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Let (S,) be a sequence of real or compléx numbers. The E-transformation
consists in transforming (S,) into a set of sequences (or equivalently, into a two
dimensional array) whose entries are given by

Sn Sn+k
g,(n) g (n+k)
£ gk(") [ (n+k)
g 1 i ’
g:(n g, (n+k)
gi(n) gi(n+k)

where the g;'s are given auxiliary sequences, which can also depend on (S,). This
formalism is quite general since it contains most of the sequence transfor-
mations actually used to accelerate the convergence of the given sequence (S,).
It also includes the problem of interpolation’ by a linear family forming
a Chebyshev system [7], the general interpolation problem [3] and least
squares interpolation and extrapolation [4].

The E{’s can be recursively computed by the so-called E-algorithm, thus
avoiding the computation of the determinants in the above formula. The
E-algorithm is a particular case of an algorithm due to Mihlbach [7] which
generalizes the Neville-Aitken scheme. The E-algorithm is as follows [2], [6]
(the operator A operates on the upper index n):

Eg)") = Sn’ g((;l.)i = gi(n), n= 07 17 cr
E{" = E —g2 1.kAE§¢"11/Ag;:Q e k=1,2,..,
gi"l =g 1,:‘95("11.1: Agi"l 1,.'/~AQL"l 1.k iz k.

[85]
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The aim of this paper is to give some algebraic properties of the
E-transformation. To this purpose we need a more convenient notation explicitly
indicating that E{® depends on the sequence (S,) and on (g, (1)), ..., (g,(1). Thus
we write

E(S; a,(m), ..., gi(n)) = EP.

The denominators appearing in E{” will always be assumed to be different from
Zero.

The first three properties are obvious consequences of properties of
determinants. '

PROPERTY 1. Va; #0 for i=1,...,k

Ek(Sn; a,g,(n, ..., akgk(n)) = Ek(S,.; g,(n), ..., gk(”))-

PROPERTY 2. Va, #0, a,, ..., q,

E (S, a,g,m+ ... +a,9,0), g,(n), ..., g(M) = E(S,; g, (n), ..., g, (n)).

Obviously a similar result holds if g, is replaced by a, g, + ... -+a,g, with
a; # 0 or if some g5 are replaced by linear combinations of the others.
El(S,; 9,(n), ..., g,(n)) is a symmetric function of ¢, ..., g,.

PROPERTY 3. Va,, ..., g,

E(S,+a,g,(m+ ... +a.g,0); g.(n), ..., g,(n) = E(S,; g:(n), ..., g.(n)).

This property must be properly understood if the g; depend on the initial
sequence (S,). In that case, this result is true when (S,) is replaced by
(S,+a,g,(M+ ... +a,g,(n) but the g (n), ..., g,(n) remain unchanged. For
example, if g,(n) = 4S,,,-, then the E-transformation reduces to Shanks
transformation (the e-algorithm). If we replace (S,) by (S,+g,(n0)+ ...
... +g;{n) = S,.;) for i <k then, by Property 3, we get [1], p. 172,

Eu(S"; AS", s ASyhi—1) = Ek(Sn+i; AS”, cenr A8, 4k -1).

We shall now point out some properties in which the quasi-iinearity of the
g/'s play a fundamental role. We now assume that one of the three following
conditions is satisfied:
(i) g;’s are independent of (S,).
(i) Vi, 3a; # 0such that g,(n; a S,+b) = a,g,(n; S,) where a # 0 and b are
constants.
(i) the E-transformation is applied with the same g,’s.

PROPERTY 4. Under one of the conditions (i), (ii) or (iii), Va # 0 and Vb

Ek(c;S,,er; g1(n), .., g(n) = aE(S,: g, (n), ..., g (n)+b.
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PROPERTY 5. Under one of the conditions (i) or (iii), if Vn, d, # 0 then

k(S dy 1§91(") ~agu(n))
Efdy ' 9,(m), ..., gi(m)

Proof. In the formula expressing of E,(S,; d,g,(n), ..., d,g,(n)) as a quo-
tient of two determinants, let us divide the first columns of the numerator and
the denominator by d,, the second ones by d,+, and so on. The claim is then
obtained by multiplying the numerator and the denominator by the deter-
minant appearing in the denominator of E(S,; ¢,(n), ..., g(n)). =

E(S,; d,g,(n), ..., d,g,(m) =

This property is Theorem 2.2 of Hdvie [6]. It shows how to compute
the E(S,; d,9:,(n), ..., d,g,(n)) from the E,(S,d;"';g,(),...,g,n), the
E,(d,*; g,(n), ..., g.(n), and the g7, , obtained from g§’ = g,(n) without
computing new auxiliary g{".

This property can also be written as

E (S, di'g,(n), ..., d, ' g,(n))
E(ds ' dy g, (), ..., dy g (n)

The following properties can be obtained either directly or as conse-
quences of the preceding one.

