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On pointwise ergodic theorems for positive operators
by

RYOTARG SATO (Okayama)

Abstract. Let (X, &, p) be a o-finite measure space and T a positive linear contraction on
L, (). By approximation T can be extended to the space of all nonnegative measurable functions.
Suppose ¥ is a positive measurable function and 0 < e& L, {ir). Assuming that T is conservative, the

following is proved: If 1 <p-<co then lim,(},  T'/}(},_, T'e) exists and is finite almost
everywhere for all 0< fe L (Vdu) if and only if sup,ao (2:=o T"Vl“”')/(ELOT‘e) < 0o almost
everywhere, where 1/p+1/p” = 1. This generalizes a recent result of Martin-Reyes and de la Torre
concerning measure preserving transformations on a finite measure space. Related results are also
proved.

1. Introduction. Let (X, %, ) be a o-finite measure space. Recently,
Martin-Reyes and de la Torre ([81-[10]) considered operators T, acting on
measurable functions and having the form

Tf(x) = f(zx)

where ©: X =X is a measure preserving transformation, and studied the
problem of identifying those positive and measurable fanctions V' such that for
each fe L,(Vdy), the limit im, (3;_ ')A}, T'e} exists and is finite a.e. on
X, where 0 < ee L, (i} is fixed arbitrarily. Under the hypothesis that u(X) < oo,
Martin-Reyes and de la Torre succeeded in characterizing such functions V;
they proved, with e = 1, that (i) if 1 < p < co then such functions V are those
which satisfy '

“ae on X

1) sup( 3, TV

nx0 i=0 i

Tie) < o0

i

where 1/p+1/p' = 1, (ii) if p = 1 then such functions V" are those which satisfy

2) inf V(1"x) > 0

nz0

a.e on X.

Then the author [13] considered (more general) operators T of the form

Tf (x) = h(x}f(zx)
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where h is a positive measurable function and 71 X = X is a null preserving
transformation, and proved that if T is a conservative linear contraction on
L, (), where p(X) = oo may happen, then (2) is also equivalent to the ae.
convergence of the ratios (Z:'=0 Tif)/(Z:':OT ‘e) for each feL,(Vdp). Thus
a generalization was obtained for p = 1.

In this paper we shall consider (most) general operators T, satisfying T 0
and [[T],; < 1, and continue the investigation. Similar results will be proved.

2. Preliminaries and results. Let (X, &, u} be a o-finite measure space and
let M* () denote the space of all nonnegative extended real valued measurable
functions on X. As usual, two functions f and g in M* (1) are not distinguished
provided that f= g a.e, on X, Let T be a positive linear contraction on L, (u};
thus | T, < ||f ||, for all feL,{w) and TL}(u) = L7 (x), where L} () denotes
the space of all nonnegative functions in L, (). In order to extend the domain
of T to M*(u), fix any feM™ () and take f,eli(w), n=1,2, ..., such that
f1f ae. on X, We then define

Tf=lmTf, ae on X.
It is easily checked that by this process T can be uniquely extended to an
operator on M7 () satisfying T(f+g) = Tf+Ty and T(af) = aTf for  all
£ geM* () and constants o, 0 < & < oo. Similatly, the adjoint operator T* of
T, which acts on L, (), can be extended to M* (). In the sequel, T and T* will

be understood to be defined on M ™ (z) in this manner. For simplicity we shall
use the following notation: , :

2(f, 0 = (Z T/ ZT'E) and MP(f, &) = sup R3(f, E)

i=0 i=0 n=0

for feM™ (1) and 0 < eeL, (1)

T is called conservative if Z:i o T'g = o ae on X for some 0 < gel, (i),
and Ee# is called invariant (under T) if T*1; = 1, where 1, denotes the
indicator function of E. If there exists no invariant set E with w(E) > 0 and
MXN\E) >0, then T is called ergodic. We also consider a null preserving
transformation r: X — X. (By definition 7 is null preserving if it is a measurable
transformation from X to X such that 4 €4 and u(4) = 0 imply p(z™* 4) = 0.)
v is called conservative if there exists no Ee# such that t™*E < £ and

