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We restrict ourselves here to polynomials which are orthogonal on the real line
relative to a real-valued (often positive) measure. These are the ones best
understood, both theoretically and computationally. It should be observed,
nevertheless, that polynomials orthogonal on curves and domains in the
complex plane, and orthogonal polynomials in several variables, are also of
great theoretical and practical interest. Their computational aspects, however,
are less well understood and, to a large extent, remain to be studied.

We begin, in Section 1, with defining orthogonal polynomials and
introducing notation. In Section 2 we review some classical applications of
orthogonal polynomials, including recent extensions. Section 3 is devoted to
applications to spline approximation, summation of series and special func-
tions. These well illustrate the need for effective methods of generating
nonclassical orthogonal polynomials. Section 4 puts forth the difficulties
inherent in constructive methods based on moments. The question of whether
“modified moments” improve matters is discussed in Section 5, and a suitable
algorithm described in Section 6. Section 7 deals with a more generally
applicable, though less economic, algorithm for computing orthogonal polyno-
mials. Finally, in Section 8, we indicate an effective method of generating
Gaussian quadrature rules.

1. Orthogonal polynomials

Let do be a real-valued measure on the real line R (ie., o(f) 2 bounded
function). The measure is called positive if o(t) is nondecreasing. It is called
a discrete measure [discrete N-point measure] if the support supp(do)
= {teR: o(t+8) # a(t—e) for all &¢ > 0 sufficiently small} is denumerable [con-
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8 W. GAUTSCHI

tains exactly N points]. We assume that supp(do) contains at least N points,
N < o0, and that the moments

(1.1 g = (de)=[t'da(t), r=0,1,..,,2N~1,
R

exist. Then on Py _,, the set of polynomials of degree < N — 1, there is defined
a formal inner product (a true inner product, if do is positive)

(1.2) (P, Dus = [ P(t)g()da(t), p,qePy-,.

A sequence of (monic) polynomials
(1.3) 7, (t) = t"+lower-degree terms, r=0,1,...,N—-1,
is said to be orthogonal with respect to the measure do if

=0, r+#s,

L0, sos DS=0LLLN-L

(14) (TEH ns)da‘ {
We write () = =,(*; do) if we want to emphasize the measure do with respect
to which 7z, is orthogonal.

The sequence of orthogonal polynomials {r (-;do)}N=g exists uniquely if

(1.5) detHn:,éO, Hns{ll.,+_l(d0')}fj_=10, n= 1,2, . N

The conditions (1.5) hold, for example, if do is positive, in which case indeed
detH, > 0.

Classical examples (with N = co) are the Legendre and Jacobi polyno-
mials, with absolutely continuous measures do(t) =dt and do(t) =
(1—t*(14+6)*dt (@ > —1, B > —1), both supported on [—1,1], the Laguerre
polynomials with do(t) =t*e 'dt on [0,00] (> —1), and the Hermite
polynomials with de(f) = e " dt on [— o0,0]. Examples of discrete or-
thogonal polynomials are those of Charlier supported on the nonnegative
integers with a Poisson probability distribution, and those of Chebyshev and
Krawtchouk supported on {0, 1,..., N—1} with a uniform and binomial
distribution, respectively.

2. Classical applications

2.1. Least squares approximation and orthogonal expansion. One of the
oldest applications, in fact a problem that led to the conception of orthogonal
polynomials in the work of Chebyshev [1], is the problem of least squares
approximation: Given a function fon a set S « R, find a polynomial of degree n,

2.1 PO= 3 6nl), e,
r=0
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such that the weighted mean square error

(2.2) 5 Lf ()= p.()]* da (1)

is minimized. Here, do is a positive measure whose support is § — typically,
a discrete set of N(> n+ 1) points or an interval (finite or infinite). If we choose
the polynomials 7, in (2.1) to be those orthogonal in the sense of (1.4), then the
solution is well known to be

(f’ Tcr)dcr
(nr’ Tcr)dﬂ‘,
These are simply the Fourier coefficients of f with respect to the orthogonal

system {=.}. If the support of do is infinite, and we let n go to infinity, the
approximation (2.1), (2.3) becomes an orthogonal expansion,

(2.3) =0,1,2,...

r =

24 10~ ¥ om0,

for which there is a vast body of literature; see, e.g., Szegd [27], Ch. 9, Freud
[3], Ch. 4, Suetin [26] and Rusev [22].

