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An efficient method is described for the numerical determination of a simple
bifurcation point of a nonlinear operator equation depending on two parame-
ters. Two augmented systems containing the original equation are discussed,
for which the simple bifurcation point is an isolated solution. An efficient
implementation of Newton’s method is presented.

1. Introduction
In this paper we consider a finite dimensional system
(1.1) G(x,t,5)=0, G: R"xR'xR!'->R",

of nonlinear, parameter dependent equations where G is twice continuously
differentiable on an open subset D; of R"x R' x R'. The aim is to compute
simple bifurcation points of G with regard to the parameter ¢.

Let us assume that the point (x*, t*, s¥)e D; satisfies the following
assumptions

(A1) G(x*, 1*, s*) =0,

(A2) dim N(G,(x*, 1%, s%) = 1,

(A3) dim N([G {x*, 1*, s*)1 G, (x*, t*, s9)]) = 2,
(A4) dim N(G'(x*, t*, s%)) = 2,

where N denotes the nullspace of a linear operator. G.(x, ¢, s) and G,(x, ¢, s)
symbolize the partial Fréchet derivatives of G with respect to xe R" and re R!,
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respectively. The Fréchet derivative G'(x, t, s) at (x,t, s) is represented by
G'(x,t, 5) = [A(x, t, 9): Gy(x, t, 5)],
where
(1.2) Alx, t, 8) = [G.(x, t, 5): G,(x, t, 5)].
Both (A2) and (A3) imply that there exist vy e R"*! and v3eR**! such that
(1.3) N(A(x*, t*, s*)) = span {0}, vy},
(@Yol =0, ("3 =1,

where ¢ denotes the i-th coordinate vector (0,...,0,1,0,...,0)TeR"*
Moreover, there is a nontrivial vector y*eR" with

(1.4) N(G,(x*, t*, s%)7) = N(A(x*, t*, .s"")T) = span{y*}.
In addition to (A1)-(A4) let us assume that

(AS) tyq Gaa—(015)2 <0,

where

Guxlx®, 1%, 5%) : Gur(x¥, 1%, 5%)

*

au=(¢/*)T ——“"_“—l—_ i B
Gelx*, 1%, 5%) | Gulx*, 1%, 5%)

fori=1,2and j=1, 2.

Then (x*, t*, s*) is called a simple bifurcation point of (1.1) with regard to ¢,
i.e., for fixed s* there is a neighbourhood of (x*, t*, s¥*) in D, such that the
solution set of (1.1) exactly consists of two smooth curves intersecting at
(x*, t*, s*), see [S].

In the case of one parameter some numerical approaches to the com-
putation of simple bifurcation points have been developed. We refer to [3] and
[6] for a survey. _

For the characterization of a simple bifurcation point by a nonsingular
system of nonlinear equations in r state variables we have to consider, al least,
n+2 conditions. Consequently, from (1.1) we can get such a system by adding
two suitable equations. Then we have a system of n+2 equations in »n state
variables and two control parameters. In this way we do not need an
imperfection parameter like in [3].

The next section presents two characterizations of a simple bifurcation
point by means of an auxiliary system of dimension n+ 2. The general principle
for the construction of adapted methods is described in Section 3. Section
4 contains an efficient implementation of one numerical method.
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2. Characterization of a simple bifurcation point

In order to give numerical characterizations of a simple bifurcation point we
have to consider n+2 conditions. As (Al) can used directly the assumptions
(A2)-(A4) have to be reformulated. For this reason we define the square matrix

(2.1) B(x,t,8,7):i= |- - - =~ — — = —

having the dimension n+1. For it the following lemma holds.

LEMMA 2.1. Let (x*, t*, s*)e D¢ be a simple bifurcation point of (1.1). Then,
for any reR"™*' with

2.2) PPt #0

a neighbourhood U of (x*, t*, s*) exists such that B(x, t, s, r) are nonsingular for
all (x,t,s)eU.