E(dySu; 91(n), ..., gy () =

PROPERTY 6. Under one of the conditions (i) or (iil), if Vn, S, # 0 then
Epi p(Sus Sy(1), s u(m), S By(m), -, S, By (m))
_ 1
 Enep(Sa Y S ), - S ful), By(n), - By ()
Proof, Obvious from the second form of Property 5 and in view of
E(1;9,n), ..., g(m)=1. =

For m =0, we have

PrROPERTY 7. Under one of the conditions (i) or (iil), if Vn, S, # 0 then
1
Ey(Sz'5 910, ..., gu(m))
ProPERTY 8. Under one of the conditions (1) or (iii), if Vn, d, # 0, then
EfS.d, g (m), dy 1 g,(n), ..., d)! gk(”))
Ek(du_l; g,(n), dn_lgz("), cons dn_l gk(n)) -

A similar property holds if g; is replaced by d, g,(n) or if several gs are
changed accordingly.

Ek(S,,§ Sngl(n), Rr Sngk(n)) =

Ek(Sn; d:lgl(n), gz(i’l), ey qk(n)) =

PROPERTY 9. Under one of the conditions (i) or (iii), if Vn, d, # O then

k(‘Sn’ ql(n)’ ey gk n))
k(dn 1, gl( )s t q.k(n))

E (drlSn’ dngl(n) R n ( )) =
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In the particular case of g,(n) = 45,+:- (Shanks transformation or the
¢-algorithm) let us replace (S,) by (A" S,). By the preceding property,

Ek(’{"‘gn; ln(lSn+l —S"), T '1"+k_l(’lSn+k‘_Sn+k—1))
_ Ek(Sn; ’T-Sn+l—Sna K] Ak—l(lsn+k—Srv+k- 1))
Ek(’l_nq lSn-Fl—Sna SRR )Lk-l(iSn+k—Sn+k—1))
_ E (S ASus1=Sp oy ASnsu—Suti—1)
Ek(ﬂ.—", ;{'Sn-i-l_Sn’ R )‘Su+k—Sn+k—1)

from Property 1. Thus

noy_ A4 Hirs(S,)
R AT

where H,(u,) is the usual Hankel determinant and

U,(A) = 228,42 =248, 41 +S,.
If we set
w,(4) = Sn+2—2A8, 11+ 4° Su
then
b (A= 22 w,(A71)
and we obtain an already known result [1], p. 175,

_ A"Hy(S)
H,(w,(A7Y)

These numbers can recursively obtained by applying the g-algorithm to
the sequence (2"S,) or an algorithm due to Guzinski [5] to (S,).

Let us now state some properties of the E-algorithm. They can be deduced
from the rules of the algorithm and the determinantal definition of E{™.

From Sylvester’s determinantal identity we immediately obtained

ek('ln Su)

ProrerTY 10.

Su Sn+k
g1(n) g,(n+k)
g | gr-1{n+k)
AEP N | e 1
4970 | g ln) gi(n+k)
g,(n) g,(n+k)
gr—-1(n) gr—1(n+k)
1 |
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In the case of the e-algorithm this property gives

+1
1 . _g}c"—l.;t AeS)
43(2"13-1 AQ’:’Q 1.k

PROPERTY 1.

g}c"Z = Ek(gi(")§ g,(n), ..., gk(n))-

Thus the preceding properties can be applied to the g{"'s.
An important property is the following one:

PROPERTY 12.

ED Enth 1 1
( +k +k
Ev) _ g£%+l g%mll g$%+1 gmmll
+m
+k * +k
l(vr'l',)m+k gs::m-lzk gg:,)m+k gg:,mizk

and a similar formula resulting by interchanging m and k.

Proof. Let E{" be the quantities obtained by applying the E-algorithm with
the initial values

EQ =EQ, §§i=g"nsi, mfixed.

Thus £ is given by the quotient of determinants on the right hand side of the
asserted equality. But, in the E-algorithm, each step is obtained from the
preceding ones and thus E{™ is the (k+m)th step with the usual initializations.
Thus EM = £ . =

In view of Property 11, a similar result holds for ¢f,. ..

For m = 0, Property 12 reduces to the usual determinantal formula for
E{™ If k = 1, we recover the rules of the E-algorithm. When m is arbitrary, we
get a rule for computing directly the elements of column m+k from those of
column m without computing intermediate columns. Such a rule can be used to
avoid a division by zero in the algorithm thus providing a singular rule for the
E-algorithm. Skipping over some columns that have almost equal neigh-
bouring elements can also help to avoid numerical instability.

For example if

+1 +2
g™y =gt # gt A,
we have
(n+ 1) 1)
g, = ppen_ kst ABE,
k+1 = Ag(’” .
k—1.k+1

From Property 12 we obtain
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ProperTY 13. If Vn,

Ef,,’,".= S+ams1 d0a+1 +am+2gg:.)m+z+

then Vn,

EM) =S+ @eme1 98 mktme1+ rmt2 O mbtmrzt o

PropPerTY 14. A necessary and sufficient condition in order that Vn,

EP., =S8, is that Vn,

(1]
(2]
(3]
(4]
(5]

(6]
(7]

Egr'll) = S+am+1gg;.)m+1+ +am+kg£:t.,)m+k-

These two properties generalize well-known results when m = 0.
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