Computationally, (2.3) requires numerical integration — most naturally
Gaussian quadrature (cf. Section 2.2) — unless do is a finite discrete measure.
In either case, rewriting (2.3) in the form

(f, Todio f"z"“)“

(71:03 no)da', (TEI ,y T )da‘

will be advantageous, as it helps preserving accuracy in the presence of
rounding errors (Conte and de Boor [2], pp. 264-265).

Least squares approximation may be combined with interpolation at
given points ¢t ={;, j=1,2,..., m: Find a polynomial p,m€ P+ such that

’ r=132331~":

r

Q3) ¢ =

(2.5) JLf (&)= pam()]? do(z) = min
R
subject to
(2.6) Pam @)=Y, J=1,2,...,m,
Writing
(2.7) Pamn(®) = Pl ;0 +4,,(D) Zo ¢, 7,(1)

where p,,(f;*) is the polynomial of degree m—1 interpolating f at the (/s and
MGES ;"=1(t—§.) the problem (2.5), (2.6) assumes the form

(2.8) j’[f(—t)l;”i)—fi) Z ] 42 (£) da(t) = min.
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This shows that the constrained problem (2.5), (2.6) amounts to an “ordinary”
least squares problem, but for the new function f@O)=0r0—p. (000,01
and with a new measure do(f) = Y2t ); cf. Gautseh1 and Lin [17]. There
arises the interesting computational problem of generating =,(; d6), knowing
n,(-;do). Similarly, if one tries to combine least squares approximation by
rationals with matching of poles #, outside the support of do, one is led to
considering the analogous problem with dé(f) = do(2)/wi(t), where w,(t)

Hk L (t—1)-

2.2, Numerical quadrature. With the measure do (see Section 1) we may
associate for each n < N the Gaussian quadrature formula

(2.9) If (t)da (1) Z 4y S () +R,(f)

having the property that R,(f)=0 for all feP,,-,. If do is positive, the
formula exists uniquely and has maximum degree of exactness. The nodes
7, = 1"(do) are indeed the zeros of «,(+;do) and all weights A, = A" (do) —
called Christoffel numbers — are positive. Their computation is discussed in
Section 8.

An interesting extension of (2.9) is the so-called Gauss-Kronrod quadrature
formula

n nt1

(2.10) f ftyde(ty= ) o, f(z,)+ Z oy 1 (@) +Ry(f),
R v=1

where the nodes t, are the same as in (2.9), but new nodes 1 = 1" (do) and

new weights o, = a‘"’(da) gy = o®*(dg) are introduced and selected S0 as to

give (2.10) maximum degree of exactness that is, R} (f) = 0 for all fe P,,., (at

least). It turns out that the nodes ru must be the zeros of the polynomial

e () =14 (;do) of degree n+1 satisfying the orthogonality condition

(2.11) [T 1@p()da* (1) =0, all peP,

where do*(t) = =,(t;do)do(t) is a measure that changes sign n times on its
support (if do is positive). As a result, the reality of the nodes 1:: 1s no longer
assured, but can be proved [or special classes of measures, for example, the
Gegenbauer measure do(t) = (1—-t?)*"Y2dron [—1,1] for 0 £ A < 2, or the
“Geronimus measure” do(t) = (1 — ()2 def(1 — ut?) for — o0 < u < 1. Not only
are the nodes ‘c:' real in these cases, but they are all contained in [ —1, 1] and
interlace with the nodes 7,. Moreover, all weights o, a: in (2.10) are positive (if
0 <1 <1 in the Gegenbauer case). See [14] for a survey of Gauss—Kronrod
quadrature and related matters. Other interesting quadrature formulae, leading
to still other types of orthogonality, are those of maximum degree of exactness
involving multiple nodes. They were studied first by Turan and subsequently
by Chakalov, Popoviciu, Stancu and others; see, e.g, Gautschi [6], § 2.2.
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2.3. Padé approximation. The theory of Padé approximation is closely tied
up with orthogonal polynomials and Gaussian quadrature if one deals with
formal power series

