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Uncomplementability of the spaces
of norm continuous functicns
in some spaces of “weakly” continuous functions

by
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Abstract. The paper deals with the complementability problem for the spaces of norm
continuous functions (from compact spaces to Banach spaces) in some spacss of weaker-than-norm
{e.g., weakly or weak*) continuous functions. The results obtained are fairly general and strongly
support the conjecture that complementability can occur enly if the spaces in question coincide.

Yntroduction and main results. Throughout, we let K denote an infinite
compact Hausdorff space, X a Banach space, and t a linear Hausdorff topology |
on X which is weaker than the norm topology. Then C(K;X), the Banach
space of all (norm) continuous functions from K into X, is obviously a closed
linear subspace of C(K;X,t), the Banach space of all r-continuous (norm)
bounded functions from K to X. (Of course, both spaces are endowed with the
sup-norms.) This paper is concerned with the following

CoMIECTURE. C(K;X) is not complemented in C(K; X, 1:) unless C (K; X)
=C(K; X, 1).

As vet, we have been unable to verify this conjecture in general. Our main
result in this direction is the following

TueoreM 1. If X contains a t-convergent sequence which is not norm
convergent, then C(K;X) is not complemented in C(K;X,1).

This, in particular, covers the two most important cases.

COROLLARY 1. If X does not have the Schur property, then C(K;X) is
uncomplemented in C (K; X ,w), the space of all weakly continuous functions from
Kito X.

COROLLARY 2. If X is infinite-dimensional, then C (K ; X*) is uncomplement-
ed in C(K;X*,w*), the space of all weak* continuous functions from K to X*.
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(Of course, to deduce Corollary 2 from Theorem 1 one has to appeal to the
Josefson—Nissenzweig theorem, see [2; p. 219].)

Let us recall at this point that the spaces C(K; X*,w*), C(K; X*, w) and
C(K;X*) are isometrically isomorphic to the spaces of bounded operators,
weakly compact operators, and compact operators from X to C(K), respec-
tively; see [3; Theorem VI17.1% (Some additional information about other
Banach spaces representable in the form C(K;X*,w*) can be found in [1].) It
follows that our Corollary 2 is a particular case of Feder’s result [4; Cor. 1]
that the space K (X, Y) of compact operators is uncemplemented in the space
L(X,Y) of bounded operators whenever dimX = op and Y contains an
isomorphic copy of ¢;. In general, the problem considered in this paper
somewhat resembles the (as yet open) question of whether K (X, Y) is always
uncomplemented in L (X, Y) unless K(X, ¥} = L(X, 1); see [4] again for more
about this and references to earlier works.

Now, back to our Conjecture, suppose C(K; X) # C(K;X, 1) (so that there
is a 7-compact set which is not norm compact) but the assumption made in
Theorem 1 is not satisfied, that is, z- and norm-convergent sequences in X are
the same. (We must confess that, at the time of writing this, we do not know of
any example of such a situation.) In this case, attempting to extend or modify
the method used in the proof of Theorem 1, we encountered a serious difficulty.
Roughly speaking, its nature seems to lie in that we were unable to produce
functions which are t- but not norm-continuous, and yet have some sort of
“good” expansions with norm-continuous terms. (Comp. Problem 2 at the end
of [4].) Nevertheless, though not for the original space K, we are able to prove
that, in this situation, the assertion of Theorem 1 holds for K = N, the
Stone-Cech compactification of N = {1,2,...}).

THEOREM 2. If X contains a t-compact set which is not norm compact, then
C(fN; X} is not complemented in C(BN;X,7).

Finally, we prove a result which tells us that our conjecture cannot be
disproved by means of a “trivial” counterexample.

TreOREM 3. If C(K;X) # C(K; X,7), then C(K;X) is of infinite codimen-
sion in C(K;X,1). In fact, C(K;X,t) has a subspace Z =, such that
ZnCK; X) = {0}

Notation. Our Banach space terminology and notation are more or less
standard, as in [2] for instance. We explain here only some additional notation
that will be used in this paper.

First of all, for X and 7 as above, we denote by »(X), %o (X)), % (X, 7) and
%0 (X, 7) the spaces of all sequences (x,) in X which are, respectively, relatively
norm compact; norm null; norm bounded and relatively T-compact; norm
bounded and z-null. All these spaces are equipped with the sup-norms under
which each of them, except possibly the third one, is a Banach space. As
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concerns the space »{X, 1), it is easily seen that if the topology T is such that
a set in X is relatively t-compact iff it is relatively sequentially t-compact, then
also % (X ,7) is a Banach space. If (x,} is a sequence in X then, for each n, we
denote by %, the sequence (0,...,0,x,,0,..), where x, stands in the nth
position.

