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The convolution equation of Choguet and Deny on semigroups

by
KA-SING LAU and WEI-BIN ZENG (Pittshurgh, Penn.)

Abstract. We characterize the nonoegative solutions [ of the convolntion equation
F) = [sf(x+p)daly), YxeS, where § is a locully compact, separable, metrizable abelian
semigroup with cancellation, and o is & nonnegative measure. The technique is to identify the
extreme rays of the cone of solutions. The case where S is a group was studied by Choquet and
Deny.

§ 1. Imiroduction. Consider the convolution equation

(1.1) p=p*c

on a locally compact abelian group ¢, where o, u are regular Borel measures
on G, 5 = 01s given, and p is to be determined. Choquet and Deny [4] showed
that if ¢ is a probability measure, and if the regularization of y is bounded (ie,,
o+ @ is bounded for any continuous function ¢ on G with compact support),
then p=f-w, where « is the Haar measure on G, and [ satisfies

f(x)=f(x+y), VxeG, yesuppo,

ie. f is a periodic function with periods yesupp . The equation in the form

(1.2) S(x)=[f(x~y)do(y), VxeG,
G

was later considered by Doob, Snell and Williamson by a simple mar.tinga‘le
argument [7] (see also [15, p. 1511). The result has important applications in
renewal processes [8]. ‘

The nonnegative measures p satisfying (1.1) were characterized by Deny
[6]: Suppose in addition G is metrizable and separable, and supp ¢ generates
the group G. Then the extreme rays of the cone

He={uz0 pro=pu}

are of the form p = ¢y w, where ¢ >0 is a constant, and ¢ is a nonnegative
1980 Mathematies Subjeet Classification: Primary 43A0§; Sccondary‘60899.' )
Kay words and phrases: Choquet theorem, cone, convolution, exponential, extreme ray, ideal,
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exponential function on G (ie. g is continuous and g(x+y) = g(x)g(y).
Vx,y€G) with [¢g{—y)do(y) = 1. The Choquet theorem implies that u = f~ o,
where f is a mixture of the ¢g’s.

A simijar equation

5]

(L.3) flx) = [flx+y)do(y)

1]

Vxe[0, w},

has drawn much attention recently. When ¢ is a probability measure, the
bounded continuous solutions f can easily be characterized (the proof is the
same as in the group case, ¢f. e.g. [6], [15]). In [12], Lau and Rao characterized
the nonnegative Lebesgue locally integrable solutions f of (1.3) for ¢ 2 0.
Various applications and extensions can be found in [5, 12, 17]. The
generalization of {1.3) to semigroups was first attempted by Davies and
Shanbhag [ 5]. They pointed out that the solutions are more complicated, dus
to the lack of structures on semigroups. Their representation of f, however,
depending on a martingale limit and a technical probability space they
constructed, lacks the clarity of Deny’s results.

Our main purpose in this paper is to extend (1.1) and (1.3) to the semigroup
setting via Deny’s approach.

Let (S, +, *) be a locally compact, separable, metrizable abelian semigroup
which satisfies the cancellation law and has a continuous involution. Let
M™(S) denote the set of nonnegative regular Borel measures (possibly
unbounded) on S, with the weak topology generated by C.(S), the space of
continuous functions with compact supports. For pu,ye M*(S), let uev be
defined by

pev(E) = [u(E+y*)dvy),
. 5

where E is any Borel subset in §. The modification of (1.1) is the integral
equation

(14) ﬂloﬂ— == lu:

where y, oM™ (S). Note that if § is a group and x* ~ —x, then (1.4) is just
(1.1). If x* = x and S admits a translation invariant measure, then (1.4) is the
extension of (1.3) to semigroups (Theorems 6.1--6.3).

There are two difficulties in studying (1.4) from the analysis point of view:

(iy The translation operator x — u, where p (E) = pu(x-+ E), is not con-~
tinuous on $ {see §2 for a simple example in [0, a0)).

(i) The existence of a translation invariant measure on § is not guaranteed.

In order to overcome these, we consider
Dermnrmion 11 Let §; denote the set of clements x in S which have

a compact neighborhood U such that for any yeS, y+U is also a neigh-
borhood of y+x. We call S, the fundamental ideal of S.
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The notion was introduced by the authors in connection with embedding
semigroups into groups. It is clear that if § is a group, then §, = $. It is also
proved that if S, # @, then S admits a unique translation invariant measure
o [13], and the mapping (y, p)—pu, from Sx M7 (S,) to M*{(S,) is jointly
continuous (Theorem 2.5}. This suggests that the appropriate integral equation
to be studied 15 :

(1.5} uea = i,
where e M*(S) is given, and peM™(S,) is to be determined.

The paper is arranged as follows: in §2 we recapitulate some properties of
the fundamental ideal S, from {13], and prove the continvity property of
translation of measures stated above. The existence of a translation invariant
measure s also discussed.

In § 3, we define the @ convolution of measures, and derive some basic limit
theorems we need from the above continuity property.

In §4, we consider the convolution equation pec = u with ge M ¥ (S,), and

cge M*(S). We introduce the cones

Hy={peM* (S uea=yp}, Cq={ucM(S;): ueo < u}.
An analogous argument to Deny [6] shows that Cy is a well capped lattice
cone, and H, is a hereditary subcone of C,.

