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fori=1, ..., n The decomposition of X implies I = P,+ P, where P, and P,
are the projections of X onto X, and @]_, X, respectively. We have clearly
Py = SyRe and P, = Y|, R;S;. As in the previous theorem one can now prove
that B(X) is algebraically generated by the subalgebras .«#(X,) and
span(Ry, Ry, ..., R)), both of square zero.

CoroLLARY 4, If X is an “n-th power” (n> 1), then B(X) is algebraically
generated by two subalgebras with square zero, the dimension of one of them
being 1 or 2.

Proof. If nis even, we are done. Suppose now that nis odd. Then X can be
decomposed into a direct sum of closed linear subspaces

X=X0..0X)0X,.,®..9X,,)8X,,,,
with the X, all isomorphic to one another. Set
Xo =X®..8X,, X1 =X, ®.. . ®X,,, X'z = Xomt1:
We can now find linear homeomorphisms V; of X, onto X, ¥, = ¥5* of X,
onto X, and ¥, of X, onto X,. We define Ry, R, and R, as in Theorem 3 and

notice that R, = R,. Thus, B{X) is algebraically generated by /(X,) and
span(R,, R,). This completes the proof.

Let us conclude with an open problem which is a modification of a question
posed by W. Zelazko: Does the fact that B(X) is algebraically generated by two
subalgebras with square zero imply that X is an “nth power” (n > 1? In

particular, we do not know whether there exists a Banach space X which is not -

an “nth power” and satisfies the assumptions of Theorem 3.
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his paper [3] to my attention.
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On the positivity of the unit element
in a normed lattice ordered algebra

by
S. J. BERNAU (Fl Paso, Tex.) and C. B. HUIJSMANS (Leiden)

Abstract. An elementary proof of the following result is given: if T2 £~ E is a Cesaro bounded
{or Abel bounded) linear operator on the normed Riesz space E and T2 I, then Te=J1 In
particular, if Tis a contraction and T'2 I, then T=I. As a corollary we obtain that if 4 is a normed
lattice ordered algebra with unit element ¢ and |le|| €1, then e = 0.

Recently, E. Scheffold (private communication, unpublished) informed us of
the following result: if A is a (real) Banach lattice algebra with multiplicative
unit element e and |lel] < 1 (so |le]| = 1), then e = 0. His proof makes essential
use of Kakutani’s fixed point theorem to prove that if T is a linear operator on
a Banach lattice E such that T I and | T|| < 1 (whence {|T|| = 1), then T= [
(where [ is the identity mapping on E). The result then follows by considering
left or right multiplication by le|.

Subsequently B. de Pagter showed us that Scheffold’s result could be
obtained by a semigroup approach under weaker hypotheses. We give the
details of de Pagter’s proof.

TaeoreM 1. Let E be a Banach lattice and T: E— E a linear operator on
E such that

(@ T=1
(b) T is power bounded {ie, M =supuz, |T™| < 0)
Then T=1.
Proof Put §= T—1I Thea $=0, so €520 for all ¢ > 0. But

o
n I
< ), T < Me

=0 """

& Ty
Z n!

n=q,
for all t > 0 implies |&®] € M for all t = 0. Observe now that

&5 = [+ tS+1282 21+ ...2t85=0

for all ¢ 3= 0 and hence 0 < § < %/t for all ¢t > 0. Consequently, ||S|| < M/t for
all t> 0, showing that S=0 and T= 1L ‘

et =
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In the present note we give an elementary proof of Scheffold’s result which
even holds in noncomplete normed lattice ordered algebras.

THEOREM 2. Let A be a normed lattice ordered algebra with unit element e.
Then the following statements are equivalent.

i) e=0.

(ii) le| is power bounded (i.e, K = sup,»;| le™] < o).

(i) e* is power bounded (ie., M = sup,s, |[(e*)™|| < oo).
In particular, if [le| <1, then ¢ = 0.

Proof. Assume (i). If e 2 O, then e = le|, 50 K = sup,, 7] = |&] < oo,
and (i) follows.

Assume (ii). It follows from (e?)" < |ef™ {(m =1, 2,...) that M < K, which
shows (iii). .

Assume (ii). Put u =e™* and v =¢". It follows from u = e that ¥ > e
(k=1,2,,..) and hence

¥ =My 2 u—e =020

(k=1,2,...). Thus

n

un+1 = Z (uk-}-l‘“‘uk)‘l*uB no = 0
k=1

and consequently 0 <njvl < |w"™| = |[(¢*)"**| < M (n=1, 2,...). There-
fore, v = 0, in other words e =u >0 and (i) is proved.
If [lefl <1, then

M) < il fel™ < 1 lel "= fe™<1
m=12..)850 MK <1< and thus e> 0.