(2.12) f@) = potu,z+p, 22+ ...

in which the coefficients are moments (cf. (1.1)) of some given (positive) measure
do. The [m,n]-Padé approximant f[m,n](z) — a rational function of type

[m,n] having maximum “contact” with f at z=0 - is then given, for
m=n—1, by
A,
(2.13) fn—=1,n](z) = Z e n=1,2,3,...,
v=1"1""

where A, = A (do), t, = t"" (do) are the weights and nodes of the Gaussian
quadrature formula for do(cf. (2.9)), and for m > n by

o
214)  fln—14j,n]@=po+ ... +py- 277 +2/ ) 1——;_2,
v=1 "+ btyj

n=1,2,3,....,j even,
where A,; = A% (do), 7,; = 1{"(do)) are the weights and nodes of the Gauss
formula for da,(t) = t/da(1). If j is even, as assumed in (2.14), do, is positive and

the orthogonal polynomial n,(-; do)) exists. If j is odd, this may no longer be
true, but if it is, and =,(-; do;) has simple zeros, (2.14) continues to hold.

3. Other applications

The applications described in this section are of more recent origin.

3.1. Moment-preserving spline approximation. For simplicity, we consider
only the problem on an infinite half line: Given a function f on [0, 0],
vanishing sufficiently rapidly at infinity, find a spline function of degree m,

(3.1) Sem = Y a,(r,—ty!, 0<t< o0,

v=1

with knots
(3.2) T, >T7,> ... >1,>0,

such that its first 2n moments agree with those of f,
(3.3 jt Sp.m(l)dt = [t’f j=0,1,...,2n—1.

In (3.1), the plus sign is the cutoff symbol: x, = xif x >0and x, =0if x < 0.
The (real) coefficients a4, and knots 7, are all unknown and to be determined.
We may think of (3.3) as being a finite moment problem where the solution is
required to be a spline of type (3.1), (3.2).
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If feC™* 1[0, 00] and is such that the integrals on the right of (3.3) exist
and lim,,  t>" 4 () = 0 for p =0, 1, ..., m, then the solution (Gautschi [9],
Gautschi and Milovanovi¢ [16]) can be shown to be t,=1"(ds,) and
a,=t, "M (o), where

(_ )m+1

(3.4) do,(t) = o

gt Dinde on [0, 0],
provided the measure (3.4) admits an n-point Gaussian quadrature formula (cf.
(2.9)) with distinct positive nodes. The error, then, is given, for any r > 0, by

(3.5) J @) =sunlt) = Ry(g,; doy), g, () = 7" (=),

where R,(g; do,,) is the remainder term of the Gauss formula when applied to
the function g. Note that da,,, in general, is not a positive measure, but is so, for
every m = 0, if f is completely monotonic on [0, co].

If one only assumes the existence of the moments on the right of (3.3), but
no further smoothness, an analogous solution can be given in terms of Gauss
quadrature relative to a certain moment functional [16], Thm. 2.1. The case of
a finite interval is a bit more involved and is treated in [4].

3.2. Summation of series (Gautschi and Milovanovi¢ [15]). Series such as

(3.6) Y (=) F(k),
k=1

involving the Laplace transform

(3.7 F(s)= e f(t)dt, Res>D0,
0

are apt to converge slowly on account of Watson’s lemma, which, typically,
implies F(k) ~ k™' as k— co. If the “original” function f is known and
smooth, however, then the series (3.6) can be summed very effectively by
Gaussian quadrature with respect to the measure

(3.8) da(t) =;%, on [0,].

Indeed, it suffices to apply this quadrature rule to the right-hand side of

o k1 _ 7 f_
(3.9) k;( 1) F(k)—(f)f(f)e,_l_l-

The measure here is nonclassical and requires methods such as those in Section
6 to generate the respective orthogonal polynomials. Similar methods apply to
the series —Y  F'(k) and —Z:;l (— 1Y~ ! F'(k), where the relevant measures
are do(t) = t(ft/(e‘~1) and do(t) = tdt/(e'+ 1), respectively.