In §5, we study the extreme elements of H, via the cone C,, and its
relationship to exponential functions (Theorem 5.4, Corollary 5.9). The
Choguet theorem enables us to give an integral representation of the solutions
to the equation (1.5) in terms of the exponential functions and the translation
invariant measure on S (Theorem 5.8, Corollary 5.9). The main restriction of
the above results is that S = §(0), the closed subsemigroup spanned by the
support of o. Unlike the group case, this condition is too stringent for
semigroups. In Theorems 5.14, we exiend the representation theorem to the
case of ${(c) with the component generuting property (Definition 5.10), which will
cover most of the interesting cases.

We conclude this paper in §6 by reducing our results in § 5 to the special
case

fO0) = [flx+y)doly), ¥xes.

N
We also pive various examples to illustrate the theorems and corollaries
obtained. '

The authors are indebted to Professor C. R. Rao and Dr. D. N. Shanbhag
for bringing their attention to the semigroup case, and for some valuable
discussions.

§2. Fundamental ideal. Let (S, +) be an abelian semigroup. § is said to
satisfy the cancellation law if for any x, y, ze §, x+z = y+z implies that x = .
A map *: §— S is called an involution if for any x,yeS, (x+y)* = x*+y* and
(x*)* = x.
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Throughout this paper, we assume that § is a locally compact, separable,
metrizable, abelian semigroup, satisfies the cancellation law, and has a con-
tinuous involution (see [1] for various examples).

Let S, be the fundamental ideal defined in §1. It is easy to prove (cf. [13]):

(i) S, is an open ideal of S, and is closed under involution.

(i} =258, if and only if 0eS,. In particular, § =5, if § is a group.

(ii) If § is a subsemigroup of a topological group G, and if int S @, then
§, =int S, where intS i3 the interior of § in G.

The following embedding theorem is also proved in [13]:

THEOREM 2.1. S, can be embedded into a locally compact, abelian group as an
open subsemigroup. Moreover, S is maximal in the sense that if an ideal I is open
and is embeddable into a topological group as an open subsemigroup, thenI = §,,.

For any locally compact Hausdorff space X, we let C,(X) denote the space
of continuous functions on X with compact supports, M(X) the set of regular
Borel mesures on X, and M *(X) the subset of nonnegative measures. If C_(X)
is given the inductive topology, then its dual space can be identified with M (X)
[3]. The topology on M(X) we use is the weak topology generated by C (X). If
further X is separable and metrizable, then C_(X) is separable and M*(X) is
metrizable. It is known that

THEOREM 2.2. Let X be locally compact, separable and metrizable. Let
U BEM T (X). Then the following are equivalent: '

@) pp— s
(i) For any compact subset K, and for any open subset V with compact
closure,

lim sup g, (K) < p(K),
(iiiy For any Borel subset E with compact closure, and with pu(8E) = 0,
lim g1, (E) = p(E}

liminfp, (V) = u(¥).

(84 is the boundary of A).

Let pe M(S). We denote the y-translation of u by p,, ie., 1y (E) = p(y+E)
for any Borel subset E of §. The following two examples show that translations
of measures on § do not have the desirable convergence properties.

EXaMPLE 2.3. Let § = R, with identity involution. Let u, = &, _,,,, it = &,
be the point mass measures at 1—1/n and 1 respectively. Let y == 1. Then
Hy i DUt (), =04+ p, = 8.

EXAMPLE 2,4. Let S be as above, let y, ='1+1/n, y =1 and s = 6,. Then
Yoy, but u, = O+, = 6.
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The fondamental ideal turns out to be significant in this respect.

THEOREM 2.5. The map (y, i) -, from Sx M™*(S,) to M*(S,) is jointly
continuous.

We will need the following lemma.
LEMMA 2.6. Let V be an open subset of S, Then:

i) y+V is open for any yeS§.
(i) Let K < V be compact, and let {y,}, y be in S with lim, .., y, = y. Then
for sufficiently large n, we have

y+tEK<cy+V, y+Kgy +V

Proof By Theorem 2.1 we can assume without loss of generality that S, is
an open subset of a topological group G. Since S, is an ideal, for any ye § and
for any fixed ae§,, a+yisin §, (< G). It follows that for any open V in §,,
(a+y)+V is open in G, and yp+V = (a+y+V)—a is open in G, hence open
m S,

lgor (i), we let b, =(a+y)—(a+y,). Then b,eS,—8,<= G. The two
inclusions are equivalent to ~b,+K = ¥, b,+ K < ¥, for sufficiently large n.
These obviously hold for groups.

Proof of Theorem 2.5. In view of Theorem 2.2, we need to show that for
any compact subset K = §,, and for any open subset V of §, with compact
closure,

limsup p,(y,+ K) € p(y+K), liminfu,(y,+V) 2 py + V)

For & > 0, it follows from the regularity of ;¢ and the metric on S that there
exists an open subset O <5, such that K <O, u(é(y+0)=0 and
uly+0) < u(y+K)+e We hence have

lim sup (¥, + K) < limsup g, (y+ 0)
= u(y+0)
< p(y+K)+e

The proof of the second inequality is similar.

(Lemma 2.§(ii))
(Theorem 2.2 (iii))

In [13], we proved
THEOREM 2.7, If 8 5 @, then S admits a unique translation invariant measure
o, and S, < supp w.

