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Abstract. Let G be an open set in R". Furthermore, let k: R"— R be a positive continuous
weight_ function such that c(l +]&%)™? < k(&) < C(1 +(£)%)™? with some ¢ >0, C, m and MeR.
The space H,(G) denotes (essentially) the completion of C§(G) with respect to the norm

lell, = (m)~" | (Fo) ) KEI?)2,
R"

where F is the Fourier transform. By H,(G) one denotes the subspace of D'(G) such that u lies in
H,(G) if there exists f,€ H,(R") with u = f|s. The spaces H,(G) and H,(G) are equipped with
a Hilbert space structure.

The paper considers the maximal extension L%, i,: H, (G)—H,,(G) of a linear operator
L: C§(G)—Cg(G). Criteria for the existence of a continuous one-sided inverse and ol a compact
one-sided inverse of L, ;, are obtained. Furthermore, conditions for the existence of a Fredholm
realization L3, ., (with ind L}, ,, = 0) are established. The presented theory is applicd to smooth
partial differential operators L(x, D) to obtain conditions for the existence of one-sided inverses, for
the existence of Fredholm realizations and for the local regularity of solutions of the maximal
realizations of L(x, D).

1. Introduction. Let G be an open set in R" and k: R"— R be a positive
continuous function so that

(1.1) c(1+E%"* < k(§) < C’(1 +[EHM? for LeR

with some ¢ >0, C >0, m and MeR. Denote by H,(G) the completion of
C§(G) (imbedded into the space §' of all tempered distributions in the natural
way) with respect to the norm

ol = (2m)~" [ [(Fo) () k(E)I7)"2.
R"

Here F: S— S denotes the Fourier transform. Furthermore, denote by H,(G)
the subspace of the distribution space D’(G) such that for each ue H,(G) one
finds an element f,eH,(R") with the property u = f.|;. The spaces can be
equipped with the Hilbert space structure (cf. 2.1 and 2.2). K denotes the set of
functions satisfying (1.1).
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Suppose that L is a linear operator C§ (G)— Cg’(G) and suppose that the
minimal closed extension Lj,y ,uyv: Hipy(G)—Hy,y(G) exists (where
k¥ eK; kY (&) = k(—¢)). Furthermore, assume that

(1.2) ILollixy Z cllellipy  for all e CF(G).

Then one finds a continuous linear operator Q: H,,(G)— H,,(G) such that (cf.
Theorem 3.2)

(1.3) L x,0Q = I,

where L} ,,: H, (G)—H, (G) is the maximal extension of L and where I,,
denotes the identity operator H,,(G)— H,,(G).

Assuming that k™ > 1, that the imbedding H -,y (G)—Huy (G) is
compact, that Ly-~u4,» .14y exists and that

(1.4) ILolliny 2 cllolu-py  for ¢eCT(G),
we show that one finds a compact operator K: H, (G)— H, (G) such that
(1.5) Lkl kzOK = Ikz'

This result implies a sufficient condition for the existence of the Fredholm
realization L}, ,, of L}, ,, with

(1.6) ind Ly, ,, =0

(cf. Theorems 3.5 and 4.1). Furthermore, one gets a sufficient condition for the
inclusion

(1.7) D(L%, k) = Hiw: (G),

when the solutions of the homogeneous equation L}, ,,u+Cu=0 lie in
H25%: (G) (cf. Corollary 3.7 and Theorem 4.3).
Let G be a bounded open set and let k™ € K’ (for the definition of K’ cf. 2.1)
so that k™ (£)— oo with |£] - co. Furthermore, let L(x, D) be a smooth linear
partial differential operator such that

(1.8) Re(L(x, D)o, 9), = C, |olli~v —C, ol
and
(1.9) [L(x, D)@l ik~ < Cllollk~  for all ¢eCg(G).

Then the presented theory below implies that one can find a Fredholm
realization L* of L*:= L}, such that

(1.10) indl* =0 and D(L')c< H,~(G).
In the case when N(L* +C,I) = H;*(G) one has (cf. Corollary 4.4)
(1.11) D(L*) = HI(G).
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For sufficient algebraic criteria of (1.8) cf. [9], p. 55; [8]); [1], p. 19; [5]; [7] and
[11].