NUMERICAL METHODS FOR ORTHOGONAL POLYNOMIALS 13

To give a numerical example, consider F(s) =s e~ In this case,
fey= JO(Z\/E) (Jo = Bessel function of order zero) and

_l)k 1

(3.10) i e Mk = jJ (2J ) = 1971079 .

Applying the n-point Gauss formula (with do(t) = dt/(e' + 1)) to the integral in
(3.10) yiclds approximations to the sum having relative errors 1.8x 1072,
9.7%x1077, 1.1 x107"'7 for n =2, 4 and 8, respectively.

3.3. Computation of inhomogeneous Airy functions. The inhomogeneous
Airy functions Gi(x) and Hi(x) are solutions of the differential equation

for Gi(x),
(3.11) ———Xxy =
for Hi(x)

| 3=

satisfying certain initial conditions at x = 0. They occur in Raman scattering,
harmonic oscillator models for large quantum numbers, and clsewhere. Known
integral representations (Lee [20]),

Hi(x) = -fexp(—ll3+tx)d
(3.12) .
Gi(x) = -—;jexp(—%tz‘—%tx) cos (3./3 tx+4m)de,
0

suggest the application of Gaussian quadrature with measure
do(t) = exp(—%1?)dt on [0,00] — once again, a nonclassical measure. The
pitfalls inherent in computing orthogonal polynomials for this measure, using
moments, are brought home in [&].

4. The difficulty with moments

To put the discussion of constructive methods into proper perspective, it is
necessary to recall what is wrong with the classical approach — computing
orthogonal polynomials and related quantities from the moments y, (do) (cf.
(1.1)) of the given (positive}) measure do. The quantities desired, indeed, are
inherently sensitive to small perturbations in the moments.

This is best illustrated in the case of Gaussian quadrature rules. The nodes
1, = 1 (do) and weights 4, = 4" (do) of the n-point formula (cf. (2.9)) are well-
defined functions of the first 2n moments y, = u,(do),r =0, 1, ..., 2n—1. [f we
collect them in a veclor [r, A]e R?*", where T and A are the n-vectors with
components t, and 1, and if we denote by ¢ = u(deo) the 2n-vector of moments,
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then the problem of computing the n-point Gauss formula amounts to carrying
out the nonlinear map

4.1) G, R¥™>R™ - B]

The difficulty is that the map G, becomes rapidly ill-conditioned as n increases,
that is, small changes in p give rise to large changes in [1, A], more so the
larger n.

To cite a specific result {(Gautschi [5]), suppose do is supported on [0, 1]
and normalized so that u,(do) = 1. Then the condition number of G, (suitably
defined) satisfies

1 m,(—1) ]
“2) (cond G (w) > 2 121?: 1 l;n:-('fv) :| ’
where 7,() = n,(-;do) and t, = t{"(do), v=1, 2, ..., n. The lower bound in
(4.2), at least for measures in the Szeg6 class ([27], Ch. 12), must be expected to
grow at an exponential rate somewhat like n™?(3 -|—\/§ 2 ag n— 00..Thus,
whatever method is going to be used to implement the map G,, the presence of
rounding errors will soon distort the results beyond recognition.

5. Modified moments

It has been suggested [23] that using modified moments

(5.1) my, = my(do) = | p,(t)do(t), k=0,1,2,..,
R

in place of the ordinary moments (1.1), where {p,} is a suitable system of
polynomials with degp, =k, k=0,1, 2,..., might improve the numerical
condition of the map (4.1). The matter has been analyzed in [7], § 3.3, [12] (see
also [11], § 5.3), and we briefly state the major conclusions.