A measure 0 # e M *(S,) is called quasi-invariant if for each y&S§, t, =1 or
1, = 0. We us¢ J to denote the set {ye §: 1, # 0}, and call it the translation set of 7.
Our aim in the rest of the section is to prove:

THEOREM 2.8. Let te M™(S,) be quasi-invariant, and assume J N8, # Q.
Then 1= cow on suppt for some ¢ > 0. ' -
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We will need the following two propositions.

PrOPOSITION 2.9. Let te M *(S,) be quasi-invariant. Then J is an open and
closed subsemigroup of S, and S\J is an open and closed ideal of S.

Proof. By the continuity of y—z, (Theorem 2.5), and the alternative
expression of J as {yeS: t,=1}, J is open and closed. For any x,yeJ,
Tety = (T,), = 7, = 7. This implies that J is a semigroup. The assertion for 51/
follows similarly.

ProrostTion 210, Let te M*(S,) be quasi-invariant. Then

(i) (suppr)+J = suppr.
(i) If Jn8, =P, then J NS, =suppr.

Proof (i) Let xesuppr, yeJ. and let U = S, be an open neighborhood of
x-+yin 8. The continuity of addition yields a neighborhood ¥ = §;, of x such
that y+ V& U, hence

WU) 2 2y + V) = 7,(¥) = (V) > 0.

This implies that x+yesuppz.
(ii) Let xeJ n S, and let yvesupp . By (i), x+ yesuppr. For any neighbor-
hood V of x, y+V is a neighborhood of x+y (Lemma 2.6(i)), and

0 <t(y+¥)=1,(7) = 1(V).

This implies that xesuppz, and Jn S, =suppr. To prove the reverse
inclusion, we let xesuppt (<= Sy}, and fix a ye Jn §,. Let VV be a neighborhood
of x such that y+ V< x+8,, and let W be a neighborhood of y such that
y+V=x+W Since x+yesuppt (by the part just proved), we have

0<2y+7)=(x+ W)= 1 (W)
This implies that xeJ and suppt & J S,

Proof of Theorem 28. By Theorem 2.1, we can assume that §; is an
open subsemigroup of a locally compact abelian group G. Since J is open in 8,
J 1 8, is an open subsemigroup of & also. It follows from the proof of Theorem
1.51in [13] that £ on J N §, can be extended to a translation invariant measure
on G. By the uniqueness of such measure, we conclude that t = ¢ on
suppt = Jm3§,.

The following example shows that Theorem 2.8 is false if we do not assume
J S, =D

ExampLE 2.11. Let § = {(x, y): x > 1, y > 0} be a subsemigroup of R, Let
i be any measure on § supported by {{x, y)e $: x = 3/2}. Then any translation
of i is a zero measure, it is a quasi-invariant measure with J = @, and the
conclusion of Theorem 2.8 does not hold.
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§3. Convolution on semigroups. Let x, v be in M ¥ (S), and let nev be a set
function on the family " of compact s_ubsets of § defined by

(3.1) usv(K) = (uxv){(x, »): x,yeS, xey*+K}, KeXA.

ProrosiTiON 3.1, Let pu,veM™(S). Suppose puev(K)< oo for all KeX'.
Then pev can be extended to a regular Borel measure on S.

Proof. It is direct to show that ‘.‘:LQU is a regular content on 4", and hence
can be extended to a regular Borel measure on S [10, Chapter 10].

Dermamion 3.2, Let u,ve M*(S) with pev(K) < oo for all Ke.#". We call
the measure defined above the generalized convolution (g-convolution) of 1 and
v, and denote it by uev.

It is easy to show that if v has compact support, the g-convolution pev is
well defined for all pe M*(S). For any Borel subset E in S, we have

§x8

pev(E) = § xprp(x)dxv)(x, ) = § [ xs(x)dup(x)dv(y)
58

§ piy*+ Eydv(y).

S

It also follows from a limit argument that

(3.2) uevip) = 5I{gffJ(x) dup(x)dv(y}), @€ C(S).

If Sis a group and the involution is x*. = —x, then from (3.2),
pev(p) = Hco(xmy*) du(x)dv(y) = ££ lx+y)dp(x) dv(y) = pxv(9)

for all @eC,(S), and the two convolutions coincide.
The g-convolution on semigroups does not obey the same laws as
convolution on groups:

EXAMPLE 3.3. Let §, = (R, +), S, = (R, +), and let the involutions on 5,
and $, be the identities. Then for any x, y 3 0, the g-convolution of d,, §, on §,

is
o Syy i x2Zy,
0580, = {0 if x <y,

which is not necessarily equal to 8,88, (= dx-)} on §;.

ExaMPLE 3.4. Let § be a group with the identity involution. Then for any
X, y,2€8, '
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(5x°5y)aaz = 6:5‘“.)'—1’ 5::0(5}7.5:) = 5:\‘.“}’-}-2:

6,80, =38,,, 0J,85, =3, ..
It follows that g-convolution is neither associative nor commutative,

ProposimioN 3.5. Let p, v, 0 € M (S) be such that all the convolutions involved
exist. Then

(nevieo = pe(vxo) = (uedlev.