The proof of Lemma 2.1 is easy done using Lemma 7.2 of [3] e.'g. Note
that (A3) and (A4) imply

2.3) W) G,(x*, 1%, 5) # 0.
Considering (1.3), the assumption (A2) implies
(2.4) vF = v¥ B(x*, t*, s*, r) ettt

with v* =rTv} and any re R"*! according to (2.2). Hence, one additional
equatton 1s suggested in the form

(2.5) gx, 6,5, 1):=(""YHYT B(x,t,s,r) te" " = 0.
By (1.3) we obtain g(x*, t*, s*, r) = 0.
Both (A2) and (A3) imply that
(2.6) G,(x*, t*, s¥)e R(G(x*, t*, s%)),
where
R(G,(x*, t*, s*):= {ye R": (4*)"y =0}
denotes the range of G, (x*, 1*, s*). Consequently
(2.7) W*)7 G,(x*, 1*, s*) = 0.
Using (1.4) and (2.3), the vector /* € R" can be expressed by
G, (x*, t*, s¥)T y* = 0,
G (x*, t*, s¥)Ty* = »* # 0.
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Hence we can write

*
(2.8) (‘po ) = w*[B(x*, t*, s*, NT] et
where we have to consider that PréR(G,(x*, t*,s*)7) for any reR"*!
according to (2.2) and for P = [1:0]. I denotes the unit matrix of dimension n,
Then, the condition (2.7) yields the second additionally equation

G,(x,t,s)
(2.9) fix, t,s,):=E"H"B(x,t,s, )" |- - ---| =0,
0

Finally, a characterization of a simple bifurcation point is given by
(2.10) F(z)=0, F:R'""2-5R'*2
defined by

G(x,t,s) X
(2.11) F(z):= | g(x,t,s,n |, z:=|5s],

f(x,t,s,7) t

where reR"*! is chosen fixed according to (2.2).

Another characterization for the numerical determination of a simple
bifurcation point is pointed out in [3]. Following this idea, we have to
substitute only the second additional equation (2.9). By (1.3) there exists an
integer me {1, 2, ..., n} such that

(e v} #0.

Without loss of generality we can assume that

(2.12) (&™) vs =0:
see [3]. Analogous to (2.2), let deR""! be a given vector with
(2.13) d"v; #0.

Further, we form the (n+ 1)-dimensional matrix

Alx, t, s)(I=e™(e™ )+ G(x, t, s)(e™)"
Bix,t,s,d)i= |- —= = - ==~ — - L _

from A(x, t, s) substituting the m-th column by G(x, t, s) and bordering d”.
Lemma 2.1 of [3] shows that B(x, t, s, d) is nonsingular in a neighbourhood of
a simple bifurcation point (x*, t*, s*). Particularly, considering (1.3) we obtain

(2.14) vy = u* B(x*, t*, s*, d) " Let!
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with u* = d"v3 and any de R"*! according to (2,13). According to (2.12), we
can take

(2.15) Tt s, )= (@) Blx, t, 5, 0 =0
instead of (2.9). If we choose
(2.16) ri=e"  di=e't!

the functions f and f are equivalent, see Janovsky [1].

3. A two-stage method

For solving systems like (2.10) we point out an efficient implementation of
Newton’s method starting from (x°, t,, 5o) € R" x R' x R' where (x°, t,, 5,) is
a point near the simple bifurcation point (x*, t*, s*). In the [ollowing we
describe an iterative step of a two-stage method, which is also used for solving
similar systems defining a turning point and a hysteresis point, respectively; see

[4], [2]

For simplicity of notation we define the vector

U= [x]ER'H—l
S

and write the system (2.10) in the form
(3.1) Gu,t)=0, glu,t, =0, f(ut,r=0.

Applying one step of Newton's method to (3.1), [rom (u, )eR"**x R' we
obtain (u*, t*) as a solution of the linear system

(3.22) G, )+ G, (u, (™ —w)+G,(u, )(t* —1) =0,
(3.2b) glu, £, ) +g,(u, t, Yut—w)+g,u,t,Ne*=1)=0,
(3.2¢) Su, t, )+f(u, t, Y ut —u)y+fiu, t, Nt —1) =0.

