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On the Hausdorff dimension of a Julia set
with a rationally indifferent periodic point

by

M. URBANSKI (Torus)

Abstract. Suppose that T: € — C is a polynomial with a rationally indifferent periodic point
w, such that the corresponding filled-in Julia set K(T) is connected and locally connected. We
prove that if 4 is a connected component of Int K (T) which is contained in the basin of immediate
attraction to o and the intersection of 84 and the closure of the trajectory of critical points consists
exactly of o then either 84 is a real-analytic curve or the Hansdorff dimension of 24 is strictly
greater than 1.

Introduction. Notations. The local topological structure of the behaviour of
a rational map T: € — C around a rationally indifferent periodic point was
already described by Leau [L] at the end of the last century. Next results can
be found among others in {F1], [F2], [C] and [DH]. Here we want to
continue these studies looking at the fractal properties of the Julia set around
such a point. A general setting in which our method works can be described as
follows. Let J < € be a compact nowhere dense set, let J < U = C be an open
neighborhood of J whose complement in € contains at least 3 points and let
T: U—-C be a holomorphic map such that the following conditions are
satisfied: ’

(a) T =J.

(b) T'(z) # 0 for every zeJ.

(c) .

Buer [(VasoT"()eU) = (zeJ or lim T"(z) = w)] and T(w) = w.

(d) If ze U\J and T"(z) e U for every n = 0, then there exists r(z) > 0 such
that T" (B (2, r(z))) < U for every n > 0 and 7" |B(z,r(2)) converges uniformly to w.

(e) There is an open neighbourhood W < U of w such that if T"(z)e W nJ
for every n = 0, then z = w.

In order to prove more advanced results we will also assume (see Sections
4 and 5) that J is the boundary of an open topological disc 4 = C and the
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following condition is satisfied:
M TU nA) = A.

Our main result (sce Theorem 5.2) is that if moreover J is a Jordan curve and
condition (f) is satisfied for both connected components of C\J then J is either
a real-analytic curve or the Hausdorff dimension of J is strictly greater than 1.
Results of this kind have been proved under different assumptions. Let us
mention here the papers [B], [S1], [P3], [PUZ L, I], [Z2] where, actually in
turn, weaker and weaker requirements were needed. In all of them, however,
the open topological disc 4 was assumed to be an RB-domain (see [PUZ, 1],
p. 5), that is, the formula

1) NTUnA)=ed=J
n=0

was satisfied. Under our assumptions {(a)-({} this need not be any longer true
and some new ideas are needed. In particular, the map F: S — S* constructed
in Section 4 is not necessarily expanding and because of that we use the jump
transformation F* which is already a piecewise expanding mapping but with
an infinite number of pieces of monotonicity. As the tools-needed to prove
Theorem 5.2 we also obtain some results which concern Hausdorff and
conformal measures on J. We show that if ¢ is the Hausdorff dimension of
J then the t-dimensional Hausdorff measure of J is finite and there exists
a t-conformal measure for T2 J — J. However, note that if |T" ()] = 1 then (1)
is satisfied and we are exactly in the setting of [B}-[22]. Theorem 5.2 then
follows from these papers. Therefore we are essentially interested in the case
when {T"(w)] = 1. .

We would also like to mention the paper [Z1]. It concerns the global
situation, i.e. rational maps of the Riemann sphere. One of the main resuits says
that the Hausdorff dimension of the Julia set is greater than the Hausdorfl
dimension of the maximal measure if and only if the rational map is not
critically finite with parabolic orbifold. All maps with parabolic orbifold are
classified in [DH], §9 (comp. also [Z1], §1) and their Julia set is either the
whole sphere C, a real-analytic interval or a real-analytic closed curve. If now
the rational map is a polynomial then the Hausdorff dimension of the maximal
measure is equal to 1 (see [P1]), the Julia set does not coincide with Cand
Zdunik’s result can be reformulated as follows:

Either the Hausdorff dimension of the Julia set is greater than 1 or the Julia
set is a real-analytic 1-dimensional manifold.

Since, however, the Julia set of a polynomial is the boundary of the basin of .

attraction to infinity which is an RB-domain, this result also fits to the setting
of [BI-[Z2]. Note also that although our Corollary 6.4 requires some
additional assumptions its statement is stronger than Zdunik’s since it says that
if the Julia set is not a geometric circle, then not only is the. Hausdorff
dimension of the Julia set greater than 1 but so is already the Hausdorff
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dimension of the boundary of the basin of immediate attraction to the
rationally indifferent periodic point under consideration.

Concluding this introduction we would like to notice that a large class of
examples, which in fact have motivated our work, for which conditions (a)}-{f)
are satisfied is described in Section 6.

§ 1. Basic notations and definitions. If A « X is a subset of a metric space
X and t is a real number then the t-dimensional outer Hausdorff measure of A is
defined to be

(1.1) H,(4) = liminf{ ¥ (W)}

00 g, wew,
where %, ranges over all countable covers of 4 consisting of open balls of radii
less than ¢ and (W) denotes the radius of the ball W. The outer measure H,
restricted to the Borel o-algebra of X becomes a measure. The Hausdorff
dimension HD (A) of A is defined to be

sup {teR: H,(4) = oo} =inf{teR: H,(4)=0}.

If 1 is a Borel probability measure on X, then the Hausdorff dimension HD (g)
of u is defined by

HD (1) = inf (HD (Y): p(Y) = 1}

In the presence of holomorphic dynamics we have a useful formula to express
this quantity. More precisely, let G < C be an open set and §: G— C
a holomorphic map. If K < G is an S-invariant compact set: S(K) = K, and
u is a Borel ergodic probability S-invariant measure of positive entropy (for the
definition and basic properties of measure-theoretic entropy of endomorphisins
see for example the book [Pa] by W. Parry) on K, then (see for example §3 of
[P1] and [Ma])

(1.2) HD (u) = h, (8)/1,.(5)

where k,(S) is the measure-theoretic entropy of § with respect to the measure
p and 3, (S) = _flog!S’| dp is the Lyapunov exponent. Note that (1.2) makes
sense as by Ruelle’s inequality proved in [R] we have y, (S) = Jfh#(S).

If teR and m is a Borel probability measure on K, then m is said to be
t-conformal for the map S: K — K if and only if

(1.3) m{S(4)) = { S dm

for any Borel set 4 < K such that $|4 is injective. This is a slight generalization
of the notions of conformal measure introduced by S. Patterson [Pat] for
Fuchsian groups and D. Sullivan [S2] for rational maps. For an even more
general notion of conformal measure and its basic properties the reader is
referred to the paper [DU]. '

Finally, let us formulate a version of the Koebe distortion theorem (see

[Hi]).
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Tur Xoese DisTorTION THEOREM. There exisis a function k: £0,1) = [1, )
such that for any zeC, any r>0 and any univalent holomorphic function
§: B(z,r)— C 'we have

1S" (RI/1S" (x)| < k2)
We put K =k(1/2).