Proof. For any Borel subset E of §,

((ne)e0) (B) = [ (ue) (2* + E)do () = [ u(y* +2* + E)dv(y) do(z)
5 §s

= [[u(y+2*+E)dv(y) do(z) = j",u(x’." +E)d(v * 0)(x)
58 b

= pe(v=o)(E).
The second identity follows from pe(v+g) = pe(o*v) = (uec)ev.

PROPOSITION 3.6. If in addition S is a group, then Jor any p,v,6 e M (8) so
that the convolutions involved exist, we have

pev = (veyu)~,
where ¥(E) = v(— E*).

pe(veo) = (u+o)ev,

‘ We rlemark that if § is not a group, then the right-hand side of the first
identity is undefined, and the second identity is false: e.g. let S =R _, and let
a,be§ with a > b; then J,0(5,85,) =0, (5,%5,)65, = -

Proof. For any Borel subset E in §,

(ven)™ (E) = g g K- A () dpafx) = [ [ s~ y* + ) du(x) dv(y)
55

= £ ,Sf X+ 2(0) dp(x) du(y) = (nav) (E).
Also
pe(ves) = ((vealeu)” =(ve(s )~ = (ve(uxa))” = (uxo)ev.

In orc!er to idiscuss the continuity of the e operation, we will need to restrict
our consideration to M™(S;) (see Examples 2.3, 2.4 and Theorem 2.5).

PROPOSITION 3.7. Let e M™(S,), ve M*(S). Then uov(K) is well defined by
(3.1} for any compact subset K in S,,. Furthermore, if pev(K) < oo for all such
K, then pev can be extended to a regular Borel measure on So.
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Proof For any compact set K in S, the ideal property of §, implies that
y*+K < §, and pev(K) = [u(y*+K)dv(y) is defined. The extension of yev
to a regular Borel measure on S, is the same as in Proposition 3.1.

The above proposition allows us to regard M ™ (S,) as an ideal in M * (S}
under the g-comvolution. If we interchange the roles of px and v, we have

PROPOSITION 3.8. Let pe M*(S), ve M*(S,), and let pu, be such that p, = u
on Sy, py =0 on S\Sy. Then for any compact subset K of S,

pev(Ky = p,ev(K).

If the above expression is finite for all K, then pev can be extended to
a regular Borel measure on S, and the above equality holds for all Borel sets.

Proof. We make use of the ideal property of S,: for any y € §;, and for any
compact subset K of § with y*+K = §,,

(nov)(K) = | p(y* +K)dv(y) = | po(y* + K)dv(y) = (uo @) (K).
So §o

Some convergence properties of e can be derived from Theorem 2.5.

TuroreM 3.9. Let {u.}, pe M* (S,) with u, = u, and let ce M™ (S). If either

() g,1, and pea exists, or
(i) there exists ve M™(S,) such that p,<v for all n, and ves exists,

then v,86 - yea.
Proof. For any ¢eC.(Sy), with ¢ = 0,
(me0) (@) = [{[ o () duhs(x))do(y), (nec){p) = £ (Sj p(x) dig(x)) do ().
8 So [t}

The assertion follows from Theorem 2.5, the monotone convergence theorem
(case (1)), and the bounded convergence theorem (case (ii}).

TacoreM 3.10. Let {#,}, {v.}, &, v be in M*(Sy) with u, >, v, > v, Let
ceM*(S), and p,ec <v, for all n. Then peo exists, and peo < v.

Proof. Let ¢eC,(S,) with ¢ = 0. Then

(180) () = [{] @) ditys(x)) dr(y) < lim inf (] 9(3) et do )
g 8o So

== liminf [ ¢ (x) d(u,0) (x) < | @(x)dv(x).

So So

(The first inequality follows from Theorem 2.5 and Fatou’s Lemma.)
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THEOREM 3.11. Let ue M*(So), and let {a,}, o be in M"(S) with suppo,,
suppo € K for some compact K in S, and o, . Then usag, > ueo.

Proof It is clear from the expression uev(E) = [5u(y*+ E)dv(y) that
uea,, uec are finite on compact sets, and hence they are in M™(S,)
(Proposition 3.7). Let g & C.(Sy). Then {g, (x)du,s(x) is a continuous function
of vy (Theorem 2.3), and

lim(pea,)(p) = Hm [ (| @(x)dux)) do, () = [(] @(x)du.(x))da(y) = peaip).

K 5o K 8o

§4. The cones. Throughout the rest of the paper, we assume that
0 # ce M (8). All unexplained terms involving convex cones in this section
can be found in [3] or [16].
Dermimion 4.1, Let
Co=1{neM™(S,): peg<pu}, Hy={ueM"(S;): ueo = uj.
We call pe C, a o-superharmonic measure, and uc H, a o-harmonic measure.

It is easy to show that both C, and H, are convex cones. They are closed
under g-convolution in the following sense.

PROPOSITION 4.2. Let peC,y (or Hy). Then for any ve MY (S) such that yev
exists, neve C, (H,, respectively).

Proof, The result follows from (uev)e ¢ = (nec)ev < uev (Proposition 3.4).

We call a cone C in a locally convex space well cupped if C = \JK. where
K is compact and K, C\K are convex [16].

PROPOSITION 4.3. C,, is metrizable, weakly closed in M ™ (S), and well capped.