Suppose that L(D) is a partial differential operator with constant coef-
ficients, and that G is bounded. Then we show that there exists a conti-
nuous operator Q: H,(G)— H,.-(G) such that (here we denote L"(%)
=(Y L2 and keK')

Ja| €r

(1.12) Li~x0Q =1,

(cf. [4], p. 31). In the case when L™ ({)— oo with |£| - o0 one obtains that there
exists a compact operator K: H,(G)— H,(G) such that

(1.13) LY oK =1,
(cf. Theorem 4.7). In this case also the inclusion
(1.14) D(L{y) < Hi v~ (G)
is verified, where L~ (&) = (IIZ |E2(&)2)2.

a]>0

2. Notation and preliminaries

2.1. Let G be an open set in R". For the definition and basic properties of
the spaces CJ(G), C*(G), D'(G), E'(G), S and S’ we refer to monograph [3], pp.
1-53. The Fourier transform F: S— S is defined by

(2.1) (Fo)(&) = | o(x)e” =D dx.

R"
The Fourier transform §'— S’ (which we also denote by F) is defined by
(2.2) (Fu)(p) = u(Fp) forpesS.

Denote by K the class of positive continuous weight functions k: R"— R
such that for each k € K one finds constants ¢ > 0, C > 0, m, M € R with which
the estimate

(2.3) ck, (&) < k(§) < Cky (&) for all £eR”

holds, where we write k(&) = (1+£|?)?; seR. By K’ we denote the subclass of
K such that besides of (2.3) each ke K’ satisfies the estimate

(2.4) k(E+n) < Cky (Ek(n) for all & neR".
Let k be in K. Define a scalar product in C§(G) by
2.5) (¢, Y = 2m)™" [ (Fo) (&) (FY) (§) k*(£)dE.

Furthermore, let H; (G) be the completion of Cg (G) with respect to the norm
lol: = ((¢, ¢),)"* Let u be in H; (G) and let {¢,} be a representative of . In
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virtue of the Banach-Steinhaus Theorem, the Parseval identity and the Holder
inequality one sees that the quantity Au defined by

(2:6) (Au) (@) = lim [ @, (x) p(x) =: lim @ (¢) for peS
n+o G n— o
lies in §’. One sees that A is an injective linear mapping H; (G)— S'. We denote
H,(G) = A(H; (G)).

The linear space H,(G) is equipped with the norm |v|,:= A" ()],
:= lim |¢,|l,, where {¢,}€i™'(v). Then H,(G) is a Hilbert space with the

n—+ o .

scalar product

(2.7) (u, v),:= lim (@,, ¥,),, Wwhere {@,}'cu and {y,}€ev.

n— xo

In the case when G = R" we write H,(R") = H,. One sees that a tempered
distribution ue S’ lies in H, if and only if Fue I!{(G) and (Fu)keL,(R". In
addition, one has

(2.8) (4, v), = 2m)~" Rf (Fu) Q) (F) ()k* (&)d¢.

Due to the Holder inequality we get
29) (@)l < llully lollipv  for ue Hy(G) and geS,

where k¥ eK; kY (&) = k(=¢).
The Riesz Theorem implies the following characterization of the dual
space Hf of H,
THEOREM 2.1. Let T be in Hf. Then there exists a unique element ue H ;v
such that
To = u(p) for all peS.

Conversely, suppose that u belongs to H,,v. Then the linear form T. S—C
defined by

To = u(y)
has a unique continuous extension from H,—C. In addition one has
(2.10) ITl = flul . ©

Remark 2.2. In virtue of Theorem 2.1 we can define a linear isometric
isomorphism j,,v : Hyv — H} by
Jiwe W)=T.

. 2.2. Let A be a set in R". We denote by H;(A4) the subspace of H, such that
for each ue H;(A) one has

suppu < A,
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where suppu is the support of ue§'. In the case when A is closed in R” the
space H;(A) is closed in H,.