We assume the polynomials p, defining the modified moments to be
themselves orthogonal polynomials, orthogonal with respect to a (classical)
measure ds that can be chosen at one’s convenience. The results, then, assume
a simpler form if the modified moments are normalized by

(5.2) Mo = di Ly, dZ = [ pR()ds(0),

R

and thus made independent of the particular normalization of the polynomials
p,. If the corresponding map is denoted by G,,

(5.3) G: R*" > R*, - B]
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and if it is meaningful to measure perturbations in terms of absolute errors,
then the sensitivity of the map G, is characterized by the magnitude of its
Fréchet derivative G, (i) = (DG,)(i). Using the Frobenius norm ||‘j|p to
measure the magnitude of linear operators, one then proves that ([7], § 3.3)

(5.4) G (A7 = I ga(t; do)ds(t),
where
(5.5) J(t; do) = V; [hz(z +,12 K2 (t )]

and h,, k, are the elementary Hermite interpolation polynomials of degree
2n—1 defined by

h,(t) = dy,, hyt)=
k,(t,) =0, ky(z,) = Oy,

(Here, 7, = 73”(do) are the Gaussian nodes for the measure do and A, = 1{"(da)
in (5.5) the corresponding Christoffel numbers; d,, denotes the Kronecker
symbol.) Therefore, the magnitude of G,(#), and with it the sensitivity of
the map (5.3), depends crucially on the magnitude of the polynomial
g,(:}=g,(-;do) in (5.5) on the support of ds. The properties

(5.7) g,t,)=1, g(t)=0, v=1,2,..,n,

which easily follow from (5.6), lend credence to the expectation that, g, remains
“sinall”, perhaps even smaller than 1. Unfortunately, this is not always the case.
We give two examples. (More can be found in [11], § 5.5)

(5.6) v,u=12,...,n.

EXAMPLE 1. Chebyshev and Jacobi measures.

In the case of the Chebyshev measure do(f) = (1—t%)~"%dt on [—1,1]
there is strong numerical evidence suggesting that g,(t; do) <1 on [—1,1]
for all n > 2. This would imply lléj,(rﬁ)llF < Ids(t) = Uo(ds) foralln = 2, if

R
supp(ds) = [ —1,1], that is, uniform boundedness of the Fréchet derivative of
G,,. The same is conjectured, for n = 2, in the case of Jacobi measures
do(t) = (1= (1+0fdt, -1 <a <oy, —1<pf<a, whee o,= —.3369..
(see [13]). As the parameter a, or j3, gets larger, however, the maximum of g, on
[—1,1], particularly for n large, grows significantly ([12]), causing potential
ill-conditioning of the map G,.

EXAMPLE 2. A doubly supported measure.
The measure

t (1=t~ Y2 (2= w?) Y2, w<|t|<l,

0<w<l,
t| < w,

1

(5.8) do(t) = {
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comes up in the study of a diatomic linear chain model [29] (see also [10]). All
nodes ™ (do), here, are located in the two support intervals — 1 <t < —w and
w <t <1, except for one (at the origin) if n is odd. As a consequence, one
observes that ¢g,,(; do) remains < 1 on the two intervals, but shoots up to a very
large value on the “hole” between them. For example, if n = 40 and w = 1/3,
the maximum of g, on [ —w, w] is of the order 10>?! Whether or not this gives
rise to a large Fréchet derivative in (5.4) depends on the measure ds. If one
takes ds(t) = (1—¢2)~'?dt on [—1,1], then indeed ||G.|l, ~ 10°. If, on the
other hand, ds is supported on the same intervals as do, then ||G}||, remains
uniformly bounded.

6. A modified moment algorithm

We now show how the first n coefficients «, = «,(do), f, = B,(do), k=0, 1, ...,
n—1, in the recurrence formula

M1 () = =) m (O — By mi— (1), k=0,1,...,n-1,

6..
©1 n_ (=0, =m(t)=1

satisfied by the polynomials {r (-;do)} can be computed from the first 2n
modified moments m,(dg), k =0, 1, ..., 2n—1, in (5.1). Once these coefficients
have been obtained, the Gauss quadrature rule, ie., the quantities 7, = 7{"(do),
A, = A"(do) in (2.9), can be computed as described in Section 8.