MENTT'E) > 0, and ergodic if Ee# and t"'E=E imply u(E)=0 or
HXNE) = 0. As is known, if we define an operator T L,(1)—L,(x) by the
refation

ITfdu= | fdp

=lA

(feLy(n), AeF)

then T becomes a positive linear contraction on L,(u); T is conservative
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(resp. ergodic) if and only if 7 is conservative (resp. ergodic). This 7" will be
referred to as the operator associated with ©; it is clear that T* f(x) = f(zx). (For
more detailed discussions on these matters we refer the reader to Krengel’s
book [77)

We are now in a position tc state the first result.

THEOREM 1. Let T be a positive and conservative linear contraction on Ly (u).

Let V be a positive measurable function on X and 0 <eeL (u). If 1 <p< o0
then the following are equivalent:

(a) For each feL*(de), lim, RE(f, €) exists and is finite ae on X.
(B) MP(V'"F.e) < oo ae on X, where 1/p+1/p' = 1.
If p=1 then {a) implies
'(c) inf,q T*" V>0 ge on X,
and conversely (a) is implied by
(dy Vzinf,o, T*V >0 ae on X.
Proof Let 1 <p< .

(a)=>(b). We may assume that [edu=1. Then the operator
8: L(eduy— L, (edy) defined by

Sf=e"'Tlef) (fel(edp)

is a positive and conservative linear contraction on L,(edy). Clearly,
the adjoint operator S* of S is identical with the adjoint operator T* of T.
‘We now apply the Neveu-Chacon identification theorem of the limit in the
Chacon—Ornstein ratio ergodic theorem (see e.g. [7], Chapter 3y to infer
that

Lim RV, €)= lim( T TV 7Y 3 Tie)
n n i=0 =40

= li}ln( Zn: Sife? Vl—p'))/(éo 5%1)

i=0
= E{fe 'V TFUX, S, edy)}
where .# and E{-|(X, .#, edy)} denote, respectively, the o-field of all invariant

subsets of X -and the conditional expectation operator with respect to the
measure space (X, #, edu). It follows that

ae on X,

{x: MZ(V'™P, @) (x) = o0} = {x: im R3(V* 7, e)(x} = o0} e 7.
Hence we may and do suppose that {MF(V'™¥,e)= o0} =X, when
p({MF (V¥ &)= c0}) > 0; and from this we derive & contradiction as

follows.
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In fact, by a standard argument we may assume, without loss of generality,
that (X, &, u) is a separable measure space. Thus, (X, &, edy) is a separable
probability space, and by the isomorphism theorem (sec ¢.g. Halmos [5],
p. 173} together with the theory of Rokhlin [11], the measure algebra
associated with (X, #, ed,u) is isomorphic to the measure algebra associated
with a Lebesgue space (X, &, fi). (Roughly speaking, X, #, f) is a Lebesgue
space if and only if X is a compact metric space and (X, %, ) is the
completion of a probability space (X, 4, /i), where & stands for the Borel
subsets of X))

Since the measure algebra isomorphism has no influence upon the ae.
convergence of a sequence of functions, we may assume below that

(X, #, edp) is a Lebesgue space,

Then the ergodic decomposition of § can be considered (see Section 11.11 of
[6] and §3 of [11]). That is, there exists a countable family {E,} of invariant
sets such that if £ denotes the decomposition of X induced by {E,}, ie, Cef
has the form

C= ﬂ E;(e)

where ¢, = +1, El) = E;, and E,(—1) = X\E,, then:

(i) The factor space (X/¢, #,, u) of (X, #, edy) with respect to & is
a Lebesgue space.