Remark 3. It is shown in the last part of the above proof that el <1
implies that e* is power bounded. The converse of this observation does not
hold. By way of example, take 4 = R? with the pointwise vector space
operations, partial ordering and multiplication, so

a'bh= (al)_<ﬁl) - (alﬁl)
% B2 %y,
for all a, be 4. Providing A with the ||-||,-norm, 4 becomes a Banach lattice
algebra with positive unit element ¢ =

1
L) It follows from

- M= sup [[(e)"] = sup ™| = |le]| < oo

mz 1 mE1

that e™ is power bounded. However, |ej, =2 > 1.
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The argument in the proof of Theorem 2 modifies easily to show that if T is
a power bounded linear operator (say, M = sup,,», |T™} < co) on a normed
Riesz space E which satisfies T > I, then necessarily T = I. Particularly, if T is
a contraction and T = I, then T = [

Note in this connection that a positive power bounded operator T on
a normed Riesz space E (or even on a Banach lattice E) need not be
contractive. By way of example, take E = (R?, ||-||,) and matrix(T) = (§ 1,2).
Then |T|; =3/2, so T is not contractive. However,

L 141/24. 41270 (12
matrix(T")=(0 +l +1/,),,+ / )s(o 1),

so T is power bounded.

TugoreM 4. If T: E— E is a power bounded linear operator on the normed
Riesz space E and T = 1, then T =1

Proof. For all xeE* we have Tx—x =0, so T* = I yields TF"1x— Thx
=Tx—x20(k=1,2,...) It follows from

T ix= 3 (T 'x—T%)+Tx 2 n(Tx~x} =0
k=1 .

that 0 € n|Tx—x|| < [T x| < M |x|| (n=1, 2,...). Hence, Tx = x for all
xeE™, so T==1]

Notice that Theorem 2 is a special case of Theorem 4. Indeed, let A be
a normed lattice ordered algebra with unit element ¢ such that e is power
bounded, say M = sup,.», ||(¢")"]| < o0, Denote by L, the left multiplication
by e", 50 L,+(x) = e x for all xeA (the same argument works for the right
multiplication R,+ with e and also for the left or right multiplication with [e]).
Since L™ is the left multiplication with (e*)™, it follows from

1Lgexll = lite x|l < J(e™)" - flxi < Mix|

for all xed (m=1,2,...) that L.+ is power bounded. On the other hand,
L,(x) = e*x>ex=x for all xeA™ gives L.« = I as well. By Theorem 4,
L,. =1, so in particular L.-(¢) = ¢*e=e* = ¢, showing that ¢ 0.

Remark 5. In connection with Theorem 4 it is natural to ask whether it is
also true that T=1I, r(T) <1 (so r(T)=1) implies T=L

This conjecture is violated by the next example. Take E = (C(O0, 1), I} 2)
and define T: E—~ E by

(T/)(x) =f(X)+£f(f)dt

for all xe [0, 1]. Hence, T= I+V with V the Volterra integral operator defined
by
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(Vh)x) = ff(f)df
0

for all x &[0, 1]. Then T is a linear operator and V=0 yields T2 1. It is well
known that r(V) =0, so »(T) = 1. Obviously, T# L.

Another example is provided by taking E = R? and matrix{(T) = (§ ).

It should be observed that the power bounded case in Theorem 4 can easily
be reduced to the contractive case, by defining an equivalent Riesz norm in
E with respect to which T is contractive. Indeed, if M = sup, ¢ || T"| < oo and
we define

filxtll = sup | T"}x! |
nz0

for all xeE, then ||-||| is a Riesz norm in E, x|} < [|Ix{ll € M||x| for all xe £
and [IThH < 1.

In the next example we present a Banach lattice algebra 4 with unit
clement e for which e* is not power bounded and e is not positive.

ExAMPLE 6. Consider 4 = R? with coordinatewise addition, scalar multi-
plication and partial ordering, so A is an Archimedean Riesz space. Define for
pg,reR the following multiplication in A:

a-b= (“1) ) (ﬁ1> - ((“1 +P°‘z)(ﬂ1+l’ﬂz)+‘1°‘2ﬁ2)
%) \Bs ray By

for all a,beA. This multiplication is automatically commutdtive and dis-
tributive. It is associative if and only if ¢ = —pr. Hence, if we define

a-b o (“1), (51) - ((“1 +poa)} (B4 +Pﬁz)—P”x2»82)
s/ \By ro, B,

for all a,be A, then A is an algebra with respect to this multiplication. Positive
elements have positive products if p=0,r 2 0 orif p > 0,0 < r < p, so in these
cases A is an Archimedean lattice ordered algebra in which

abc— (“1)_(181).('}’1) — ((“1 +poig) (B +pB2) (v, +P7’2)“‘P"2%ﬁz7’2)
%/ \Ba/ \72 r*ay By

foralla, b,ce A ip=0,r>00rifp>0,0<r < p,then 4 is an Archimedean
lattice ordered algebra with unit element e given by

_{1—p/r
e—( ! ) |

If 0 <r<p, then e is not positive and

(8
e =(0)
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An easy induction argument shows that

o (P —p/r
) “’( 1 )
m=1,2..}%

FO0O<r<p<l, then A is a Banach lattice algebra with respect to the
|'ll,-norm {observe that O0<p*—pr+r<1 in this case) However,
lel, = p/r—1+1/r >1 and e is not power bounded.