We assume that the polynomials p, defining the modified moments (5.1)
satisfy themselves a recurrence relation like (6.1),

pk+1(t) = (t_ak)pk(t)_bkpk—l(t): k = 09 11 ey B 19
p-1®) =0, poty=1,

(6.2)

but with coeflicients a,, b, that are known. (This is the case for p,(-) = =, (; ds)
when ds is one of the classical measures; ordinary moments are also included
with the choice a, = b, =0.)

With “mixed moments” g, defined by

(6.3) o= [m(t;do)p(t)da(t), 12k=0
R

(clearly, o, =0 for | < k), the algorithm in question is initialized by

0'-_1_‘:0, l:1,2,...,2n—2,

Oo = My, I=0,1,...,2n—-1,

(6.44)

m
1

g =dg+t—. fo=my,
Mg
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and continued, for k=1,2,..., n—1, by

Op1 = Ox—10+1—(Ok—1—) O 11— Pr-10k—2,+b, 0k 11-1,

(6.4,) [=k k+1,...,2n—k—1,
Ok k+1 Ok—-1.k Op.k
oy = G+ - , b=
Ok Ok—1,k-1 Ok~1k~1

The first set of relations in (6.4,) generates a new “row” of mixed moments,
using a “five-point computing star”, the first two of which, together with the
first two of the preceding row, then being used to compute the next coelficients
o, B, The complexity of the algorithm is clearly O(n?).

The algorithm (6.4), in the case of ordinary moments (g, = b, = 0) and for
discrete measures do, was already proposed by Chebyshev [1]. It was
rediscovered, in a slightly different form, by Sack and Donovan [23], and in the
form (6.4) by Wheeler [28].

7. A “bootstrap” algorithm

The recursion coefficients o, f, in (6.1) can be represented in terms of the inner
product (-,")s (cf (1.2)) by

{
o, (do) =M, k=0,1,2,...,
(T T dug
(7.1)
B (do) = —TeTihe oy

(T = 15 Tk = 1)ae

where 7,(*) = m,(;do). Since ©, = 1, we can compute o, by (7.1) for k = 0. This
in turn yields n,, by (6.1) for k = 0. Therefore, (7.1) can be used with k = 1 to
obtain a,, B,, whereupon (6.1) for k = 1 yields =,, etc. In this way, alternating
between (7.1) and (6.1), we can build up as many coefficients «,, f, as are
desired. The idea of such an algorithm goes back to Stieltjes [25].

The implementation of this idea is relatively straightforward when do is
a finite discrete measure, since the inner products in (7.1) then involve only
finite summations, no integration. For continuous measures do one can try to
approximate the inner product (-,')s, by a discrete N-point inner product
('v')aay in such a way that limy_q (P, @sen = (P, 9)ss Whenever p, g are
polynomials. (For details of how such a discretization may be accomplished, we
refer to [5], {7], § 2.2.) Applying the algorithm described above in its discrete
version (with measure da, for N sufficiently large) then produces approxima-
tions to the recursion coefficients_g,, B, which converge to the true values as

N - w. BU
W

2 — Banach Cenler . 24
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8. Computation of Gaussian quadrature formulae

The recursion coefficients oy, = a,(do), B, = b‘k(da) in (6.1) define a (in general)
infinite Jacobi matrix

@.1) J(do) = VB w /B

Let J, = Jizxn denote the leading nx#n submatrix of J. Then the Gaussian
nodes t, =t (do) (cf. (2.9)) are the eigenvalues of J and the weights
A, = Al (do) are given by A, = poul,, where py = pg(do) is the first moment of
da and u, , the first component of the normalized eigenvector u, corresponding
to the eigenvalue 1, (see, e.g., [30], Ch. 2, Exercise 9, or [19]). The problem of
computing Gaussian quadrature rules, once the recursion coefficients o, f3, are
known, thus amounts to solving an eigensystem problem for a symmetric
tridiagonal matrix. For this, there are efficient algorithms, for example the QR
algorithm (Golub and Welsch [18], Parlett [21], €Ch. 8) and reliable software
(Smith et al. [24]).
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