§ 2. Basic lemmas. In this section we establish some basic analytic and
topological properties of a holomorphic mapping T: U - C that satisfies
conditions (a)-(e) of Section 1. We fix a Riemannian metric on C and, unless
stated otherwise, we consider all distances and derivatives with respect to this
metric. Given a connected, simply connected open set H < C and an integer
n = 0 we say that a holomorphic map 7,”": H — U is an inverse branch of T" if
and only if T"(T, "(H)) is well-defined and T"= T,7" = Id|H. Moreover, we say
that all the inverse branches of T" are well-defined on H if and only if for every
zed such that T"(z)eH there exists a holomorphic inverse branch
T, " H—U of T which satisfies T,”"(T"(2)) = z.

LemMa 2.1. Let ¥V < J be an open neighbourhood of o. Then there exists an
r >0 such that for every zeJ\V all the inverse branches of T", n=0, 1,
2,..., are well-defined on B(z, 2r).

Proof. As J is compact, it follows from (b) and (a) that for sufficiently
small 6 > 0, B(J, d) = U and all the inverse branches of T are well-defined on
the balls B(z, 8), zeJ, and therefore also on any connected, simply connected
open set contained in B(J, §). Take now an open neighborhood ¥, <= C of 0 in
C such that 7, n(J\V) =@ and let 0 <n <% be so small that

(2.1) ‘ Bz,ynV, =0

Fix ye J\Vand suppose that for every 0 < & € 5 not all the inverse branches
T, " of T" are well-defined on B(y, &). Therefore for any sequence n = g, 0
there exists an infinite sequence {m,};%; of positive integers such that

if only |y—zi,|x—z| < tr

for every zeJ\V.

2.2) 7™ (B(y,8,)) & B/, )

for some inverse branch T,7™ well-defined on B(y,¢,)
and ' '
2.3 T“('R.“"‘" (B(y,e,,))) = B(J,#) for every 1 <k<m,

Since T,”™ (B(y, )} is connected and T,”™ (y)e J, we can find by (2.2) for every
integer n > 1 a point z,e T,_™ (B (v, ¢,)) such that dist(z,,J) = 15. By conpact-
ness of U < C we can assume that z, -z for some ze U, So

2.4 . dist (z, J) = £6.
Cram. T*(z) is well-defined for every integer k = 1

For k = 1 this follows immediately from (2.4) as B(J, 6} < U. So, suppose
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that T%(z) is well-defined for some g > 1 and take an integer s > 1 so large that
> g and dist(T%(z,), T9(z)) < 4. Therefore, using (2.3) we get

dist(T?(2),J) < dist (T9(2), T*(z,))+dist(T*(z), J) <

Hence TY(z)e U and therefore T+ ({z) =
proved.

M+ =3y <é.
T (T4(2)) is well-defined. The claim is

As T is defined on U, it follows from the claim that T*(z)e U for every
k= 1. Thus, in view of (2.4) and (c) we.obtain
(2.5) lim T*(z) =
k-
So, as ze U\J, we can find by (d) an integer ! =
we have

(2.6) T*(B(z,7(2))) < V.

Since lim,, .., 2, = z, we can find n so large that m, > [ and z, e B(z,r(z)). Hence
by (2.6}, T™(z,)eV,. On the other hand, T™(z,)e B(v,¢,) < B(y,n). This
contradicts formula (2.1).

Consequently for every yeJ\V we have found 0 < &(y) < » such that all
the inverse branches of 7", n =0, 1, 2, ..., are well-defined on B(y, ¢(y}). Now
for r required in the lemma, it is sufficient to take % of the Lebesgue number of
the open cover {B(y,e(¥)}yenw of \V. m

2 0 s0 large that for every k = I

CoORrOLLARY 2.2. If H = B(J\V, 2r) is a connected simply connected open set
then all the inverse branches of T", n = 0, are well-defined on H.

Lemma 2.3. if zeJ\V and #,(2) indexes all the holomorphic inverse
branches of T" defined on B(z,2r), nz0, then the family
{T, " B(z,2r} > C: ve#B,(2), n=0,1,...} is normal in the sense of Montel.
Moreover, all its accumulation points are constant functions and consequently for
every 0 €y <1

2.7 lim max {diam T;"(B(z, 2yr)): ve &, (z)} = 0.

n—+oo

Proof. Since T,7"(B(z,2r)) = U for every n >0 and ved, (z) and the
complement of U in C contains at least three points, the family {T,™": ve #,(2),
n=0,1,...} is normal in view of Montel’s theorem.

Suppose now that there is zeJ\V, an increasing sequence {m}i=; and
holomorphic inverse branches T, ™: B{z,2r) - C converging almost uniform-
ly to a holomorphic function H: B{z,2r)-» C which is not constant. Thus
H(B(z,2r)) is an open set and for any point xe H (B(z, 2r)) there exists m > 1
such that xe T""(B(z,2r)) for every k > m. Hence T™(x)eB(z,2r) c U for
every k= m. So TH(x)e U for every j = 0 and T7(x) avoids a fixed neighbour-
hood of o for infibitely many j (of the form n,). Therefore in view of (¢) and (d),
xeJ. Consequently H{B(z,2r))=J, which contradicts the opehness of
H(B(z,2r)) as J is nowhere densc in C. The proof is finished. =
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COROLLARY 24, V1<134Vn2quEJ\V If T;,ﬁn: B(Z,ZP')—PC is an inverse
branch of T" then (T, ™Y (x)] < A™' for every xeB(z,1).

Proof Since J < V is compact, there exists a finite set £ < J\V such that
(2.8) [ B(x,r/2) > \V.

xcE

It follows from Lemma 2.3 that
lim max {sup {{T,”"Y (2)}: z&B(x,3r/2)}: ved,(x), xeE} =0,

nr o0

Therefore the corollary is proved since by (2.8) for every z& J\V one can find
xeE such that B(z,”) = B(x,3r). m

As an immediate consequence of this corollary and Lemma 2.1 we get

COROLLARY 2.5. The set K(V) = {zeJ: T"(z)¢V for every n 2 0} is closed,
T(K(V) = K(V) and Y35 13021 ¥ sexon (T (@) 2 4.

Now we shall prove

THEOREM 2.6. The map T: J— J is positively expansive,

Proof Let 5 >0 be so small that Blw,n) = W and
(2.9)

Let Q = B{w,n)nJ and let r > O be the radius given by Lemma 2.1 with
V' =Q. Since J\Q is compact, there exists a finite set E < J\Q such that

T|B(z,n) is injective for every zelJ.