Added in proof (June 1990). A. R. Schep has pointed out to us that our
methods can be combined with an operator transformation used in ergedic
theory to obtain a stronger result. Specifically, let us recall that a linear
operator T on the Banach lattice E (actually on any normed linear space) is
Cesaro, ox mean, bounded if the sequence (|35 o, T¥||/A(n+ 1)) is bounded. Clearly
a power bounded operator is Cesdro bounded. In [2, Section 2] Y. Derrienic
and M. Lin present an example of a positive Cesdro bounded linear operator
on a Banach lattice that is not power bounded. Note in this connection that
such an example cannot be given in the finite-dimensional setting, as every
positive Cesaro bounded matrix is power bounded.

Schep’s observation was that our Theorem 4 remains valid for the wider
class of Cesaro bounded operators. He showed this by using the formal
transformation of a positive linear operator T on a Banach lattice E to the
so-called barycenter A(T) of T defined by A(T) =Y .. %,T", where the o, are
the coefficients of z" in the power series expansion of (1—./1—z)/z. It was
shown by A. Brunel and R. Emilion in [1, Theorem 2.1] that A(T) is power
bounded whenever T is Cesiro bounded. It is then easy to verify that T2 1
implies A(T) = I. Hence, by Theorem 4, A(T)=1I; from which T=1

It turns out that his result can be obtained very simply without the use of
A(T), and can be generalized a good deal more. Suppose we have a sum-
mability method (P) for series (4 la G. H. Hardy [4]). We will say that the
operator T on the Banach lattice E is P-bounded if the P-method applied to the
series with nth term 7"— T7" ! produces sequences of partial sums which are
uniformly norm bounded.

ExampLe 7. (a) If P is the (C, 1)-method, i.e., Cesdro summability, the series
S(r"—T""') has partial sums T" (if we interpret T '=0) Thus T is
P-bounded means precisely that T is Cesdro bounded.

(b) If P is the A-method, ie., Abel summability, we go formally from
3T =T"H to Yo r—1""=(1-0) Y@ T" and T is Abel bounded if
the series (1—6)Y.@"T" have uniformly norm bounded partial sums for
0<® <L

Following Hardy we say that 2 summability method P is totally regular if it

6 ~ Studia Mathematica 97.2
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sums all convergent series to convergent series and all divergent series of
positive terms to 4 oco. Theorem 4 above now generalizes to the following.

THEOREM 8. If P is a totally regular summability method, T: E—~E is

a P-bounded Finear eperator on the normed Riesz space E, and Tz I, then T'= |,
Proof (outline). Let xeE™. The inequality 0 < Tx—x < T x—T*x,
obtained in the proof of Theorem 4, leads to the inequality

P(1),(Tx—x) < P(TF 1 x—T*x),

for each n, when we contemplate the sequences of partial sums obtained by
applying the summability method P to the series with kth terms 1, and
T**1x- T*x respectively. Taking norms we have

PO Tx—x| < [P(T*F1=T4, |- [1x].

The right hand side is bounded and P{1),— o, so Tx = x and we are done.
In the Cesaro bounded case the argument can be written

L3
k=1

n 1 "
3 [Tx—x| = m“g‘& k(Tx—x)| < -

n+1uz T |- el < M
where M is the bound provided by the Cesiro boundedness assumption,
In the Abel bounded case we assume thete exists M such that
~0)| 3, o414 < M
k=1

for all n and all @ such that 0 < @ < 1. From 0 < k{Tx—x)
we obtain for 0 < @ < 1, and all positive integers ,

< T x for all k,

n n M
(12:1 'K | Tx— x| < ”kgll @ Tk“H xll < m

Letting n— o0 we obtain

Il

T —x]| € =]l

0
(1—@)? a(l—@)
M(1—-8) x| for 0 < @ < 1. Letting ® tend to 1 from

Z OK) | Tx—x| = s

whence 82 || Tx—x| <
below gives Tx = x.
W. A. J. Luxemburg pointed out to us that a positive linear operator T on
a normed Riesz space E is Cesaro bounded if and only if T is Abel bounded.
This was shown by R. Emilion in [3, 1.5 and 1. 7] in case E is a Banach lattice,
For the unexplained notions of Riesz space, normed Riesz space, Banach
lattice and Banach lattice algebra we refer the reader to [51
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