Proof. Let {} be in C, with pu,>pueM™(S,). Since u,e0 <y,
Theorem 3.10 implies that e < u, which means peCy, and C, is weakly
closed. That C, is metrizable is inherited from M *(S,), and it is well capped by
[16, Theorem 11.5].

By using the same proof as in Deny [6], we can show that C, has the
following decomposition property (Riesz decomposition property). For any
ke Cy,

p=t4n
where 7 = lim,, . ##0” is o-harmonic, © = lim,... (@Y} _, o*, with { = u— ues,

and pec” is defined by (ued”" ')eo. Furthermore, if ¢ =1t'+# is another
decomposition of u with t'€Cy, e Hy, then %' < 5. From this it follows that

PROPOSITION 4.4. The cone H, is a hereditary subcone of C, (i.e., Jor any
neH,, veCy if u—veC,, then ve Hy). o
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Let S(o) denote the closed subsemigroup generated by suppe in S.

Lemma 4.5. Let S be a Hausdorf{’ topological semigroup, and let o be
a probability measure on S. Let f be a bounded continuous function on
S satisfying

fx)=[flx+y*)doly), VxeS.
s

Then fix+y*) = f(x), ¥xe8§, y*eS(o).

Proof Let f(x) = f(x*). The above equation can be rewritten as
Jx)=[Flx+yrdo(y), VxeS.
5

The same martingale argument as in [15, p. 151] will prove the assertion.

A measure peM " (Sy) is said to be o-shift bounded if the set {u,: yeS(o)}
is weakly bounded in M*(S,). For any ¢ eC.{S,). let pe¢p be the function
defined by

(e @)(¥) = [ o(x)dup(x) = upl@),  y&S(a).

So
Tt follows from Theorem 2.5 that pe is a continuous function on S(g). Also,
4 is g-shilt bounded if and only if ye¢ is a bounded continuous function on
S(o) for any @e C.(S,). :
We will use the following theorem in the next section.

1
THEOREM 4.6. Let ¢ be a probability measure on S, and let pe H, be o-shift
bounded. Then ps=u for every xeS(o)

Proof Let = C (S,). The above remark implies that ye¢ is a bounded
continuous function on S(o), and for any xeS(0),

§ e @(x+y)do(y) = [( 0(z) ditger () do(y) = (1er00) (@) = pe(0)
K S5 5o
= pep(x).
It follows from Lemma 4.5 that ueq is a periodic function with periods
xe8(g), and hence 1w = p for xeS(o). ' | )
§5. Extreme rays and integral representations. A nonzero function g: §-—R
is called an exponential function if g is continuous and

glx+y) = g(x)g(y), Vx.pes.

A measure ue M™(S,) is called an exponential measure if p, = g(y) g, for some
g=0on S Let
T={yeS: p, #0}.
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It follows from Theorem 2.5 and the definition that the associated function
g for an exponential measure is actually an exponential function, and ye T if
and only if g(y) > 0.

Lemma 5.1, Let e M Y(S,) be an exponential measure. Then T is both open
and closed.

Proof. That T is open follows from Theorem 2.5. To show that T is
closed, let g be the associated exponential function for u, and let {y,}
be in T with lim,_ y, = y&5S. Pick an xesupp p, and a neighborhood U of
x such that p(U) < o. Since y+ U is a neighborhood of y+x (Lemma 2.6},
there exists a neighborhood ¥ of x such that y,+ V< y+U for large n It
follows that

0 < gy )u(V) = p(y,+V) < ply+U) =
This implies that u, # 0 and T is closed.

g uU) < 0.

THEOREM 5.2. Let 0 s pe M™(S,). Then u is an exponential measure with
i, #0 for some yeS, if and only if p=cg-won S, for some ¢ = 0, and some
nonnegative exponential function g on S.

Proof. The hypothesis implies that S,#J, and hence the unique
translation invariant measure @ on § exists (Theorem 2.8). The sufficiency of
the theorem is clear,

To prove the necessity, let g be such that u, = g(y) i, and define & on § by

hx) = {l/g(x) if g(x) # 0;

0 otherwise.

Then kis continuous (Lemma 5.1), and is also exponential. Let 7 = - u. We
claim that t is quasi-invariant: for any @ eC,(S,), and yeS,

(@) = f Q(x}h(x+y)dp,(x) = I @(x) h(x) h(y) g (y) dps(x)

= h(v)g(y) SI P h(x) dplx) = h(y) g(y}(@).

The claim follows by observing that h(y)g(y) equals t if and only if ye T, and
equals O otherwise. By Theorem 2.8 we have ¢ = cw on T, and u is of the
required form.

We will use E(c) to denote the set of exponential measures in H,, and let
Eq(e) = {ue E(o)

Our aim is to characterize the extreme rays of H, as the exponential measures.
Recall that H; is a hereditary subcone of C, (Proposition 4.4), hence the
extreme rays of H, is the same as the extreme rays of C, that are contained in

D, #O for some veSy).
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H,. We denote the set by 8H,, and will use this fact without specifying which
cone we are referring to.

PROPOSITION 5.3. Let e M*(S,) be an exponential measure, and let g be its
associated exponential function. Then pe E(s) if and only if jsg *da(y) = 1.

Proof Let @eC_.(S,). Then

[ o(x)dpp(x) do(y) = { { o(x) g(
S8 SSo

uec(p) = Fdp(x)do(y) = p(e) Ig ) do(y).