(2.10) U B(z,7/2) > \Q.

zel
Since E is finite, it follows from (2.7) (Lemma 2.3) that there exists m 3= 1 such
that for every zeE, n2m and ve 4, {2)
(2.11) diam T,""(B(z, 7)) € 7.

Choose finally 0 < < 4# so small that for every seJJ\V, every 0 < n < m and

every holomorphic inverse branch T,”" B(s,2r} - C defined on Bfs,2r) we
have
(2.12) diam T,7"(B(s, B)) < 1.

We shall show that § = min(y,46) is an expansive constant for T: J — J.
So, consider x,yeJ such that

(2.13) dist(T" (), T"(y)) < & fot every n2 0.

We need to prove that x = y. There are the following two possibilites. Either
.14 T*(x)=w@ for some k=0, or

2.15) T #w for every n > 0.
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Let us consider the case (2.14). Then by the definition of 8,
T"(y)e B(w,n) = W for every n 2 k. Hence by (¢), T*(y) = o = T*(x) and let
g = 0 be the smallest integer for which TY(x) = T*(y). As x s y we deduce that
g=1and T (x) 5 T '(y). But this contradicts the fact that dist (T *(x),
T () < é<n and (2.9).

So, let us consider the case (2.15). Condition {e) implies that T* (x)¢ W for
infinitely many n. Therefore, since Q = W and J is compact, we can find
a sequence {n;}7., of positive integers increasing to infinity such that

(2.16) T(x)¢Q for every j=1,2,...,

2.17) lim T"(x) =g for some geJ,
Jeron

(2.18) T (x)eB(g, f/2) for every j=1,2, ...

By (2.16) and (2.17), geJ\Q. Hence it follows from Lemma 2.1 that for every
j =1 there exists a unique holomorphic inverse branch T7": B(g,2r)— C of
T defined on B(y.2r) and determined by the condition

(2.19) T, (T(x)) = x,
which makes sense because of (2.18). Now, since dist(T™{x), T"{y)) < § < 38,
we conclude from (2.18) that
(2.20) T (x), T"(y)e B(g,h)
Fix now j = 1, define y, = T,"™{T"(y)) and consider 0 < I < n;—1 such that
(2.21) T Hy) =T 1),
Since T'aT,"": B(g,2r) - C is a holomorphic inverse branch of T"* and
since, by (2.10) and the definition of 8, B(g, f) < B(z,r) for some ze E, it
follows from (2.11) and (2.12) that

diam 7"« T,”™ (B(g. ) < 1. _
Therefore, using (2.19), (220) and the definition of y, we get
dist(T'(x), T*(y))) < n. Thus, in view of (2.13),

T'(0), T (y) e B(T" (x),n).

Hence, applying (2.9) and (2.21), we conelude that T'(y) = T*(y). Since (2.21} is
true for [ =n;~1, we therefore deduce by induction that y; = y. Since, b_y
(2.19), (2.20) and (2.7), lim;.., dist(y, x) =0 we obtain y = x. The proof is
finished. w

COROLLARY 2.7. If J is a Jordan curve then there exisis an integer d > 2
such that the map T: J - J is topologically conjugate to the map S* — S,
z—z%, where §* = {zeC: |z = 1}.

for every j=1,2,...,

Proof. Since J is a Jordan curve and T: J — J is the restriction to J of

2 ~ Studia Math, 97.3
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a holomorphic map, the mappmg T: J— J is topologically conjugate to
a continuous orientation preserving mappmg h: S* — S'. By Theorem 2.6, the
map h: S* ~» S* is positively expansive and therefore by a result of [HRJ, i is
a covering map with finite degree at least two. Hence h: §' - S is homotopic
to a map S'— S, z+»z¢ with d > 2, and consequently these two maps are
topologically conjugate in view of (2), p. 99, [CR]. The proof is finishell, m

Therefore if .J is a Jordan curve then for every zeJ the set | i o T7"(x) is
dense in J and we obtain

CoroLLaryY 2.8, If J is a Jordan curve then every [-conformal measure for
T: J—J is positive on nonempty open seis.

§ 3. Hausdorff and conformal measures on J. In this section we assume that
J is a Jordan curve, conditions (a)-{e) are satisfied and under these assumptions
we prove our main results concerning Hausdorll and conformal measures on J,
We want to emphasize that we do not assume condition: (f) to be satisfied.

TueOREM 3.1. If m is a t-conformal measure for T: J—J and H, the
t-dimensional Hausdorff measure on J, then H, is absolutely continuous with
respect to m with bounded density. Consequently H,(J) is finite and t = HD(J).

Pr_o of. Let r > 0 be the radius given by Lemma 2.1 with V = W, where
W < C is the neighbourhood of w guaranteed in (e). By Corollary 2.8, m is
positive on open sets. Hence

(3.1 M =inf {m(B(x,r)): xeJ} > 0.

Let B = J be any Borel set. Put F = B\{T™" (w)}o. Since {T7" (w)} 2 is
at most countable, H,(B) = H,(F). Fix an &¢ > 0. As m is a Borel probability
measure, for every zeF we can find f(z} > 0 such that

(3.2) m{l) B(z,(2)) < e +m(F).

seF

Now fix 6 > 0 and consider z& F. By (e), T"(z)¢ W for infinitely many positive
integers n. Therefore by Corollary 2.4 we can find an integer # = n(z) = 1 for

which T"(z)¢ W and so large that |(T") (z)|>max(2rK0 L2rK (B (=) ) -

where K = k(1/2) > 0 is the constant defined in the Koebe dlslortmn theorem
stated in the introduction. Putting r(z) = 2rK[(T"Y (z)] ™! we thus get

(3.3) r(z) < min (6, B (2)).

By Lemma 2.1 there exists an inverse branch T,™": B(T"(z),2r) - C of T*
determined by the condition 7,”"(T"(2)) = z. Let 4(z) = T,""(B(T" (2),7)). In
view of (1.3), the Koebe distortion theorem and (3.1) we have

(3.4) diam 4 (z) < 2rK (T (2)] ™ = r (2),
35) . m(AE) = m(B(T"@L KTV @™ > M 2K ().
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Now, by the Besicovitch covering theorem (see for example [G]) we can find
a sequence {z;}iz, in F such that |J&,B(z,r(z})> F and the cover
{B (z;,r{z))} 71 is of multiplicity bounded by a universal constant ¢ > 1. In
view of (3.21+3.3) we can estimate

Yo or(z) < Y MTH2rK*Ym(A (zj)) “L2rK3)

j=1 =1 i

( (27 (Zj)))

(2rK?) (e +m(F)).

|||_vj|s

1

8

< eM™H2rK 2 m(

i

So, letting # ~ 0 and then & \ 0 we obtain H,(B) =
The proof is finished. u

Bz;r(z))) < eM ™!