Let H; (G) be the factor space H,/H;(R"\G). Since H;(R™\G) is closed,
H; (G) becomes a Banach space with the norm

UM = inf fjuf.

uelU
The linear mapping J: H,f (G)— D'(G) defined by
J(U)=ulz;, where ueU,
is an injection. Here u|; denotes the restriction of 4 on G. We define
H,(G)=J(H(G) and |IVIil, =l Ml
Then H,(G) is a Banach space. H,(G) can also be equipped with the Hilbert
space structure by defining the scalar product by
(U, V)= (u, vt),
where U = [u] = [ut ®z] and V= [v* @ y]. Here the orthogonal sum @ refers
to the decomposition H, = H;(R"\G)* ® H;(R"\G).
Furthermore, one sees that a distribution Ve D’(G) lies in H,(G) if and only
if one finds an element f, from H, so that
(2.11) V(p) =fy (@) for all peCF(G).
Let C{,(G) be the subspace of C*(G) such that for each y € C,(G) one
finds an element f, from Cg:= CgF(R") with which
(2.12) ¥ =fyls-

Then C{,(G) is dense in H,(G), since C§ is dense in H,.
Let V be in H,(G) and let ueJ™'(V). Then for all we Hy(R"\G) and
¢ e CF(G) one has by (2.9)

V(Q)l = lu(@)l = l(u+w) (o) < lut+wl, ol
and then
(2.13) Vo) <Vl el for all VeH,(G), o€ CF(G).

The Hahn-Banach Theorem and (2.13) implies the following charac-
terization for the dual H¥,v(G) of Hyyv(G)

THEOREM 2.3. Let T be in H¥;v (G). Then there exists a unique element
UeH,(G) such that
Tp =U(p) for all ¢eC§(G).
Conversely, suppose that U belongs to H,(G). Then the linear form
T: C&(G)— C defined by
Te = Uly)
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has a unique continuous extension from H,,  (G)—C. In addition, one has
(2.14) ITI=1IUlll- o

Remark 2.4. Due to Theorem 2.3 there exists an isometrical isomorphism
J: H(G)— Ht)v (G) such that

(2.15) W, U)(@) =U(p) for all peCgF(G).
Furthermore, we obtain for the dual H¥(G) of H,(G)

THEOREM 2.5. Let T be in H¥(G). Then there exists a unique element
veH,jv (G) such that

T(olg) = v(g) for all ¢ =C3.

Conversely, suppose that v belongs to H,,v (G). Then the linear form
T C{%)(G)—>C defined by

Ty = v(fy)
has a unique continuous extension from H,(G)— C. In addition, one has
(2.16) 1T = lollyp -

Proof. (A) Let Tbe in H¥(G). Since J,: H,(G)— HY;v (G) is an isometrical
isomorphism, one sees that the dual operator Jf: H}} (G)—HF(G) is an
isometrical isomorphism. Let x,,v:Hw (G)—HY}v (G) be the canonical
isomorphism. Then the element v:= x; (J¥) ™' (T) lies in H, v (G). Choose
a sequence {¢,} so that [¢,—v|;v =0 with n—oco. Then one sees

v(p) = lim ¢,(¢) = lim (¢lg)(¢,)

= lim (J,(¢l¢)) (@) = lim (%10 (9,)(Ji(@lg)
= lim (J¥oxv ) (@) (0le) = (JE e 1))(0lg)
= T(plg)

and

(2.18) "Ullllk" = | T|.

(B) Suppose that v belongs to H,;,v(G). Choose a sequence {¢@,} so that
lo,—vllipv =0, with n—oo. Then one has for all we Hy(R™\G)

219) ()l = lim @,(fy) = im (f, +w)(@,) < I £, + Wl o] 15

n—+aw n—+o

and then

(2.20) ITP1 < Il ol e -
This completes the proof. o
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Remark 2.6. Due to Theorem 2.5 there exists an isometrical isomorphism
Jiwe @ Hype (G)—> HE(G) such that

(2.21) (i 0)(olg) =v(p) for all peCq.
We obtain the following

COROLLARY 2.7. Let k, and k, be in K so that k, = k,. Then the imbed-
ding 4,: H, (G)—H,,(G) is compact if and only if the imbedding
Ayt Hypy(G)—> Hypy (G) is compact.