The assertion follows from this.
THEOREM 5.4. Let § = S(0), and let H, # {0}. Then E,(0) = 8H, < E(0).

Proof Let 0# ucH, be extreme. For any xesupps, and for any
neighborhood V' of x with compact closure, let o, be the restriction of ¢ to V.
Then pec,eC, (Proposition 4.2). If we write

=3t uea))+i(u—peay,),

then put{(noa,)e Cy, and pu being extreme in C, implies that ues, = o, p for
some o = 0. Let

T, = ap/a(V), By = ay/o(V)

Then pert, = fiyu. Let {V,} be a decreasing sequence of neighborhoods of
x with compact closures such that lim,.. V, = {x}. Then limz, =4J, in
M*(S), and hence Theorem 3.11 implies that

Hoe = 05, = lim pory, = (lim By,)p.

Denote lim,., fy, by g(x*). The above equality can be rewritten as
U =gy, for all xesuppo. Since S(o) = §, peE{(o).

Let peEy(o) with u,=g{y)p, yeS By Theorem 52, p=cg-w. Let
T={ye§: g(y) > 0}. The definition of E,(s) implies that T §, # Q. Define

g(x) = g(x*), and
by = (V) 96) 20,
=0 otherwise. _
Suppose ve H, is such that u—ve H,. Then v < p, and hence supp v & supp .

Observing that suppu = TS, (Proposition 2.10{i)), we have for any
q) € Cc (SD)n
(5.1) jqo(x) dvu(x}=0, VygT*.

let ¥=h-v and é§ = §+o. For any oeC.(S,),
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(108) (9) = J(] @(x) d9ye(x)) dG () = [(§ 9() Blx + %) dvel()) dd ()

S So § Sa
= {(] 0 () h(x) dv(x)) h(7*) g (v¥) do (3)
5 So
= [ ([ o(x) h{x) dva(x)) do(y)
T+ Sa
= [(f o) h(x) dv(x))da () (by (5.1)
5 Sp

Ii

[ o) h(x)d(vea) (x) = [ @{x)di(x) = (),
Sa Sa
ie. ¥ is é~harmonic. Moreover, Proposition 53 implies that

(52) é(8) =gy do(y) =1,

s
and hence & is a probability measure with S(¢) = T* Note that ¥ = hv < h-p,
and h-p equals a scalar multiple of the {ranslation Invariant measure
o restricted to T (Theorem 2.8), ¥ is thus &-shift bounded. It follows from
Theorem 4.6 that '

(5.3) Je =7, VxeS(d),

ie. v,=7V for all xeT By Theorem 28, Vv=c¢ w on T, and
v=gV=c'g-w=cyu This shows that ueEy(s) is extreme, ie., pedH,.

We remark that the above inclusions may be proper in view of the
following semigroups modified from Davies and Shanbhag [57:

ExamrLE 5.5 Let S=5,0U8§,, where S, ={0}xR ., S, =1[1, «0)xKk,,
and § has the usual addition and identity involution. Let ¢ > 0 be such that
suppo = 8§, and o, is a probability measure. Let g be the 1-dimensional
Lebesgue measure on {(x, y)€S: x =3/2}, and u =0 elsewhere. The fun-
damental ideal S, equals (1, o) xR, and uedH,. However, the translation set
of u, {ze§: .+ 0}, equals §;, which does not intersect §,, hence u¢ E,(o).

ExamrLE 5.6. Let § = {(0, 0)} U §,, where S, is as above, and let ¢ » 0 be
such that suppo =S and ¢{(0, 0)} = 1. Then any u which has support
contained in {(x, y)e8: 1 < x < 2} satisfies p, =0 if z#(0, 0), and hence
peo = u. Thus ueE(o), but u is not an extreme element of H, in general.

Let &(o) be the set of nonnegative exponential functions g on § with

far*)de(y) = 1,
Ja)
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and g # 0 on §,. &(0) is endowed with the topology of uniform convergence on
compact sets.

Lemma 5.7. The map 1: R, x &(0)— E4(0), ila, g) = ag-w, is a surjective
homeomorphism. .

Proof. It follows from Theorem 3.2 that the map is a bijection. We need
only show that the topclogies on the two sets coincide.

Let g, ed(o) and lim,. . ¢, = ge&(o). For any peC(5,). the sequence
{¢pg,} and ¢g vanish outside supp ¢, and {@g,} converges to ¢g uniformly. The
bounded convergence theorem implies that

lim g, (@) = g - o(p),  VepeCS,).

Hence ¢, w~ g-w, and that i is continuous follows easily.
To show that i™* is continuous, let &g, @ > zg- ©. Then

lim (2,9, @), = (29~ o),
=&

for any {y,}, y in § with y,—y '(The'orem 2.5). It follows from

(¢, ok, = 0,)g, 0 and (g w), =g(g ©

that lim, -, g,(y,) = g(p) for any sequence {y,} in S with lim,_, y, = and
hence {g,} converges to g uniformly on compact sets. This implies that
g, w— g, and we have lim,. , o, =«

THROREM 5.8, Suppose S = S(o). Then for O # pe M*(8,), pe Hy if and only
if for each yeS,, u,=f, w on S,, where

fi= T aydP(g)
&)

for some positive measure P on &(o).