1

H,(F) < cM™12rK¥m(B).
Remark 3.2. Note that in the proof of Theorem 3.1, the assumption for

J to be a Jordan curve was needed only to have formula (3.1).

Our next aim is to prove the existence of a HD {J)-conformal measure for
T: J— J. To this end, improving the techniques worked out in [U3] {comp.
also [M], [U1], [U2]), we shall study some special sets of the form K (V). As
was proved in Corollary 2.5 they are all hyperbolic but we will alsc need more
particular properties. For this note that in view of Corollary 2.7 for every k = 1
there exists an open arc ¥ =¥, < J containing @ and such that

(3.6) { P T7Hw) = {w}udV.

Then ¥ n K (V) = @ and therefore we can find an open neighbourhood H < U
{for instance (C\VP)n U) of K (V) such that H~V = &J. Hence

G.7) T (K()nH = K(V) = T(K (V).

LemmMa 3.3. For every nonempty open set G = K(V) there exists an integer
nz 0 such that GU TG u...uT" HG)u THG) = K (V).

Proof. In view of Corollary 2.7 we can find an integer n =
arc @ = J such that

1 and an open

(3.8) G#0nK() <G,
(3.9) T"|Q is injective, and
(3.10) = J\{w}.

Assume first that Vn(Qu T{Q)v...u T""1(Q)) = @ and let ye K (V). By
(3.9) there exists xeQ such that y = T"(x). As x, T(x),....T" " *(x)¢ V and
yeK(V), we conclude that xeK (V) and we are done in this case.

So, suppose now that Vn{QuT(Qu..uT Q) #@ and let
me{0,...,n—1} be the smallest number such that

(3.11) VT Q) #6.
By (3.8), T"(Q) n (5\V) s @. Therefore, as ¥V and T™(Q) are open arcs, it
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follows from (3.11) that 7™ (Q) n &V # €. Hence, using (3.6), we can find xeQ
such that T™**(x) = . In view of (3.10) this gives

(3.12)

Suppose new also that wé T™(0Q). Then, again as T™ (@) and V are open
arcs, it follows from (3.11) that T (8Q) n(V\{w}) # &. In view of (3.6) and
(3.10) this implies that n—m > k. But this contradicts (3.12) and shows that

(3.13) we T"(00).

Let 8Q = {g,,4,} and 8V = {v,,v,}. According to (3.13) and (3.11), without
loosing generality, we can assaume that w=T"(g,) and v, eT"(Q)
= (@, T™(g,))- The open arc{w, T™(g,)) is uniquely determined by the property
v, €{w, T™(g,))- All the other arcs, written in the form («, b), which will appear
in this proof are oriented according to the triple (w,v,, T"(g,)).

By Corollary 2.7 there exists ce(w,T™(g,)) such that T(c) = T™(q,).
Suppose that ce(m,v,). Since T (¢} = T"""(T™(¢,)) = w, it follows from
(3.6) that n—m+1 > k. Hence n—m 2 k. But this contradicts (3.12) and shows
that ce[wv,, T™(g,)). Consequently T™(v,)e(v,, T™(¢,}] and therefore for every
te{0, 1, ..., n—m} we have

(3.14) [v,, T™(g,))v T([vl,T”‘(qz))) U...u T’([ul, T’"(qz))) =[v,, T"*!(g,)).

As vy, T () = [v,, @) = [vy,v,], there exists the
s€{0,1, ..., n—mj such that v,e{v,, T"**(g,)). Then

(3.15)  [vy, T"(g) v T([vl, T’”(qz))) U Ts ([vl, T’"(qz))) > [vy,0,],
(16 ([0, (@) 0 T([o0 T" (@) U w T2 [0y, T (@) o V = 0.

Consider now ye K (V). Then ye[v,,v,] and in view of (3.15) and (3.16) we
can find pe{0,...,s} and ze[v,,T™(q,)) such that T’"(z)=y. Since
(71, T™(q2)) < {0, T™(g,)) = T™(Q), there exists xeQ such that z = T™(x).
Thus y = T™*?(x) and in view of the definition of m and (3.16), x,
T(x), oo, T™(x), T™TH(x), oo, TP LX) V. As y = T2 (x)e K (V), we con-
clude that x &K (¥). Consequently K(V) < (QnK(V)u...u T QK (V)
which, because of (3.8), completes the proof e

m+k >n.

smallest

A continuous mapping with the property stated in the lemma is called
locally eventually onto. As an immediate consequence of Lemma 3.3 we get

COROLLARY 3.4. The set | Jiuo(T[K (V))""(x) is dense in K (¥) for every
xeK (V). ‘

In vicvq of (3.7), Corollary 2.5 and Corollary 3.4 we can apply the Corollary
on p. 59 in [S1] to obtain

Lemma 3.5. There exists an HD(K (V))-conformal measure for T|K (V):
K(V) = K(V). The HD (K (V))-dimensional Hausdorff measure on K (V) is finite
and equivalent to the HD (K (V))-conformal measure.
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In the sequel we will only use the first part of this lemma. Note that it
also follows from the Bowen-Manning-McCluskey formula P(TiK V),
—HD (K (V) log!T’D = 0 (see [B], [McCM]), where P denotes the topological
pressure, and Theorem 3.12 of {DUJ. One only needs to observe here that the
existence of an open neighbourhood H of K (V} such that Hn V' = & implies
that T|K (V) is an open map.

Exactly as Lemma 3.1 of [U3] we can prove the following.

Lemma 3.6. Let [T () = 1 and let {G,}2 be a decreasing sequence of open
connected neighbourhoods of o such that [ \7=1 G, = {w}. Let m, be t,-conformal
measures for the maps T\K(G,), n = 1, respectively. If the sequence {t.h=1
converges, t =lim,,ot, and the sequence {m,}y-, converges in the weak
topology of measures on J, say to m, then m is a t-conformal measure for
T: J—=J.

We shall finish this section with the following

TrueoreM 3.7. There is an HD (J)-conformal measure for T: J—J. The.
HD ())-dimensional Hausdorff measure of J is finite (possibly 0).

Proof. If |T'(w), > 1 the theorem can be proved exactly as in Bowen’s
paper [B], and for a more detailed discussion see the introduction. So, suppose
that |T"{w)l =1. In view of Lemma 3.5 for every k=1 there exists
a t,-conformal measure m, for TIK(V,), where 7, = HD(K(V})). Passing, if
necessary, to subsequences we may assume that {1, }j>; and {m}%, converge.
Let ¢ =limz, and m = limm,. In view of Lemma 3.6, m is a t-conformal
measure for T: J — J. Since t, < HD (J) for every k > 1, also t < HD (J). As
t = HD(J) by Theorem 3.1, the first part of Theorem 3.7 is proved. The second
part now also follows immediately from Theorem 3.1. The proof is finished. =

Remark 3.8. In a forthcoming paper basically devoted to the fractal
properties of a Julia set without critical points we shall describe another way of
proving the existence of z-conformal measures with ¢ < HD(J). Instead of
looking at the sets of the form K (V) it uses the Manning-McCluskey picture
(see [McCM]) and is based on Theorems 2.5 and 3.12 of [DU].