(i) To ae CeX/E, with respect to p,, there corresponds a Lebesgue
measure g on C such that if 4e % then 4 n C is measurable with respect to p,
for a.e. Ce X/£, and the function #(C) = p (4 ~ C} is measurable with respect
to u, and satisfies, for all Ze & of the form Z = 1™ 1(Z/£), where Zffe F and
11 X =X/ denotes the canonical mapping,

J edu= [ hC)au(C) = | ueldr C)dulC).
AnZ Zi§ Zjg

(iti) To a.e. Ce X/ there corresponds a conservative and ergodic positive
linear contraction S on L, (C, u.) such that if feL, (X, edu) and ge L o (X, edi)
then, for a.e. CeX/¢,

(8f)¢ = Scfe and (5*g@)c = S¥gc

where (8/)¢, (8%g)c and f. denote, respectively, the restrictions of Sf, §*y and
fto C

Since X = {MZ(V1 ", ¢ =
Chacon—Ornstein thecrem that

oo} by assumption, we see in virtue of the

Je 1V P du =0 for ae CeX/¢

c
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Using this we see without difficulty that there exists an Fe.#, with u(F) > 0
and a countable family {4,} of disjoint sets in % such that

[ etV dp. < o
Ann

for all CeF/¢.
Write
B,=A,nF, B, = U B,.
=1

Since p(B,nC)>0 for all CeF/E, it follows that u(B,) >0
Define

B(©) = [ eV Py, (CeFL),

BurnC
and let £ 0 be the function on X defined by f=0 on X\B_, and

freV(x) = by H(Cn 7PV (x)

Then we have

for xeB,nC.

[ fevdp =3, [ f7Ve edu
X n=18Bp
=x 101 Ch,:“l(C)n'ﬂe"l VITF duc) dpy
n=1Fy i
— Y | nrdu = ”"Ied#<°0
n=1Fjt n= 1

Next we apply the relations f= VY7V ~'/% and
(FVHEp = 2V = BTHC WPV = MO (Y e
on B, C for all CeF/E to get
| = ( | pvtad ] Ve g

BanC BpnC BunC
= (MO § e VTP dpg) P (m ()
BpnC

=n"1(h(C)" 2071 for CeFJE,

where the last inequality is due to the fact that h (C) =1 for all CeF/E

Consequently

[fe tdpe= Y, [ ftducE Y oTt=w

n=1 B.nC n=1

8

(CeF[E),
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and, since S, is conservative and ergodic, we have for CeF/¢

3

lim R3(f, &) = um()"j Si(fe YA "0 §'1)
" ”oi=0 =

= lim(i Sé(fe“l)c)/(i Stl)=oc0 pcae on C.
" =0 i=0

Hence lim, R%(f, &)= oo p-ae. on F, and this contradicts (a), because
feL; (Vip)
(b)=(a). Put
Ay ={x: IimRy(V*"7, e)(x) < N} for Nz L

Since Aye.# and since (b) implies 4,}X, we may suppose without loss of
generality that Ay = X. Then, since

Vi Pdu=[E{e ' VITV{X, F, edu)} edp < {Nedp < oo,
X X X
the Holder inequality yields that if feL}(Vdy) then

fdu<({ 1PV AR ([ VT ' < oo,
X X X
which together with the Chacon-Ornstein theorem proves (a).
Let p=1.
(a)=>(c). We use the operator S on L, (edy) introduced in the above proof of
(a) = (b). Write

W= inf S*V.
nzQ

It is clear that Wz min{V, $* W}. Thus, if we let A = {W=0}, then any
fe Lt (4, edy) satisfies

O0< [ (S )Wedp = [ f(S*W)edy = | f(S*W)edp < | fWedp = 0,
X X A A

so that Sfe L] (4, edp). Since S is conservative, this implies 4 €.#. Therefore we
may and do suppose that W= 0 on X when pu(A) > 0; and from this we derive
a contradiction.