At first, we compute the general solution of (3.2a). Due to the regularity of
B(x, t, s, r) the underdetermined system (3.2a) has the general solution

(3.3) ut~u=yo+dw+y, (*—t=945, 1y, 5eR,
with
vi=B(x,t, s, 1) tertt,
G,(x,t, 5) G(x,t,s)
wi= —B(x,t,s, 1) [~ - - - , y:=—B(x,t,s, " |~--—-—--
0 0

In the second stage we determine the coefficients y and J. Instead of it, we
compose a suitable system of two linear equations from (3.2b) and (3.2c). For
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this reason we insert (3.3) into (3.2b) and (3.2¢c) and obtain

dyg aya |7 bl:l
34 = ,
34) |:az1 azzJ(é) [bz
where
a.=g,u,t, ro,
alZ:= gn(u‘b t: r)w—{-g,(u, ta r),
as:=f,(u,t, v,
a22:=f;;(u9 t) F)W+j;(u, t’ f),
byi= —g(u, £, N—g,(u, t, Ny = —(@* T v—g,(u, 1, Ny,
b2:= _f(u, f r)_/'-'(u’ L, I‘)y = (en+1)Tw_ u(u’ L, ’)y

The partial derivatives of ¢ and f are given by

[ Guu(u, t)q |
g u, t,1g=—E"*") Blx, 1,5, 1) |- - - - - B(x,t,s,r)"tettt
OT
G.(u, t)qu
==Y Blx, 1,8, 1) |- - - - - ;
L 0
Glm(us f)fl Gr(ui t)
f;a(x’tsr)q= —(e”"’l)TB(x,t,s,r)“L _____ B(x,t,s,r)"l - T - =
0T 0

+(Ee" "Y' B(x, t, s, 1) |-~ - — =

= (@) BLx 5, )T | o

with geR"*! and

g, ,r)= —("*"YW'B(x,t,5,1 " |- - - - - ,

j;(“’ t’ r)=(8"+1)TB(xn [,S,]‘)-l ———————— -
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Analyzing ay, and a,,;, we find a,, = —a,,. Note further that for
(u*, t*) = (x*7, s*)7, 1*) the coefficient a;; is proportional to a;; in (AS).
Consequently, the system (3.4) is nonsingular. Because of 4, 5 0 for (u, t) near
to (u*, t*) we can set

§:=(by+ay, by/a)(a;,+aqa25/a,2), yi=(day,—b,)/a,,.

Thus, the kernel of our two-stage method is formulated in the following
algorithm.

ALGORITHM 3.1

1. Preelimination.

1.1. Compute a LU-decomposition of B(x, f, s, r).

1.2. Use the LU-factors from 1.1 for computing v, w, yeR"*! from

B(x,t, 5, r)v=e""",

2. Determination of the coefficients y and 6.
2.1. Use the LU-factors from 1.1 for computing only the last component of
the vectors hyy, hyy hyeR"™ ! and k|, k,eR*"! from

B(x,t,s,h, = | -----]1,

B(x, t, S, r)h12 = _— - - - = = = — ,

L 0

—Gml(ua t)WW"l'sz(u, t)W+ th(u’ r)
B(x, t, S, ")hzz = | - - - - - - — - - - = = - - — R

L 0

G (u, oy
B(x,t,s,nk;= | -- - ~|,
0

B(x,t,s,nNk,= | - - —-— - — =~ -~ -
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2.2. Set
ay11:= _(enﬂ)rhn, ayz.= —(9"+1)Th12: zx.= (e"H)Thzz,
bl:z —(e"+1)TU+(€"+1)Tk1, bz:= (€"+1)TW—(6"+1)TIC2.
2.3. Set
§:= (b, +ay; bylarz)(a12 +aq, Gaa/a1),
yi=(dayy —b,)a;.
3. Set

+
ut = (:+):= utyp+éw+y, tTi=t+34.

This algorithm requires only one LU-decomposition of the (n+1, n+1)-
-matrix B(x, t, s, r), three “full” and five “half” backsubstitutions. The main
computational work has to be done in step 2.1. If the partial derivatives G,
G, and G, are explicitly used the building up of the corresponding terms in
step 2.1 requires 2rn+ 8 matrix-vector multiplications in general. In the next
section we suggest efficient approximations for the quoted terms reducing the
computational costs drastically.

Remark 3.2. In order to compute the values of a,,, a,;, a;,, by and b, it is
also possible to replace the steps 2.1 and 2.2 by:
2.1'. Use the LU-factors from 1.1 for computing Y eR"*' from

B(x,t,s, ) =e"tl.