§ 4. The jump transformation. In this section, like in Section 3, we assume
that J is a Jordan curve and conditions (a)+e) are satisfied. Moreover,
condition (f) is assumed to be fulfilled for at least one connected component
A of C\J. We then define a special liftmg of T: J—J to an analytic
endomorphism F of the circle S* and we associate to F the so-called jump
transformation F*; S* — §'. The next part of the section is devoted to the
study of absolutely continuous F*-invariant measures. So let R: D
= {z: Jz| < 1} — 4 be a conformal homeomorphism {Riemann mapping). Since
dA=J is a Jordan curve, the map R extends homeomorphically to
D ={z: |z < 1}. We leave for this extension as well as for its restriction to the
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circle §* = {z: |z| = 1} the same symbol R. Tt will always be clear from the
context. which set of arguments we comnsider.

It follows from Proposition 4 of [P2] that F= R *e TeR: R™YU) =D
extends holomorphically to F on a neighbourhood U of §*. Moreover, F has
no critical points in §1. We can obviously assume that

(4.1) Uc{zi<lg <3 and UnD<RHU).

Since it follows from the construction of F that F commutes with the map
z— 1/ (the Schwarz reflection principle} and T«(R|U n D)= R« (F|U 1 D),
we conclude that the Jordan curve §*, the connected component D of C\§, and
the holomorphic map F: U — C also satisfy assumptions (a)-(f). In particular,
the results proved in Section 2 also apply to F. The role of w is now played by
the point @ = R™"(w) and by W we denote the neighbourhood of @ guaran-
teed in (e). Given two points x,ye S, [x,y] denotes one of the two closed
intervals which join x and y. It will always be clear from the context which of
them we mean (usually the shorter one). The arcs (x, y), {x, y] and so on are
understood similarly.

We start the study of the holomorphic map F: $1— §! with the remark
that if |[F'(®)| > 1, then as was argued in the introduction, F: §! — S! is an
expanding map. More precisely;

LemMA 4.3, If {F'(®)l > 1, then there is ng > 1 such that |(F™Y (z)| > 1 for
every zeS*.

So, from now on, unless stated otherwise, we will assume that iF'(P) =1.
The neighbourhood W < C of & given by (e) is assumed to be so small that
F|W is injective and all the analytic inverse branches of F are well-defined on
W, We shall prove the following result which in terminology of [T] says that
@ is a regular source.

LemMa 4.2, There exist two points xq,y,€ W N S' such that & separates
them and the functions |F'|: [&,x,]— R, |F'l: [P,vo] — R are strictly in-
creasing.

Proof. Suppose first that |F'|: [¢,x] — R is not strictly monotone for 4ny
x > ¢. Thus F” vanishes at infinitely many points on S, As F is holomorphic
on an open neighbourhood of $* and F(®) = &, F'(#) = 1, it follows that F is
the identity map. But this contradicts condition {e). Since this argument waorks
as well for x <&, we conclude that there are Yo <0< x, such that
|Fl: [®,x,] =R and |F'|: [®,y,] R are strictly monotone. If one of these
functions, say |[F'|: [€,x,] — R, were decreasing, then |F’' (x)| <1 for every
x€(®,x,], which would again contradict (e). The proof is finished. =

In view of Corollary 2.7 there exists a homeomorphism y: §* — §! which
conjugates the map '~ 8%, z2%, d>2, and the map F: §' - §*. For
J=0.1,....,d—1let a;= (e’ B, =T[a; a;.,] where a, = Y (™) = g
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= @, Then for every je{0,1,...,d—1}
4.2) F|B, is injective,
(4.3) F(B)=S*

and the partition % = {B,}Z] is a generator. Since T has no critical points in
S, it follows from this and Lemma 4.1 that

LemMma 4.3. The map F: 8 - §? satisfies conditions (T1)+{T4) of the paper
[T].

Therefore we can apply all the results proved in [T], particglarly those
concerning the jump transformation F* associated to F. Following [T] we
recall that F* is defined on B = S"\{ 2 F "(®) as follows.

If z¢ Byw B, we set n(z) = 0. For ze B;, je {0,d—1}, let n(z) %11 be the
smallest integer such that F*9(z)¢ B, We then put F*(z} = F= (z): )

Consider now an open neighbourhood H= W [ByuB;— ] of @ in §
such that
4.9 F(HnB)c B; for je{0,d—1}.
It follows from this and the definition of the number n(z) that
{4.5) If n(z)=1 then F"¥~1(z)}¢H.
We shall give a short proof of the following. '

LemMa 4.4. There exists mz 1 such that {(F*)"Y| = 2 for every zeB.

Proof. Let g > 1 be the integer claimed in Corollary 2.4 to exist for
V=H,Treplaced by Fand A = max(Z (inf {|F' (z)|: zeS*})™ 1, 2(ini_'{_|(F2}’ (=)l
ze S 1). Putm = g+1. For ze B let x = (F*)*~* (z). By the definition of F*
we have x = (F¥)* " 1(z) = F"(z) withn = m—1 2 ¢. If n(x) = 0 then x¢ H and
in view of Corollary 2.4 and the choice of 1 we have

(4.6) (P (2)] = [((F*Hm~) @) 1F*Y (o) = |(F"Y (@) 1F (x)
= A inf{|F'(y)|: yeS'} = 2.

If nx)=1 then by (4.5), y:F"*"(")_l{z)=F"""_1(x)q_§H and as
F¥(x) = FP®*3(x) again in view of Corollary 2.4, the choice of 1 and

nt+nr(x)—1=nzq we get
(F=™Y (2)] = ((F"* Lo FY ()] = [(F" 927 ()] [P (o) = 2.
This and (4.6) complete the proof. =

Now note that as F is an analytic function without critical poir{ts, the
number sup {{F” @)/ F ()| zeS§'} is finite and therefore the assumptlf)ns of
Theorermn 2 of [T] are fulfilled for F: S*—S§'. It follows from this and
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Lemma 4.4 that the assumptions of Adler’s theorem ([A]) are fulfilled for F*,
And applying this result we obtain the following

LemMa 4.5, There exists exactly one absolutely continuous (with respect to
Lebesgue measure ) F*-invariant probability measure p on S'. Moreover, p is
equivalent to I

Let us alsoc prove

Lemma 4.6, The Radon—-Nikodym derivative ¢ = dujdl of u with respect to
Lebesgue measure | has a representation which is a real-anolytic function on
§M\{®}.