In fact, we first notice that for ae. CeX/¢ (with respect to He)

inf ¥V, = inf (S¥" V), =

L] n=0

peae. on C,

Hence the function

1(C) = uc({(V<n™} A C) (CeX/d)
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satisfies h,(C) > 0 for p-ae. CeX/L, so that if f, denotes the function on
X defined by

Ful) =n" (10 Mpem®  (xeCeX/d),

then we have

[ fuedp = [ ({ f,duc) dug(C) = 1/n,

Xt €

[hVedu< [ (n7' [ £, duc) dpC) = 1/n*.
p. 4 XiE c

Therefore the furction f =Z:;1 [, satisfies fe L} (Vedu) and fELY (edy). Tt
follows from the Neveu—Chacon identification theorem that

Hm Ry(ef, &) =lim{} S/}(Y §'1)=c0  ae on X,
n noi=0 i=0
and this contradicts (a).
(d)=-(a). (d) implies that the function W= inf,,q T**V satisfies

T*W< inf T*"V=inf T*"V=W and W>0 ae on X.
nz1 nx 0 ’
Since T is conservative, W is measurable with respect to .# (see e.g. [7], p. 116).
Thus the set Ay = {W= 1/N} is'in # for each N = 1. Since 441X, we may
suppose without loss of generality that 4y = X. Then felLj(Vdy) implies
FfeLi(u), so that the Chacon-Ornstein theorem proves (a).

CoROLLARY. Let T be the positive linear contraction on L, () associated with
a null preserving and conservative transformation t. X —X. Let V be a positive
measurable function on X and 0 < ec L, (¢t). Then the following are equivalent:

(a) For each fe L{(Vdy), lim, R3(f, €) exists and is finite a.e. on X.
(b) inf, .o V(t"x) > 0 age. on X.

Proof. Since 7 is conservative, so is T, and further V{x) = inf ., ¥(z"x)
for ae. xeX. Thus the corollary follows from Theorem 1, because
T*"V(x} = V{z"x).

Remark. In Theorem 1, the implications (c)=(a) and (a)=>(d)for p=1
do not heold; and if T is not assumed to be conservative, the equivalence
(a)<(b) for 1 < p < oo and the implication (a) = (c) for p = 1 do not hold. To
show this, we give the following examples.

ExampLE 1. We consider the measure space (X, #, y), where X is the
nonnegative integers, # is the subsets of X, and u is defined by u({k}) =27*
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for each k= 0. Let T be the operator defined by

Tf(k) =27 (fO+f(k+1) (k=0).

Then we see that |Tfl, = ||f|l1 for all feLi(y) and T1=1; thus T is
a positive and conservative linear contraction on Ly (u). Further, if W is the
function on X defined by W(0) = 1 and W{k) = O for k > I, then an elementary
calculation shows that

lim T*"W(k) =2"1 for each k= 0.
It follows that the function ¥ on X defined by V(k) = 107% (k = 0) satisfies
inf,» o T*" V(k) > 0 for each k= 0, and (c) holds. (Incidentally we note that
T maps L (Vdy} into L] (Vdg)) But (a) does not hold for p = 1, because the
function { in LI{Vdu) defined by f(k) = 10* for each k> 0 satisfies

Lim R3(f, N0) = im(nr-+1)"1T(0) = lim(n+1)"15" = co.
Next, let ¥{0)=2"" and V(k}=1 for all k= 1. Then we have V(0)

< inf,z; T*" V(0). Thus (d) does not hold. But, since L, (Vdu) = L, () as sets of
functions, the Chacon—Ornstein theorem implies that (a) holds for p=1.

ExampLE 2. Let 1 < p < co. We consider the measure space (X, &, w),
where X is the integers, # is the subsets of X, and u is defined by

wl({k}) = {iﬂ i }1: f 1
Define
TRy =fk+1) (keX).
_ T becomes a positive linear contraction oﬁ L; (p) which is not conservative. Let
V=1on X and 0 <ecL,(u) be any function. Then

n—1

M°°(V1 ", e)(k) =sapn( Y e(lmq_'))"“I =00 (keX),

nxl i=0
and 50 (b) does not hold. But the Hélder inequality vields

[l

2w (E o) (S )" <

k=1 k=1
for all feLy(Vdy). Hence (a) holds.
ExampLe 3. Let X and # be the same as in Example 2, but we consider here

# to be the counting measure. Then the operator T in Example 2 becomes an
invertible positive isometry of L,(u) which is not conservative either. Define
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Vik) =1 if k>0 and V(k) = k"t if k < 0. Then

lim T** V(k) = lim V(k—n) = (ke X).