Proof. Suppose that 4, is compact. Then the dual operator if: H¥,(G)
— Hf (G) is also compact. Furthermore, one has for all peC§

(2.22) (A2 0)(@) = v(®) = (i V)(0le) = Gimy v)(4,(0lg))
= (A?(jllk\z/ U))(‘P|G) = ((jl—/lh’ oA} Ojnik‘z’)v)(q’)

and then 4, =jiiyoifojiuy is compact. Similarly one sees that
Ay = J,'oA3oJ,, is compact when 4, is compact. o

Remark 2.8. (A) One also sees that H, (G) = H, (G) if and only if
Hyuy(G) © Hypy (G).

(B) Suppose that k, and k, lie in the Hormander class K of weight
functions (cf. [4], p. 4). Furthermore, assume that G is bounded. Since
H,(G) = H}(G) one sees that the imbedding 4,: H,,y(G)— Hy,y (G) is com-
pact if and only if

(2.23) ky(E)/ky(8) =0 with |- o0
(cf. [4], pp. 8-9).

23. Let {K,} be a sequence of compact subsets of G such that int K,
c K,;, and that G = O K, Choose y,eC5(G) so that y,(x) =1, xeK,

1=1
Define a semi-norm q;,: C5(G)—R by

qiu(@) = sup [¢¥;0l,,

1<

where ke K'. Let d,: Cg(G)xCg(G)— R be the metric

4, o) = 3 (1/2) (gl — o)1 + a1a ¥~ 9).
=1

Denote by H°*(G) the completion of CZ(G) with respect to the metric d,. Then
the quantity Au defined by

() (9) = lim ¢, (@)
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(where {¢,} € u) belongs to D'(G) (due to the Banach-Steinhaus Theorem). We
write Hi*°(G) = A(H>°(G)). Then H;>°(G) is a complete space with the metric

dy(u, v) = lim d,(p,, ¥,), when {@,} €1 (1) and {y,} i (v).

n—x

Clearly one has C*(G) = H°°(G). Furthermore, one obtains

THEOREM 2.9. A distribution ue D'(G) lies in H*°(G) if and only if y,ueH,
for each le N. The metric d, is given by

224 d(u, v) = P :
(224) (0= 2\ )T+ sup 19,00l

osjs!

Remark 2.10. (A) The topology in Hi**(G) is equivalent with tﬁe topology
defined by the semi-norms u— ||y, ull,; [eN.

(B) Since by (2.4) one has
(225) [yl < C(@m) ™" § IFY) (kpr (O1E) 0]l =: C 1l 1 e 101

for yeCP(G) and veH,
one sees that the metric d, does not depend on the sequence {K,}.

(C) In view of (2.25) one sees that a distribution ue D'(G) lies in H**(G) if
and only if Yyue H, for each Y e C§(G).

(D) H°(G) is a Fréchet space with the quasi-norm g, (u) = d, (4, 0).

21

0

o (1) sup |y (u—v)l,

24. Let k, and k, be in K. In the sequel L denotes a linear operator from
C§(G)— Cg(G). We say that L is (k,, k,)-closable, when the dense operator
Ly, x,: H, (G)— H,,(G) defined by

(2.26) D(Ly,x;) = C5(6),  Liu,9=Lo

is closable from H, (G) to H,,(G), in other words, L satisfies the following
condition: Let {¢,} < CF(G) be a sequence so that with feH, (G),
@y, + ILe,—f ll,,—0 when n— co. Then f= 0. The smallest closed exten-
sion of L, ,, (cf. [12], p. 78) is denoted by L, ,,.

Remark 2.11. (A) Suppose that L(x, D) = ) a,(x)D° is a linear partial
lej<r
.differential operator with C®(R") coefficients. Then L(x, D) maps C§ (G) into
C&(G), the formal transpose L(x, D): C&(G)— Cg(G) exists and L(x, D)
(and L(x, D)) is closable from H, (G) to H, (G) (is closable from H, (G) to
H,,(G), resp.).

(B) Suppose that L(x, D) is a linear partial differential operator with
C*®(G)-coefficients and that G’ is an open set of G such that G’ is compact. Then
L: H, (G)—H,,(G) is closable (and L: H, (G')— H,,(G') is closable).
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(C) Suppose that k; = k, = 1 and that L(x, D) is a properly supported
pseudo-differential operator of the Beals and Fefferman type (cf. (2], p. 176).
Then LY, ,, and L, exists.