Proof. Let it = H,. Since C, is metrizable and well capped (Proposition
4.3), the Choquet theorem implies that

pe= | vdQ(,

Mo

where 4C, denotes the set of extreme rays of Cy, and Q a probability measure
on 9C,. Since peH,, @ actually has support contained in 8H,, and hence

p={ vdQp).

AHa

Note that dH, < E(¢) (Theorem 5.4), and for veéH, and yeS,, v, =0 if
v Ey(0). Hence Lemma 5.7 implies that
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p= [ vd@o=( [ ag0)gdQw)w
Eola) R+ X &0}

= | 90g(] 2dQ(ug) w.
&) Ry
Let dP(g) = fa. 0 dQ(xg). Then p has the representation as claimed.
The converse of the statement is direct.

COROLLARY 5.9. Suppose S = S(o), and S, is dense in §. Then
Eo{o) = 0Hq = Efa),
and for pe M*(S,), peH, if and only if p=fo on §,, where

f= [ gdP(g)

Alm)

for some positive measure P on &(0).

Proof Theorem 54 implies that E (o) < 0H, = E(o). To prove the reverse
inclusion, we let pe E(o) with the associated exponential function g, Then

L= [g(y*)da(y) = [ gy*)da(y).
5 So
The continuity of g implies that g(y) > 0 for some y<S,, hence xe E,(¢) by
definition.

The second part follows from the same argument as in Theorem 5.8.

Depmarion 5.10. Let R be a subsemigroup of S. R is said to have the
component generating property if for each open and closed subsemigroup T of
R, there exists a dense subset D = § such that for any xeD, there is ye T with
x+yeR.

We remark that if § is a subsemigroup of an abelian topological group G,
the above property is equivalent to (R—T)n S being dense in S.

ExampLE 5.11. Let § = [0, o) and let R be a subsemigroup which does not
contain 0, and is not contained in {ak: k=90,1,2,...}, for any a > 0. Then
R has the component generating property.

ExampLE 5.12 [5]. Let S=R, xR, , and let R =R, UR,, where R ==
{0} xR,,R, =[1, «0)xR,.Then R—R, does not contain a subset dense in S,
and hence R does not have the component generating property.

Let R be a subsemigroup of §. A measure ueM*(S,) is called an

exponential measure with respect to R if p, = g(y) u for some ¢ = 0, and for all
yeR.
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Lemma 5.13, Let R be a subsemigroup of S with the component generating
property. Then every peM™(S,) exponential with respect to R is exponential
with respect 1o S. .

Proof. Let pe M™(S,) be an exponential measure with respect to R, and let
T={yeR: p,# 0}. The same proof as for Theorem 5.1 implies that T is
a both open and closed subsemigroup of R. The compenent generating
property yields a dense subset D < § such that for any x e D, there exists ye T
with x+ ye R. Hence

GO Y U= sy = g by

with g(y) # 0. Note that g(x+ y)/g(y) is independent of ye T, define it to be g(x).
By the continuity of x— pu, (Theorem 2.5), g can be extended to §, and the
conclusion follows. ‘

THEOREM 5.14. Suppose S(o) € §,, S(0) is closed under involution, and has the
component generating property in S. Then

Ey(0) = 0Hy = E{0),
and for ue M"(S,), peH, if and only if p=f-w on S,, where
f= [ gdP(g)
&e)}
for some positive measure P on &(a).

Proof. Let ue Ey(g). We can use the same proof as in Theorem 5.4 to si}c?w
that pedH,. The only change is in (5.2) and (5.3): & will be a probability

measure supported by S(o}~ T* and hence
$.=v, VxeSonT=S8E)nT

The component generating property implies that ¥, = ¥ for all xeT. '
Let ue@H,. Then Theorem 5.4 implies that pis a g-harmonic exponential
measure with respect to $(g), and hence with respect to S by Lemma 5.13.
To show that Eq(0) = E(o), we let pe E(o). If p, = O for all ye S, then since
(o) = 8y, 1, = 0 for [o]-almost all y = 5. This implies that

W(E) = ped(E) = éjwj 1p(x) d () da(y) = 0,

which is a contradiction. Hence u, # 0 for some ye.§'0, ie. uekFylo), and
Eo{0) = E(g). The integral representation follows readily.

To conclude this section, we will consider a special case for
(5.4) Heo = [,

where peM*(S) instead of M™(S,) as in the previous theorems.

5 — Studia Mathematica 97.2
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TuroreM 5.15. Suppose S = S(o), and a(S\Sy) =0. Then the solution
ueM*(S) of (5.4) has the representation p = f-w on S, where [ = {emg dP(g)
for some posiiive measure P on &(a).

"Proof. Let g, be the restriction of p to S;. Then (5.4) will be reduced to
1 ®a = ju, on S,. By taking § = S, in Corollary 5.9, we see gy = fils, 1s of the
required form on §,. For E & §\5,,

[ [ {]g0r*)doty

&la) Se

ju v+ E)do(y) = ) g dP(g)] w(y* + E)

=( | gdP(g)-w(E)

. &)
(the third equality follows from 5, being an ideal), and hence the result follows.
§6. The functional equation and examples. In this section, we will consider

the functional equation

(6.1) f(X):£f(X+y)d6(y), VxeS§,

where oe M (S) is given, and = 0 is to be determined.
THEOREM 6.1. Suppese S, @, and Sio} = 8. If f is a nonnegative
[w]-locally integrable solution of (6.1), then for any yeS§,,

fe+n=|

&(a)

g(NgdP(g), [w]-ae on S,

where P is a positive measure on &(q).