If M is an infinite subset of N, then we denote by /., (M) the subspace of I |
consisting of those elements whose supports are contained in M; clearly, I,, (M)
is isometrically isomorphic to I [ (M) =1,.

By an operator between two Banach spaces we always mean a continuous
linear operator.

Some auxiliary results, The first result we need is Proposition 4 in [5]:

ProposrrioN 1, If T: L, — 1, is an operator such that Tlc, = 0, then there
exists an infinite subset M of N for which T|l (M} = Q.

The next result is basic for all that follows.
Prorostrion 2. Every Banach space X satigfies the following condition.

(C) Whenever (x,) is a (bounded) sequence in X for which there exists an
operator T: 1 — %(X) such that Te, = %, for all n, then (x,)ex(X).

Proof Let (x,) and T be as required in (C).

We first show that (C) is satisfied when X =1, For every neN, let P, be
the nth coordinate projection (z) — £, in %(l,), and let R, be the nth coordi-
nate projection in [, Since TR ¢; = P,Te; = %, if j = n, and = 0 otherwise, all
the operators

TR,—P,T: I, X, = {(zex(,): z =0 for k#n} =1,

vanish on ¢,. Now it follows easily from Proposition 1 that there exists an
infinite subset M of N soch that TR, = P,T on [l (M) for all n. Thus if
a=(a)el, (M), then (Ta),, the nth coordinate of Ta, equals a,x, for
n=1,2,... In particular, if a is the characteristic function of M, then (Ta), = x,
for allne M. Since Taex (1), the sequence (x,),ear 15 relatively norm compact.
This argument can be easily modified to show that every subsequence of (x,)
contains a relatively norm compact subsequence. Consequently, (x,)ex(l,).
Now, let X be arbitrary and suppose (x,)¢x(X). Then, by passing to
a subsequence of (x,) (and modifying T suitably), we may assume that
[| %, X,]| > & For all m 5 n and some ¢ > 0. For each pair of distinet indices m,
n choose a norm one functional x%,&X* so that |x}¥,(x,—x,)| > &. Arrange
these x%,'s in a single sequence (z¥) and consider the operator
S0 X ol x-(z(x).
Since
8%, 8%,| 2 (X (Xu—x) >& for msn,

(Sx,) 2 (1,,).
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Consider also the induced operator

St @) >y, =Sy,

and the operator
R=8T:1,~x(,).

Then Re, = (0, ..., 0, Sx,, 0, ...}, with Sx, as the nth entry, n =1, 2, ... Since
(Sx,)éx(l,) and since we have already seen above that [ satisfies (C),
a contradiction arises. m

The following result, an easy consequence of Proposition 2, will be our
main tool in the proofs of Theorems 1 and 2. (However, modifying our
arguments slightly, we could have used Proposition 2 directly as well)

ProrosiTioN 3. {a) Assume that X contains a T-convergent sequence which is
not norm convergent. Then there exists no operator T: x,(X, 1) — x(X) such
that

(%) T3, (X) = idxo(xr

In particular, xo(X) is not complemented in »y(X,7), and »(X) is not
complemented in x(X,7).

(b} Assume thai X contains g t-compact set which is not norm compact. Then
there exists no operator T: x(X, ) — x(X) satisfying (+).

In particular, »{X) is not complemented in »(X,1).

Proof. (a) Suppose such an operator T exists. From the assumption it .

follows that we can find a sequence (x,) in X which is normalized and r-null.
Using it we define an operator §: [, — x,(X,7) by S(a,) = (@,x,). Then
TS: I, —x(X) and (TS)e, = %, for all n. Hence, by Proposition 2, (x,) & %(X).
Since x,~ 0 (7), and the norm topology is stronger than 7, [x,|—0;
a contradiction.

(b) In view of (a) we may additionally assume that every t-convergent
sequence is norm convergent. Then all z-bounded (in particular, t-compact)
sets are norm bounded. Now, from the assumption in (b) it follows that there
exists a sequence (x,) €% (X, 7)\»(X). We may then define an operator S from
I to #(X, 7) by the same formula as above, and conclude the proof as above. =

Remark 1. Suppose the topology t is such that (X,7) admits a nonzero
sequentially continuous linear functicnal. Then w4 (X, 1) is not complemented
in %(X,1).

Indeed, by assumption we can find a norm one element x in X and
a sequentially t-continuous linear functional ¢ on X such, that E(x} = 1. Then
the operator R: I — »x(X,1), (a,) > {(a,x), is an isometric embedding, and the
operator Py (X, 7) =5, (X, 1), (x,) —(£(x,)x), is a projection onto the
subspace R(c,) = ¢,. Hence if Q: »(X,1) -+ %, (X, 1) were a projection, then
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§=PQR: I, —» R{¢c;) would map isomorphically ¢, onto R(c,) so that
(Sleg) ' » S would be a projection from [ onto ¢, which is well known to be
impossible.