2.2'. Compute
[ Grulu, oo
ay = —yT |- - — -~ ,
L 0
Guu(u, )ow+ Gy (u, t)v
dya.= —WT —————————— ,
0
Guu(u, t)WW+ZGu!(u, [)W+G"(u, t)
yq.= I'DT ———————————————— ,
0
Guu(u, oy
b1 — (e"+1)TU+l//T ______ ’
0

byi=0E"*"HYw—oyT | - - - - - -~ _ -
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Substituting the steps 2.1 and 2.2 by 2.1' and 2.2’ the Algorithm 3.1
requires still one LU-decomposition, four “full” backsubstitutions and five dot
products now.

For analyzing the convergence behaviour we imbed Algorithm 3.1 into an
iterative process:

ALGORITHM 3.3.
0. Choose (x°, £y, so)e R" x R' xR', set k:=0.
1. Perform Algorithm 3.1 with x =x*, t =1, s=75,.
2. Set x**li=xt, oy i=1t", ser:=8" and go to L.
The convergence behaviour of the generated sequence {z*} is described by
the following theorem, where
X

zi= s 6RM+2
{

THEOREM 3.4. Let G: D; = R"x R' x R' — R" be twice Lipschitz-continuous
differentiable and let z¥e D, be a simple bifurcation point of (1.1).

Then, there is an € > 0 such that jor all starting points z°e R"*? with
2% —z*|| < & and all vectors re R"*! satisfying (2.2) Algorithm 3.3 is well defined
and the sequence {z} converges Q-quadratically to the simple bifurcation
point z*.

Since Algorithm 3.3 is an implementation of Newton’s method for the
system (2.10), the well-known assertions about Newton’s method imply
Theorem 3.4. Note that z* is an isolated solution of (2.10); ¢f. Lemma 2.2 in [3]
and Theorem 2.2 in [1].

If we use f according to (2.15) instead of f from (2.9) the suggested way for
solving the modified system (2.10) is similar. The corresponding Newton-like
method is essentially outlined in [3] in the special case

G(x, t,5) = H(x, 1) +3q,

where H:= R"xR' - R" and geR" according to qTy* #0.

The description of this procedure is some more expensive. For this reason
we refer to [3]. In the quoted implementation at one step it requires the
solution of nine linear systems where for two weakly different coefficient
matrices B(x, t, s, r) and B(x, t, s, d) the LU-decompositions have to be done.
Theorem 3.4 holds in this case analogously.

4. An efficient implementation

The need of only one LU-decomposition per iteration step is an advantage of
the proposed two-stage method described in Algorithm 3.3 and Algorithm 3.1,
Furthermore the procedure given in [3] requires a weakly expensive data
handling. For these reasons we consider Algorithm 3.1 in the [ollowing.
For reducing the computational work of Algorithm 3.1 we want to

9 Banach Center t. 24
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substitute the right-hand sides of the linear systems in step 2.1 by direction
approximations. Using the notations

x P
z=1s5|= u v = v ER”+2, W= w ER"+2, y=(y)ER"+2,
: e/ \0 1 = \0

4.1) G(z) = G(u, t) = G(x, t, 8),
G.(2) = [G,u, ):G,(u, )] = [G.(x, t, 5):G,(x, t, 8): G,(x, t, 5]
we obtain
Guu(u, oo = G,(z)v,
Guuut, yow+ Gy (u, tho = G (2)vw,
(4.2) G, Yww+2G, (u, Yw+ G (u, t) = G(2)ww,
Gu(u, tyoy = G.(2)py,
G, YWY+ Gulu, £)y = G (2)wy.
These terms can be considered as a limit of a second order divided difference.