Thus (c) does not hold. But, clearly, (a) holds for p = L.

Although in the above theorem the assumption of T"s being conservative is
not omitted, if T is invertible and the ratios

RL(fa=( Y THY T

i=—m 1~~m

with m,n = 0

are considered, then the assumption is not necessary. That is, we have

TuroreM 2 (of. [&], [13]). Let T be an invertible positive isometry of L, {u).
Let V be a positive measurable function on X and 0 < eeL (p). If 1 <p < w0
then the following are equivalent:

(a) For each feLl(Vdy), the limit
R/, e)(x) = mlrilf_f}w RLL(f, e){x)

exists and is finite ae on X.
(b) The maximal function M= (V77 €)(x) = SuPy.»o RL
is finite a.e. on X.

m(V17F, (x)

If p=1 then (a) is equivalent to

© Inf_ ey T* V>0 ae on X.

Sketch of proof. Since T is an invertible positive isometry of Ly{u), T~*
is also positive and for any feM™(u)

R2,(f, e)() = E{e " fIX, 7, edu)} (%)

Upon using this and the ergodic decomposition of the invertible S, S being
introduced in the proof of Theorem 1, the implication (a) = (b) for 1 < p <
follows as in Theorem 1. The proofs of the other implications are also similar
to those of the corresponding parts of Theorem 1. We omit the details.

ae. on X (cf. [12]).

In the following theorem we do not assume that T is invertible or
conservative, Before stating the theorem, let us recall that if 0 <p <1 then
L(w=1{/S: [1fIPdu < oo} is a complete linear metric space with the metric d,

defined by
d,(f, ) =[1f—glPdp= | f~gl} o

and if pu(X) < co then Lo(w) = {f: |f] < 0 ae. on X} is a complete linear
metric space with the metric 4, defined by

I {fwg|

2 iy,
T+1f—gl "

do(f. 9) =



80 ‘ R. Sato
and a sequence {f,} in Ly(u) converges in measure to an fe Ly(p} if and only if

lim, d(f,, /) =0

THEOREM 3. Let T be a positive linear contraction on Ly(u). Let V be
a positive measurable function on X and 0 < eeL,(u). If 0 <p < co then the
Jollowing are equivalent:

(@) For any fel;(Vdu), lim, R5(f, e) exists and is finite ae. on X.
by MP(f, &)< o ae on X for all fell(Vdp).
(c) There exists a positive measurable function U on X such that
Udp< A7P[ fPVdu  (A>0, feLy(Vdp).
M (e >3} X
(d) There exists a positive measurable function U on X such that
liminf [ Udu<A™P[f"Vdp (A>0, fely(Vdu).
" {RG(f.0)>2) X

Proof. As is easily seen, we may and do suppose that p(X) < oo (cf. the
proof of Theorem 1)

(a) = (b). Obvious.

(b) = (a). We first notice that for each n > 0 the mapping f- R3(f; e) from
L (Vdy) to Lg(y) is continuous. In fact, if this is not the case, then there exists
a sequence {f;} in L (Vdy), with lim, {fZV du=0, such that the sequence
{R%(f;, ©)} does not converge in measure to the zero function. Thus (if
necessary, take a subsequence of {f,}) we can choose two positive reals ¢ and
J so that

p((Re(fr. @ >e})>6  for all k=1

Here we may suppose without loss of generality that the function f(x)
=Y uy fu®) is in Ly (Vdy). Then, writing E, = {RY(f;, ¢) > ¢}, we get

Z R(fio ) (x (Z g, (2));

but, since & < u(E,) < u(X} < oo for all k 3 1, the function h(x) = Z;:;L 1g, (x)
must satisfly 7 = co on a set of positive measure, which contradicts (b).

By virtue of this fact, we see that the mapping f—Mg(f, ¢) from L} (Vdy)
to Ly () is continuouns at the zero function of Lj (Vdy) (see e.g. [4], p. 10), which
is equivalent to saying that there exists a positive decreasing function C{4),
defined for 2 > 0 and tending to zero as ATco, such that for all fe L} (Vdy) with
Ifl, <t

WM 0> )< C(l) (41> 0).