Proof Let

l
P{f)2) = T
xe(}-‘g- 1y [(F*Y (x)]
be the Perron-Frobenius operator of the mapping F with respect to Lebesgue
measure [ An easy computation shows that for every n = 1

f{x)
Z F-.i: nyt "
seteri = 1y Y'Y ()]
It follows from Lemma 4.5 that the measure p is ergodic. Hence Lebesgue
measure [ is also ergodic and therefore any P-absorbing set (for the definition
see [K]. p. 118) is either of measure 0 or 1. Since moreover, also by Lemma 4.5,

¢ is strictly positive and P (¢) = ¢, it follows from Hopf’s theorem (Theorem
3.5 of [K]) that

P: ()= LD, S(x),

@.7) P{f)iz) =

n

-1
(4.8) limnr™ Y Pl)=0¢ lae
n-r o J'=0

Note now that in order to complete the proof we only need to show the
local version of the lemma, that is, that any point z in S'\{®} admits an open
neighbourhood in §* on which ¢ has a real-analytic version. So, fix z eS"\ et
and choose .in §' an open arc ¥ containing ® such that

(4.9) z¢ V.

Let r> 0 be the radius claimed in Lemma 2.1 to exist for this arc with
T repiaced by F. Moreover, r is required to be so small that

4.10) & B(z,3n.

For every xeS' and m= 1 let n(x,m) = n(x)+ L+n(F*(x)+ 1+ n ((F*)? (x))
+14 . +n((F " (x)+1 (we make the convention n(®) = oc). Then
(F*y" (x) = F*=m(x). In view of Lemma 2.1 and {4.9) for every m > 1 and
x€&(F*)""(z)- there exists a unigue holomorphic inverse branch Fontom:
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B(z,2r)— C of F"*"™ determined by the condition F;I%™(z) = x. Consider
now an arbitrary inverse branch F;": B(z, 2r) » C with F;"(z}e§', Since
F7"(S'nB(z,2r)) = S is an arc, it easily follows from (4.10) that
F;*(8* ~ B(z,2r)) is contained in the interior of an element of the partition
# v ... v F " D(4) Therefore, looking at {4.7) and the definition of the jump
transformation F*, we can write

(4.11) P A= 2

xe(F*) = m(z)

for every m>1 and yeS' n B(z,2r). Since FylSm (S nB(z,2r)) = S, we
have

[CF 28y DN F (Fadm™ ()

Y- (FFEGY ()

4,12 Frneamy () — - for ye8' n B(z,2r).
(4.12) HFGa™) O FoiGm ()
Thus
. F—n(’_x,m)r
@3 = 5 LUE0) ey pest A B 2.

FRGm (0

Let M{z)=2(((S'n B ) ' <. Since 13z {{F* ™S nBn)=
[sinp@n PT(1)dl, there exists y,eS'n B(z,r) such that :

(4.14) P (1) (y) < M (2).

In view of (4.1) we have

xz(F*)~mM(y)

P
FiGam @)
and in view of the Koebe distortion theorem stated i the introduction
[(FPE5™Y 00 < KIFSES™Y Ol

for every m = 1, yeB(z,r} and xs(F*)"™(y).
Therefore, using (4.15), (4.11) and (4.14), we get '
Ve (FoESmY (JJ)\

FRSm )

<3K Y
xe(F*) - miz)

(4.15) <3 for every m =1, yeBlz,r) and xe(F*)7"(y)

(4.16) 5

xe(I™*) ~ m(z)
WESES™Y (9l = 3KP™ (1) () < 3KM (2)
for every m = 1 and ye B(z,r).

Hence this series defines on B(z,r) a holomorphic function for which we

keep the mame P™(1). It follows again from (4.16) that

m 1
Im~t ¥ PI1)(y)| <3KM(z) for every m= 1 and yeB(z,1).
i=0 .
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Thus, by Vitali’s theorem, the family {m~*¥7g P (D}in=1 of holomorphic
functions on B(z,?) is normal in the sense of Montel and therefore one can find
a subsequence {m}iL, increasing to infinity such that my '} agt Pi(1)
converges on B(z,7/2) uniformly to an analytic functon, say H: B{z,r/2) - C.
Hence, in view of (4.8), @ = H almost everywhere on §* n B{z,r/2). The proof
is finished. =

Remark 4.7. The study of smoothness of densities of invariant measures
is an important part of the theory of differentiable dynamical systems on
manifolds. The results closest to Lemma 4.6 have been obtained in [H], [Krz]
and [PUZ, IT]. All of them concern, however, the case of finitely many pieces of
monotonieity, although in [[{] the possibility of generalization to the “infinite
case” has been mentioned. The main reason for presenting in this paper
a detailed proof of Lemma 4.6 was to show that the basic ideas worked out in
the “finite case” extend to the “infinite case” indeed.

§ 5. The main result. In this section, extending slightly the idea of [B] and
[S1] (comp. also [P3]), we prove our main result. We now assume that J is
a Jordan curve, conditions (a)-(e) are satisfied and condition (f) is fulfilled for
both connected components 4, and A4, of C\J. Let, like in the previous
sections, R, : {z: |2 <1} — A4, R,z {z: lz] 2 1} - 4, be the extensions of
conformal homeomorphisms defined respectively on the open sets {z: [z] < 1}
and {z: |z| > 1}. Let F;, i = 1,2, denote the corresponding liftings of the map
T. Since R,o(FSY)=R=(R,SY), i=1,2, we get hoF, = F,oh where
h=R;"'o(Ry|S). Since moreover h(a") = a?,j=0, ..., d—1 (the points g,
are defined just before formulas (4.2) and (4.3)) we obtain

(5.1) ho F* = Fioh.
Lemma 5.1, If the homeomorphism h: 8 — 8% is absolutely continuous then
it is real-analytic on S"\{®}.

Proof Let u, = ¢;l, p, =, be the measures given by Lemma 4.5
applied to F¥ and F#* respectively. In view of Lemma 4.6 we can assume that
the functions ¢, and ¢, are real-analytic on S'\{®}. As h is absolutely
continuous, it follows from (5.1) that h,(@,)) is a probability F¥-invariant
measure absolutely continuous with respect to Lebesgue measure L. Therefore,
in view of Lemma 4.5, '
5:2) he(940) = @,l.

Now define the functions M, N: 8! — §' setting

M (2) = exp(2=ip, ([, 2])) = exp (2ni j‘ ¢, dl),

P

(5.3) .
N(z)=exp(2nip,I{[®, z]) = exp (2ni | ¢, dI).
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In view of (5.2) we get
(5.4) M(k(2)) = N (2).

Since the measures ¢l and @,! are equivalent to [, the maps M and N are
homeomorphisms. Therefore (5.4) can be rewritten in the form

(5.5) h=M"1:N.