Let, without loss of generality, be p, qeR"*? with |p| =g =1 and
approximate

(4.3) G..(2)pq

by

44) Uz, p, g, W) =[Glz+up)—Glz+pup—pg)+ Glz— ug) — G(@)/u?

where peRN\{0} is' the discretization stepsize. From [3] we take over
Lemma 3.1:

LemMa 4.1, Let G: R"*2 — R" be twice Lipschitz-continuous differentiable in
a neighbourhood of z* with a constant L, > 0. Then, there is a £* >0 and
a pu* >0 such that for any zeS(z*, £*) = {zeR"*?: |z—z*|| < £*} and any
pe R with 0 < |u| < u* the direction approximation (4.4) is well defined any
fulfils
(4.5} Mz, p, 4, 1) — G.(2)pg| < L, |ul.
Thus we replace step 2.1 of Algorithm 3.1 by

2.1". Use the LU-factors from 1.1 for computing only the last component of
the vectors hyy, hyy, hyy€R™ ' and ky, k,eR"™" from

Iz, o/llvll, v/llell, p)
B(x’ ta S, }')h“ = ||U||2 —————— - -
0

Iz, ofllell, w/ilwll, u)
B(x,t,s, N =ojlw| | - ----~-~- - -

L)
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Iz, w/llwll, w/lwll, )
B(x,t, 8, Nhpa = w[* | ==~ ~- - - - - - ,

B(x. 1,8, ks = [0 Iyl |-~ - - == - -~ ,

Iz, wilwl, /Iy, g
Blx, 1,8, 0ky = [yl | = = =- -~ -~ |,
0

where pe R'\{0}.

By keeping the costs for solving the linear systems we economize
the 2n+8 matrix-vector multiplications and the explicit use of the second
partial derivatives of G. We only need 8 additional [unction values of G,
namely Gu—uv,t), Gu+upv.t), Gu—pw, t—u), Glutuw—uw, t—yu),
Gu+uw, t+4), Glu+uv—uy, 1), Glu—uy, 1), Glu+puw—py, 1+ ).

Of course, there are other modifications of step 2.1 in order to reduce the
computational costs. One consists in the approximation of the bilinear form
(4.3) by means of additional first partial derivatives. In this way we need the
two matrices G, (u+puv, 1), G (u+pw, t+5) and four vectors G, (u+ e, s),
G,(u+pw, t+ ), G,(u, t+ ), G(u+py, ). Furthermore the building up of the
right-hand sides of step 2.1 requires 6 matrix-vector multiplications, additional-
ly. Therefore the given modification in step 2.1” seems to be very cfficient.

Consequently, we suggest for computing of a simple bifurcation point the
following algorithm.

ALGORITHM 4.2.

0. Choose (x°, ty, s))e R" xR x R, i > 0eR!', set k:=0.

1. Choose u, according to 0 < |u,| < [

2. Perform Algorithm 3.1 with the modified step 2.1 using

xi=xb =1, si=w, 0 pi= .

3 Set xFtli=xt =17, s, :=s" and go to 1.
k+1 E+ 1 g

THEOREM 4.3. Let G: D, = R"xR' x R' > R" be twice Lipschitz-continuous
differentiable and ler z* € D be u simple hifurcation point of (1.1). Moreover, let
reR" 1 be such that (2.2) holds. Then, there exist ¢* > 0 and p* >0 such thar
for all starting values z°eS(z*, ¢*) and all j1e(0, p*] Algorithm 4.2 is well
defined and the sequence {z*} satisfies

(4.6) 124 —2*|| < (2" =25 + 1) fi2* — 2|
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with some ¢ > 0. If, additionally,

(4.7) lim y, =0

k=
the sequence {z"} converges Q-superlinearly to the simple bifurcation poini z*.
Finally, if {w,} is chosen according to

Il < =[1G@E)Il, = >0,
then {z*} converges at least Q-quadratically.
Theorem 4.3 can be proved like Theorem 5.3 m [3].

Remark 4.4.

() Note that {7} generated by Algorithm 4.2 converges at least
0-quadratically because all components of z* are problem variables. If we have
to use an imperfection parameter like in [3] under similar assumptions the
corresponding subsequence {(f:)} is convergent with R-order > 2.

(i) If we use a stepsize bound

lwd < elz=2""1, %> 0,

the sequence {z*} converges Q-superlinearly with R-order (1+\/§)/2.
(iii) It is also possible to work with variable bordering directions r = rk
such that

)" 2 ¢, e>0.

Theorem 4.3 holds in this case, too. One implementation consists in the
choice of

=k = Bxt,t,, s, T e
Another version is r*:= ¢/ where j is deflined by

&7 % = max {|()"v": i=1,2, ..., n+1}.
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