 1/p=(1-0)/py+0/p,and ( , )y, denotes the
real interpolation method (see.[11] and [12] for details on this method).
In general, if (44, 4;) = Lim (4g ;. A, ;) then the topology of (A, Ay, i
L

defined by the family of norms

oo

rgla={ £ (1= K ;{t, a)F dejt]'”

where K, ; is the Peetre K-functional associated to the couple (4g:, 4y ), Le.
K (e, 0y =inf{|lagll 4, +1lala, 2 a =a5+ay, agedg;, 0 e Ay ;)

Besides the Riesz type formula (%), Goulaowc derived in [6] and [7] many
other properties of this interpolation procedure, but there is no result there
(nor in the subsequent literature) on the stability of compact operators for this
procedure. Accordingly, we study this problem -here.

The behaviour of compactness under interpolation is a very natural
question for applications of interpelation theory to other branches of analysis
and thus has received attention from the beginning of abstract interpolation
theory. The first result in this direction was obtained in 1960 by M. Al
Krasnosel’skii [10] for the case of L -spaces. Other contributions are due to
Lions—Peetre [11] and Hayakawa [8], among others. But in fact, the question
whether Krasnosgel’skii’s result holds true in abstract interpolation does not
have a complete answer yet.

Quite recently new approaches to some classical results have been
developed in [21-[5], also yielding new compactness theorems. Surprisingly,
the following result established in 1964 by Lions and Peetre {11] plays a main
role in the proofs of all (new and old) compactness theorems.

ion .
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Lions—PeeTRE LEMMA. Let 0 <@ < 1, 1 € g < w0, let (A, A,) be a Banach
couple and let B be a Buanach space. Assume that T is a linear operator.

W If T: Ay—B is compact and T: A,~B is continuous, then T:
(Ag, Ai)oq— B is compact.

@iy If T: B—~A, is compact and T. B— A, is continuous, then T:
B—(A4y, Ay)e,q 15 compact.

{In fact, Lions and Peetre showed that this is true for any interpolation
method of exponent (@ and not only for the real method.)

The aim of this note is to show that the Lions-Peetre Lemma fails for the
Goulaouic procedure, We also prove a positive result of Hayakawa type.

2. The counterexample. First let us recall the definition of the echelon space
of order p = 1.
Let (an,) be an infinite real matrix such that

0= am.n<am+l,nv m, n= ]: 2:-“

The space L, [G,,] consists of all sequences £ = (g,) of scalars such that for

every meN
o)

(0 = 1€l = (5, (7Y < o0,

n=1
and its topology is defined by the sequence of norms v,,. See [9], [13], and [1]
for details on these spaces. _
In order to see that the Lions—Peetre Lemma (i) fails for the Goulaouic

procedure, take

A= (mfm+ 1)), myn=1,2,...,
and let T be the identity operator T¢ = £. Note that

U < OFmarn <1, mn=1,2,..

Thus the restrictions T: I,~+l,[a,,.] and T: L [an.]—1[ama] are con-
tinuous. In addition,
Z /Gt n < 00, M= 1=2=."'

nes ]

Hence the Fréchet space I, [ay, ] 1s nuclear (see, e.g., [13], Chap. 11, § 3.4(1))

and consequently any bounded subset of [;[ay,.] is relatively compact. This
implies that T: [, — 1, [a,,,.] is compact.

Nevertheless, T: (I, I, [a2,J)1/2.2 = I3 [@mn] is not compact. Indeed, the
couple (I, I, [¢2,]) is the strict projective limit of the sequence of Banach
couples {I,, [, (a% nen. Therefore, using [12], Thm. 1.18.5, we obtain

(12’ 12 E“%.n])iﬂ,l = %2%1(12, Iz (%%1.?1))1/2.2 = (I%:l_lz (am.n) = lz Eam,n]-

And clearly the identity map of [, [dyx] 18 not compact.
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icm

Next we show that the Lions—Peetre Lemma (ii) also fails in the locally
convex case. Take now
a,,,,',,:= L4 (n+ 1)*™,

and let again TZ = £ Since lim, .o (@1.0/@2,,) = 0, the embedding from Liay,)
into I,(a,,) is compact. Hence T: I,[an.J—!, is a compact operator.
Moreover,

mn=12,...,

m,n<2a4mn: m7n=1!2!"'u

so that T: [,[a,..]—1, [a%,] is continuous. But anew

T I?_ [am,n] _’(lz: lz [a}n,n])m,z == lz [am,n]
is not compact.

3. A positive result. We close this note by proving that under the hypothesis
of compactness in both sides, the interpolated operator is also compact.

THEOREM. Let the couples (4,, A;) and (B, B,)} be the strict projective limits
of the families of Banach couples (Ao, A1 aperxs and (Bogs By szesxzs
respectively. Assume that T is a linear operator such that T: A, — B, compactly
for k=0,1. Then if 0<0<1land 1 <g< 00, T (Ao, Aidog—{(Bo, Bilog I8
also compact.

Proof Find iel and jeJ such that T: (A4, || lla,)— B, and T:
(Ay, I B4, )-»B, are compact. Put

U ={ae(dq, Aoy 1i;(@ < 1}
We are going to show that T(U) is precompact in (BO, 1.
Given any se8, ze Z and ¢ > 0, by the density of 4,1n 4, ;, A] in A, ;and
Agn Ay in Agin Ay we can extend T to an operator T such that

T Ag;— By,s and T A, ;j— B, are compact, and T[AUM1 = T. Then, using
[2], Thm. 3.1 (the extended version of Hayakawa’s result), we see that

T (‘40 is Al,])ﬂ,g BO 51 Bl )e,q
is compact. It follows that’
T: ((AO: Al)&,q: ri,j)_’(BD.S? Bl.z)ﬂ.q

is also compact. Hence, there exists a finite set {ay, ..., a,} = U such that

n

T < U (T(a)+{belBos Brog rr.) < 1}]
k=1

Finally, if be T(U)— T{(a,) then be(B,, B}, and therefore

n

TU) = | (T(a)+{be(By,
k=1

Bl)&,q: r;‘:z(b) Q 1})

This completes the proof.
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