Thus, as ¢, and ¢, are real-analytic on $'\{®}, the real-analyticity of k on
St{®} follows from (5.3). The proof is finished. m

THEOREM 5.2. If T: U — C satisfies conditions (a)~(e), J is a Jordan curve
and condition (f) is fulfilled for both connected components of C\J then the set J is
either a real-analytic curve or HD(J) > L.

Proof. Suppose that HD(J)= 1. Then, in view of Theorem 3.1, the
1-dimensional Hausdorff measure of J is finite. Thus J is rectifiable and by the
F. Riesz and M. Riesz theorem (see [RR], comp. also [CL]), R;: §* = J,
R7Y: J—58', i=1,2, are absolutely continnous. Therefore the map
h=R;'R,: §' - §! is also absclutely continuous. Hence, in view of Lemma
5.1, h is real-analytic on §'\{®}. Consequently, fixing an arbitrary x e S"\{®},
one can find ¢ > O (depending on x) so small that h|S' N B(x,¢) extends to
a holomorphic map &: B(x,& — C.

Since h: §' - §! is an orientation preserving homeomorphism, /(B (x,¢)
~{z: 12| > 1}) = {z: |z] > 1}. We may assume ¢ to be so small that {z: |z[ < 1}
nB(x,8) = Ry '(U) and {z: |z| > 1} n#(B{(x,¢) = R; ' (U). Consequently we get
two continuous maps R* |[{z: |z| € 1} n B(x,¢) and R,ohi{z: |2 = 1} n B(x,8)
which coincide on the common real-analytic boundary S* n B(x, g) and which
are holomorphic on the sets {z: |z| <1}~ B{x,&) and {z: |z[ > 1} n B{x, &)
respectively. Hence they glue together to a holomorphic map H: B(x,8) —C.
As R;: {z: |z €1} — A4, is injective, there are yeS*nB(x,8 and 5 >0 so
small that B(y,n) < B(x,e) and H|B{y,7) is 2 holomorphic homeomorphism.

Now let z be an arbitrary point in J. By Corollary 2.7 there is
we H(S* n B(y,n) such that T"(w) = z for some integer n > 0. Choose o> 0
so small that B(w,¢) = H(B(y,n) and T"[B(w,0) is injective. Hence
T« H|H ~!(B{w,0)} is a holomorphic homeomorphism onto an open neigh-
bourhood of z, such that T"o H(S* mH‘l(B(w,a))) = J. So every point of
J admits a real-analytic local parametrization. Thus J is a real-analytic curve
and the proof is finished. w ‘

§ 6. Examples. In this section we describe a class of examples for which
the conditions from the introduction are satisfied. These examples have in fact
motivated our whole work.

Let f: € —C be an analytic endomorphism of the Riemann sphere C £f|C
is a rational function). Suppose that f has a rationally indifferent periodic
point . This means that if p=p(w, f) is the minimal period of w then
(f7Y (w) = e*™* with some rational number o. Let K = K {w, f) be the closure



184 M. Urhanski
of the basin of immediate attraction te « and let C denote the set of all critical
points for 1, i.e. those points ¢ for which f*(¢) = 0. We shall prove the following,

Lemma 6.1, Let T= f7 and let A be a connected simply connected component
of IntK such that J = 64 is a Jordan curve. If J U,‘,‘L-. of " {C) = {w]} then, with
a suitable choice of U, conditions (a)-(e) are satisfied and condition (0) is fulfilled
SJor A and T\A.

Proof. Since T(Jy=J and J f,“m_o_f’-‘fmC‘“)’m {w}, we see that con-
ditions (a) and (b) are satisfied. In particular, there exists # > 0 such that
(6.1)
Therefore, as T: C— C is open and J is a Jordan curve, we deduce that

VesoVer3ono T(B(z,&)n A) = B(T(2),0)n A.

_As J is compact and T is open, we easily sce that ¢ can be chosen
independently of z. In particular, there exists ¢ > 0 such that for every zeJ

(6.2) T(BzmnA) > B(T@E.0)n A
and let & <y be so small that for every zeJ
(6.3 T (B(z,0) = B(T (2),0).

In yiev_v of Leaw’s theorem ([L], the local topological picture around a rational-
ly indifferent fixed point) we can find r > 0 such that

(6.4)

T|B(z,y) is injective for every zgJ.

If T*(z)e B(w, 2r) for every n 3 0 then lim T" (2) = .

L R g 4]
If moreover zeJ = 64 then z = w.
Now we shall copy an argument used in the prool of Theorem 2.6. Since
I Useo T'(C) = {w)}, there exists p >0 such that

(6.5) B(N\B(w,1).20)~ (L) T (€)= 2.

n=0

Therefore for every zeJ\B{(w,r) and n> 0, all the holomorphic inverse
branches {T,”": B(z, 20} ~ C}yop 0 of T" are well-defined on B(z, 20). Now
note t}_1at if the Julia set of a rational map contains a rationally indifferent
pe_rlodlc point then it is not equal to the whole sphere €. Therefore, as z&J and
J 18 contained in the Julia set of T, it follows from Theorem 6.2 of [Br] that the
family {T,"™ n 20, ve @, (2)} is normal and all its accumulation points are
constant functions. Consequently for every zeJ\B (w,r)

(6.6) lim max {diam T7"(B(z,0): ve 4, ()} =0,

s nroo .
Since J\B(w,r) is compact, there exists a finite set E < A\B(w,# such that
(6.7) U B(z,0/2) = \B(w,n.

. zek
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Since J\B(w,r) is compact, there exists a finite set E < J\B{w,r) such that

6.7) | B{z,¢/2) = J\B(w,7).
zek

Since E is finite, it follows from (6.6) that there exists m = 1 such that for every
zeE, nzm and ve#, (2

(6.8)

Choose now 0 < 8« 3¢ so small that for every xeJ\B(w,r), every
0 < n < m and every holomorphic inverse branch T,”": B(x,2¢) = C defined
on B(x,2p) we have

(6.9)

diam T,”" (B(z, 0)) < }a.

diam T,7"(B(x, f)) < %o.
From (6.7) it follows that for every xe J\B(w,#) one can find ze E such that
B{x,40) = B(z,¢). Therefore, as f < %p, we conclude from (6.8) and (6.9) that
{6.10) diam T,""{B(y, §)) < 3a
for every n2 0, yeJ\B(w,r) and veH,(y). Take now k =2 so large that
(6.11) 2e/k <f and whk<r

and put § = afk.

Our aim is to prove that conditions (a}-(f) are satisfied with U = B(J, 8).
Condition (f) for the component 4 follows immediately from the formula
T(A)=A. In order to prove it for C\A suppose that for some
xeB(J,a) n(C\A) we have T(x)eA. Then there is zeJ such that xe B(z,)
and, because of (6.3), T(x}eB(T(2),0)n A. Thus, applying (6.2), one finds
yeB(z,m)n A such that T(y)=T(x). Since y % x and y,xeB(z,y), this
contradicts {6.1) and shows that

T{B{J,x)n (C\A)) = C\A.