Proof. Let f; be the restriction of f to §;, and let p = f; @. Then
peM*(S,) and pes = u. It follows from Theorem 5.8 that f has the desired
form.

As consequences of Theorems 5.14 and 5.15, and Corollary 5.9, we have

THEOREM 6.2. Suppose Sy % @, S(o) =S, and f 2 0 is a solution of (6.1). If,
further, either (i} 8, is dense in S, and f is continuous, or (i) 5(S\So) = 0, and 1" is
{w]-locaiiy integrable, then [ = {4,y gdP(g), [0]-ae. on S, where P is u positive
measure on &{o).

THEOREM 6.3. Suppose S, # @, S(6) = 8, S(0) is closed under involution, and
has the component generating property in 8. If f 2 0 is a continuous solution of
(6.1), then f= [4,,9dP(g) on S, where P is a positive measure on & (o).

The following proposition is also useful in reducing equation (6.1} to
a simpler one.
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ProrosiTiON 6.4. Let R be a subsemigroup of S which is closed under
involution and §(c) © R. Suppose there exists D = § such that {s+R: seD} is
a disjoint family of sets whose union is 8. Then the nonnegative continuous
solution [ of equation {6.1) is of the form

Js+x) = g (x),

0 is continuous and satisfies (6.1) orn R.

seD, xeR,
where g, =

We will conclude this section by demonstrating the above results with some
special cases.

ExXAMPLE 6.5 [12]. Let § = R, with the identity involution. Suppose f= 0
is a continuous solution of (6.1), where ¢ is a nonnegative Borel measure. Then
f(x) = p(x)e™™, where aeR satisfies [y e~ dg(x) =1, and p is a periodic
function with periods gesuppo. In fact, let R = [0, w0} T where T is the
group generated by S(o). Then R satisfies the conditions in Proposition 6.4
(take D = {0} if T= R, and D = [0, d) if T = dZ for some d > 0), and the result
follows from Theorem 6.3 by taking R as the semigroup.

ExampLE 6.6. Let § = R, xR with the identity involution. If o(S\Sy) = 0
and there exist two nonparallel line segments L, L, in § such that S{(e}~ L,,
i =1, 2, are nonlattice subsets, then Theorem 6.3 implies that the nonnegative
solution f has the integral representation

flx, y) = [ e 2 dg(q,, w,), [wl-ae on S,
A

where A4 is the set of {x,, ot,) in RxR such that
[ ferstatda(s, 1y =1,
00

and 7 1s a positive measure on A.

ExampLs 6.7. Let S and the equation be as in Example 6.6, and assume
that S(¢) < {(x, x): x 2 0}. We will Jet R= S(g), and D = {(x,0): x = 0}
w{(0, ¥ y > 0}. By Proposition 6.4, the nonnegative continuous solution f is
of the form

xzyz0,
y;x;oa

pux—1)e™™,

Slx, p) = {pz(y_x)e—ax’

where [ e~*do(r) =1, and p,, p, are continuous functions on R, with

p1(0) = p,(0). o o _
This form has been used extensively in generalizing exponential functions

to higher dimensions in connection with reliability theory (see, e.g; [%] and

[14]).
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Exampii 6.8. Let § =5, uS,, where S, = {0} xR,, 8, =[1, ©)xR,,
and let ¢ be a regular Borel measure in S such that suppo = §; U S,. In this
case, the fundamental ideal S, equals (1, «0) xR .. The exponential functions
g are of the form

glx, y) =e T Vix, y)es,
or
e ™™, (x, es,
90 y)z{o, (x, y)ES,.
Hence, £ (o) is the set of g such that
gle, y)=e @ Y(x, y)es,
and satisfies
(6.2) [ e #do(0, y)+ [ e @ do(x, p =1,
5 S

By Theorem 6.1, the locally integrable solutions f are of the form
Fl y) = e ="Mz, ), [w]ae on [2, ©]xR,,
A

for some nonnegative measure 7 on A, where 4 is the set of (x, £) in R xR such
that {6.2) holds. A further observation shows that the above expression can be
extended to (x, ¥)e[1, co) xR, . It can hence be shown that the continuous
solutions f can be represented as

-

(6.3) flo, W =px)e ™+ [e & Wz, f),  Vix, yeSs,
A
where
¢, x=0 =
— ? i - =
p(x) {0’ %0, ge do(0, t) = 1.,

Exampre 69, let S=R,xR,, and let ¢ 0 be such that
suppo = S8, US,, where S, = {0} xR, S, =[1, o) x R, as in Example 6.8,
By restricting the integral equation (6.1) to suppo, we see that for
a continuous solution f, fls,us, has the representation (6.3) on S, uS,.
By a simple argument, we can extend the domain of the solution and obtain

flx, y) = plx)e™™ +[e "M dr(y, f),  Vix, y)eS,

where p is a continuous function with p(x}) =0 for x > 1, |3 e "da(0, £) = 1,
and A, t are defined as in Example 6.8.
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