The proof of (b)={(a) is now a routine matter, since L} (1) ~ Lj (Vdy) is
a dense subspace of L} (Vdy) and for each fe L} () n L} (Vdy), lim, RE(f, &)
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exists and is finite a.e. on X by the Chacon—Ornstein theorem. We may omit
the details. (See e.g. [31, pp. 2-4.)

(b)=(c). This follows from Nikishin’s theorem (see e.g. [2], p. 536).

{c)=-(d). Obvious.

{(d)=>(b). Let feL!(Vdu). We apply the Neveu-Chacon identification
theorem to infer that for ae. x in the set E = {MZ(f, ¢) = oo},

MG (f, &) (x) = im Ry(f, &)(x) =
1t follows that for any A >0
Ec Iimhinf{R'{,(f, e} > A},
and thus (d), together with Fatou’s lemma, implies

lim inf §

n (RG(S.e)> 4}

[Udp < Udu< 277 [ f7Vdu.
E X

| Thercfore, letting Afco, [;Udi="0 and p(E) = 0. This proves (b).

Let us now apply Theorem 3 to null preserving transformations t: X — X
in a finite measure space. For simplicity we set

A f() = n7? Z fi MAf(x) = sup |4, f(x)]-

nzl

THeoREM 4 (cf. [10]). Let (X, #, u) be a finite measure space and let
1: X - X be a null preserving transformation. If 0 < p < o, then the following
are equivalent: .

(2) For any feL,(u). lim,A4,f exists and is finite a.e. on X.

(b) MAf < oo ae on X for all feL (u)

{c) There exists a positive measurable function U on X such that

| vdus2[If1de

(MAf>al

(2 >0, feL,{u).
{(d) There exists a positive measurable function U on X such that

Udp <A™ I IfIPdp (A= 0, feL,(w)

sup |
nzl {ldnf]>1}

(¢) For every Ee #, lim,n ]‘Z 17'E) exists, and further there exists -
a positive measurable funct:on U on X such that

liminf | Udp<A” m fFdp (>0, feL ).
n {lAnS]> A}

Proof. The implications (a) = (b) and (c) = (d) are obvious. (b) = (¢} follows
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from Nikishin’s theorem, because (b) implies that the mapping f— MAf from

L,{1) to Ly(p) is continuous at the zero function of L,(1).

(d) = (). We may suppose that 0 <U < 1 on X. We ﬁrst notice, using the
Marcinkiewicz interpolation theorem (see e.g. [2], pp. 148-150 for a proof,
which is also valid for the case 0 < p < 1), that if (d) holds then to each r,
p <r < co, there corresponds a constant C, >0 such that

sup [|4, /1 Udp< C[IfI"dp  (feL, (1)
nzl
Here we may take r satisfying 1 <r < co. Then, since 0 < U € 1 on X, the

Halder inequality shows that for all feL(4) and n 21
r » 1ir 1/
§14, 10 dp < (AU dn)" (U d)™" < (C, 117 d)" (w0}
On the other hand, given an & > 0 there exists § > 0 so that u({¥ < é}} <s.

Then we have

n—1
[t Y 1) dp
=0

n-1
<5 E' Y L) Udnte

i=0
<6 CH () (WEN +5;

and consequently

lim supn™t > u
H(E}—=0 nztl i=0
It follows that the set {n=*3 . L > 1} is weakly sequentially compact
in L,(y), where T denotes the posmve llnear contraction on L {1) associated
with 7. By a mean ergodic theorem (cf. e.g. [1], p. 661), ‘12"_ » T1 converges
to a function in L, (u) with respect to the norm topology This proves the first
part of (¢); the second part is trivial
(€)=>(a). To prove this, define

(t7'E) = 0.

n—1
v(E)=1limn™'Y p(t™'E)

n i=0
By the Vitali-Hahn—Saks theorem, v is a (countably additive) finite measure,
absolutely continuous with respect to u and invariant under =. Then we write

Ve {x: (dv/dp)(x) > 0}, Z=X\Y.