Consequently, as U == B(J, 8} = B{J,0), condition (f) is fulfilled for both
connected components A and C\A. Moreover,

(6.12) B, )n Tty =J.

In view of (6.4) condition (e) is satisfied with W = B(w,r)nU. So we only
need to prove {¢) and {d}). For this suppose that T"(z)& Ul for every n 2= 0 but
T"(z} does not converge to w. Then, in view of (6.4), there exists a sequence
{n}5L, of integers increasing to infinity such that

(6.13) T"i{z) ¢ B{w,2r)

Let ye O\B{w,2r) be an accumulation point of {T™(z)}j,. Passing, if
necessary, to a subsequence we can assume that

(6.14) T (z)e B(y.5/2)

for every jz= 1.

for every j= 1.
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As, by (6.11), § < min(}p,r), we therefore can find {eJJ\B{w,r) such that
(6.15) y, T {(z)e B, B).

Fix now j 3 I. In view of (6.5) there exists a holomorphic inverse branch
T, B({,20) — C of T defined on B((,2g) and determlned by the condition

(6.16) T, (T (2) = z.
We claim that
{6.17) T, " {{el.

Suppose that (6.17) is not true. Then, as {eJ, there exists 0 < < n;—1
such that T'1o T, ™ () e and T'o T,7"({)¢J. Hence, because of (6 12

(6.18) Tv'”f(C)éB(Jsot)-

On the other hand, since T'o T,”": B{{,2¢)—» C is a holomorphic inverse
branch of T"~%, it follows from (6.10) that diam T'e T,”(B({,f)) < }ea.
Moreover, since any nonnegative iteration of z belongs to UJ, it follows from
(616) and (6.15) that T'(z)eB(J,8)n T T, ™ (B{, B). Consequently
T T (e B(J,6+%x) and, as k = 2, we conclude that T*e T,"™ () e B(J, ).
This contradicts (6.18) and proves (6.17). As {eJ\B(w.7), lctung oo, it
follows from (6.15)(6.17) and (6.6) that z & J. Therefore condition (c) is satisfied.
Condition (d) follows now immediately from (c) and Leau’s local picture
around a rationally indifferent fixed point. The proof is finished. w

Remark 6.2 Note that we have needed the assumption for J to be
a Jordan curve only to have formula (6.2).

The following result follows immediately from Lemma 6.1 and Theorem
52

THEOREM 6.3. If A is .simply connected component of IntK and if
8A N U,,=0 F"(C) = {w} then 84 is either a real-analytic curve or HD (94) > 1.

Adopting now the method of the proof of Lemma 9.1 of [Br] we can deduce
from Theorem 6.3 the following stronger statement.

COROLLARY 6.4. If the assumptions of Theorem 6.3 are satisfied then either
HD(34) > 1 or, up to a biholomorphic change of coordinates, f: C—C is
a finite Blaschke product.

Now, using the work of Douady and Hubbard ([DHT), we shall describe an
efficient condition for the assumptions of Theorem 6.3 to be satisfied. So, let
f: € —>C be a polynomial of degree d = 2 and recall that the filled-in Julia set
K (f) of f is defined to be {zeC: {f”(z)} o is bounded}. Note that K(f) is
compact and its boundary 8K(f) is the wsuval Julia set of f.

Let S, be the set of all periodic sources of f, S, the set of all periodic sinks

and S, the set of all rationally indifferent periodic points. We say that the
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polynomial f satisfies condition (=) if and only if for every critical point ¢ of f at
least one of the following two conditions is satisfied:

(6.19)
(6.20)

the o-limit set of ¢ is contained in S, §,,

T"(c)eS, for some n > 1.

If (%} 1s satisfied then, as states the result of lecture 10 of [DH], the filled-in
Julia set K (f) is connected and locally connected. Consequently, as C\K (f) is
connected, applying Proposition 3, p. 13 of [DH], we conclude that each
connected component of Int K{f) is simply connected and its boundary is
a Jordan curve. Since every connected component of Int K (w, ), where o is
a rationally indifferent periodic point of f, is also a connected component of
IntK (f), we therefore have proved the following result providing some
sufficient conditions for Theorem 6.3 and Corollary 6.4 to be applicable.

Lemma 6.5. If f: €+ C is a polynomial which satisfies condition (*}, if w is
a rationally periodic point of f and if A is a connected component of Int K (0, f)
then the assumptions of Theorem 6.3 are satisfied.

Remark 6.6. In particalar, Theorem 6.3 and Corollary 6.4 apply to each
polynomial of degree 2 which has a rationally indifferent fixed point.
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Harmoenic, Gibbs and Hausdorff measures
on repellers for holomerphic maps, I
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Abstract. We prove the hard part of the Refined Volume Lemma, postponed from Part T,
leading to the following dichotomy:

For 2 simply connected domain € < C with the boundary 2@ preserved by a holomorphic
map defined on its neighbourhood, repelling on the side of Q, either 82 is a real-analytic circle or
interval or else a harmonic measure w on &2 viewed from £ is singular with respect to the
Hausdorff measure Ay, with Makarov's function &,(t)=texp (c\/log(lft)logloglog(l/t)] for
¢ > clw) = /20%/y # 0 (6% = 6% {w} a certain asymptotic variance and  a Lyapunov character-
istic exponent) and « is absolutely continuous for ¢ < c(w).

We alse prove the above for 02 a mixing piecewise repeller including the case of the limit set for
a quasi-Fuchsian group, the boundary of the “snowflake” and more generally Carleson’s fractal
Jordan curves.

Finally, we study complex l-parameter families of mixing repellers. In particular, if 802 is the
boundary of the basin of attraction to w for the iteration of z—z*-+a we prove that o*{w) is
a subharmonic and real-analytic function of «, compute its quadratic part at a = 0 and estimate all
other coefficients of the power series expansion with respect to a.

Contents

Part I

0. Introduction. Statement of main results.

1. Preliminaries: Gibbs measures versus Hausdorff measures on mixing repellers.

2. Harmonic measure versus Hausdorfl measures on the boundary of an RB-domain: The
expanding Jordan case.

3. Geometric coding tree. Harmonic measure versus Hausdorff measures: The expanding
non-Jordan case.

4, Gibbs measures on quasi-repellers. Harmonic measure versus Hausdorff measures: The
general RB-domain case,

Part IT

Introduction
5. Gibbs measures on quasi-repellers, continued.

1985 Mathematics Subject Classification: Primary 58F(8; Secondary 58F12, 58F11, 31A1S,
31A20.

3 — Studia Math, 97.3