Proofs of the main resulis

Proof of Theorem 1. Since K is infinite, we can find a sequence (¢,) of
continuous functions ¢,: K - [0, 1] with pairwise disioint supports and such
that ¢,(1,) =1 for some point {, in K. Then we can define an operator
0: %o(X,7) = C(K; X,7) by the equality

[E ]

Q ((X,,)) (” = 2‘:1 P (t)xn'

(Note that the series is z-uniformly convergent on K, hence its sum is indeed
a norm bounded t-continuous function.) Moreover, consider the operator

R: CK:X)—x(X), [—{f¢t)

Now, if an onto projection P: C{K; X,7) = C(K; X) existed, then the operator
RPQ: %o (X, 1) — »(X) would be the identity when restricted to »,(X), thus
contradicting Proposition 3(a). =

Remark 2. Let X be as in Theorem 1. If S: 1, - %, (X, 7) is the operator
defined in the proof of Proposition 3{(a) and @ is the operator defined above,
then J==0Q8 is an isometric embedding of [, into C(K;X,r) and
JU )N C(K; X) = J(c,), Note also that the above proof actually shows that
C(K;X) is uncomplemented in the subspace C(K;X,1) of C(K;X,1) con-
sisting of functions with norm separable ranges.

Proof of Theorem 2. As in the proof of Proposition 3(b) we may
additionally assume that the topology © and the norm topology have the same
convergent sequences. (For, otherwise, Theorem 1 applies.) Then, if we consider
the norm on X whose closed unit ball equals the t-closure of the original unit
ball, it is easily seen that the new norm and the original norm are equivalent.
We may therefore assume that our original norm has the property that its
closed balls are z-closed. From this it follows that if 4 is a relatively t-compact
set, then

sup {{x]: xed} = sup{llx|: xed"}.

Now it should be clear that there exists an isometric isomorphism between
#(X,1) and C{N; X, 1) which maps x(X) onto C(fN;X). Hence, under the

additional assumptions made in the course of this proof, Theorem 2 is simply
a reformulation of the final staternent in Proposition 3(b). m

Remark 3. If the 1 and norm-~convergent sequences in X coincide, the;_n
the subspace C,(K;X ,7) mentioned in Remark 2 is equal to C(K;X). This
follows immediately from the fact that if Y is a norm separable subspace of X,
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then there exists a metrizable linear topology on Y which is weaker than the
topology induced on ¥ by t (see [6]) so that r-compact subsets of ¥ are norm
compact.

Proof of Theorem 3. Let fe C(K; X, TN\C(K;X) and let
D(f) = {teK: f is not norm continuous at t}.

First consider the case when D(f) has an isolated point ¢, so that we can
find a neighborhood U of t, with U nD(f) = {t,}. Choose a continuous
function ¢: K —[0,1] such that ¢(t;)=1 and ¢ =0 on K\U. Then the
function @f is bounded, r-continvous and D (gf) = {z,}. Thus, replacing /' by
of if necessary, we may assume that D(f) = {t,}. Since f is not norm
continnous, f{K) is not norm compact. Hence there exists a sequence (1,) in
K and an g > 0 such that {| f(t,)—f ()] > & for m % n. We claimn that 1, —¢,. If
not, then there is 2 neighborhood ¥ of ¢, such that ¢, ¢ VV for n in some infinite
subset M of N. But f{{K\F) is norm continuous, hence {f(t,): neM} is
relatively norm compact —a contradiction. Now, as t, - 1,, the sequence (f(t,))
is t-convergent but, by our choice of s, not norm convergent. Hence, by

Remark 2, there exists an isometric embedding J of [, into C(K ; X, ) such:

that J(1.) n C(K;X) = J(c,). Let (M,) be a partition of N into an infinite
sequence of infinite subsets, and consider the subspace L of I, consisting of
those elements which are constant on each of the sets M,, Then L =/, and
J(LY~ C(K;X)={0}. (Thus we have proved even more than asserted.)

Now consider the opposite case, i.e., when the (nonempty) set D (f) has no
isolated points. Then, in particular, D {f) is infinite and we can find a sequence
(G,) of pairwise disjoint nonempty open subsets of K so that each G, contains
a point £, from D(f). For each n choose a continuous function ¢,: K — [0,1]
such that ¢, = 0 on K\G, and ¢,(t,}) = 1, and let x be any norm one element in
X. Let us assume, as we may, that || f|| < 1. Then the formula

S({a) (1) = 21 4y [P2n-1 () (0) + @24 (£)X]

defines an isometric isomorphism from ¢, into C(K; X,7) and it is clear that
Sicg) n C(K;X)={0]. =
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