Since v(z 71 Z) = v(Z) = 0, we have v(Yn 1™ *Z)= 0 = w(Yn ¢~ * 2). It follows
that g(Y4z"'Y) =0. Thus by peglecting a null set we may suppose that
Y= 17'Y; and sc t can be considered to be a measure preserving transfor-
mation of the measure space (Y, v).

We now consider V= du/dv (which is defined on Y), e =1y, and Ty on
L,(Y, v) defined by

(EeF).

T/ =fx)  (xel, fel, (Y. ),
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and apply Theorem 3 to see that for every f € L,(Y, p) the Hmit lim, 4, f(x)
exists and is finite ae. on Y.

To finish the proof, put A = lim,t™"Y¥. Since xe A implies "xe ¥ for all
sufficiently large n, it suffices to show that u(X\d4)=0. In fact, we have

u(X\A4) = hmn“‘ Z Bz

i=

(\A)) = v(X\A) =

completing the proof.

ProrosiTion. Let (X, &, u) be a nonatomic finite measure space and let
t: X X be an ergodic null preserving transformation. Then to each p,0 < p
<1, there corresponds an fe L (1} such that for almost all xe X, the averages
A, Jfx) fail to converge to a finite limit.

Proof Since 7 is ergodic and E(f) is invariant under 7, E(f) being the set
of all xe X at which lim, A, f(x) exists and is finite, it follows that u(E(f) ) =
or u(X\E(f)) =0. Thus it suffices to prove the existence of an feL (1) for
which u{E(f)) < u(X). If such an f exists in L (), there is nothing to prove.
Therefore we suppose below that lim, 4, f cmsts and is finite a.c. on X for all
fe L, (). Then, clearly, v(E) = lim, n"lzl 0 u(‘r 'E) exists for all Ee #, and
T can be considered to be an ergodic measure preserving transformation of the
measure space (Y, v), where Y= {x: (dv/dp){x) > 0}.

Take ¢ > 0 and Ee %, with E < ¥, such that v{E} > 0 and (dv/du)(x) > &
for xe E. Since 4 is nonatomic and 0 < p < 1, there exists an fe Li(E, p) such
that [pfdu= co. Then [gfdv= co, and hence by the Blrkhoff individual
ergodic theorem, lim, A, f(x) = co a.e. on Y because < is ergodic on (¥, v). This
completes the proof‘
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Stable rank of holomorphic fumction algebras
by
RUDOLF RUPP {(Karlsruhe)

Abstract. We calculate the stable rank of stable subaigebras of A(K).

Introduction. The concept of the stable rank of a ring, introduced by H. Bass

‘[17, has been very useful in treating some problems in algebraic K-theory. In

a series of papers G. Corach and F. D. Suarez calculated the stable rank of
many Banach algebras. Among them are the well-known algebras A(K), where
A(K) is the Banach algebra of all continuous complex-valued functions on
a compact set K of the plane € which are analytic in the interior K% of X. In
this paper we restrict ourselves mainly to subalgebras of A(K), where K has
a “good” boundary. For these algebras we calculate the stable rank. It is worth
mentioning that the algebras may bear no topology at all. Many subalgebras of
the disc algebra A{D) satisfy our conditions, for example, W™, 4*(D} and
A (D) (for definition, see below).

This paper presents material from the author’s thesis. In a forthcoming
paper we will study the subalgebras of the disc algebra more closely.

§1. It is well known that the group of units in a Banach algebra is open.
Unfortunately, this feature is lost in the general case of a topological algebra.
Therefore we define:

A topological algebra 4 is called a Q-algebra if the set of units, 4™, is open
in A.

In this paper we consider complex, commutative Q-algebras with unit
element being denoted by 1.

Given a Q-algebra A4, an element ae A" is called unimodular if there exists
be A" such that :

{b,ay:= 3 bag;=1.
=1 )
We denote by U,(A) the set of unimodular elements of A". Finally,
a=I(ay, ..., a,)e U, A) is called reducible if there exist x,, ..., x,—4 in A such
that
(@ +x(a,, ... @1 +xy-18)€U,_1(A).
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