(D) Let L(x, D) be a properly supported pseudo-differential operator of
the Beals and Fefferman type such that with some me N and C > 0 one has

IL(x, D)pllx-m < Cllolly,
Then L%, ,, exists.

We define still a linear operator L, ;,: H, (G)—H,,(G) with the require-
ment

D(L%, s,) = {ue H, (G)| there exists fe H,,(G)
(2.27) such that u(L¢) =f(¢) for all peCF(G)},

kl kzu f

In virtue of (2.13) one sees that Lf ,, is a closed operator.
Suppose that L is (l/k l/kl )'Closable Let L l/kz 1Y - Hr/h‘l’ (G)“’Hr/k‘z’ (G)
be the dual operator of L: H,,y(G)— H;;y(G). Then one has

THEOREM 2.12. The operators Li, ,, and L,y uy obey the relation

(2.28) Lt ox, = i o 1 u0)0 .,
Proof. Let u be in D(L}, ;,) and let L%, ,,u =f Then one has by (2.15)
(2.29) (Ji, wW{Lo) = u(Lo) =f(9) = (J, No) '

for a].l @eD(Lyyy ._1/k‘{) = Cg(G). Hence Jy, ue D(IMpy,1x¢) and L*(Jy,u) = szfa
that is, ue D(Ji;' oI uy.1x¢)0Y,) and (Ji; oI uy,1uy)0d,,)u =
The converse is similarly shown. o

Remark 2.13. Since H,(G), keK, is a Hilbert space, one has the identity
(2.30) Ty okt = %2 "o(Dhy 1wy )0k,

where %,: H,,y(G)— Ht%y(G) and »,: H,,y(G)— H%%y (G) are the canonical -
isomorphisms and where I %y .y : HY%y (G)— H%y (G) is the dual operator of
LYy apy (cf. [6], p. 168).

3. One-sided inverses and realizations

3.1. In this chapter we everywhere suppose that the operator L maps
Cy(G) into C§(G). At first we establish

THEOREM 3.1. Suppose that Lis (1/k5 , 1/ky)-closable and that there exists
a constant ¢ > 0 such that

(3.1) ILoNiny = clloling  Sor all 9eCy(G).
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Then the relation
(3.2) R(L%, x;) = H,,(G)
holds.
Proof. In virtue of (3.1) the range R(L7;y.14y) is closed and
(3.3) N(Ling auy) = {0}
Hence one has
(34) R(LyAy .1ay) = HIpy (G)
(cf. [6], p. 234). One sees easily that LAy jxy = I¥ay.axy and then by (3.4)
(3.5) R\ ¢ 1ay) = Hiwy (G).
Thus assertion (3.2) follows from relation (2.28). o
Furthermore, we obtain

THEOREM 3.2. Suppose that L is (1/k5, 1/k{)-closable and that inequality
(3.1) holds. Then there exists a continuous operator Q: H, (G)— H, (G) such that

(3.6) L 409 = I,
where I,,: H, (G} —H,,(G) is the identity operator.

Proof. Since L, ;, is a closed operator, the kernel N(L%, ,,) is closed in
H, (G). Let N be the orthogonal complement of N(L%, 4,). Then the linear
operator %, 4,: N nD(Lg;%,)—- H,,(G) such that

_q#
fkl.kz = "l’klenD(Ll:,.kz)

is closed. Furthermore the kernel N(%,,.,) = {0} and by (3.2) one has
R(ZLy, k) =D(Z'v,) = H,(G). Let Q be the operator #,/,,. Then Q is
closed, since %, , is closed. In addition, D(Q) = H,,(G). Hence Q is bounded
(in view of the Closed Graph Theorem). One observes easily that Q obeys
relation (3.6), which finishes the proof. p

COROLLARY 3.3. Suppose that k™ > 1 and that the imbedding H ;- 4, (G)
— H 1,y (G) is compact. Furthermore, assume that L is (k™ /k,)", 1/k})-closable
and that there exists a constant ¢ > 0 such that

(3.7) iLolay = clolu-mr  Jor all 9eC3(G).
Then there exists a compact operator K: H,,(G)— H, (G) so that

(3.8) k0K =1,,.
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Proof. In virtue of Theorem 3.2 there exists a continuous operator
Q: H,,4x~(G)— H, (G) such that

(3.9) Likan~0Q = Iiyp-.

Since the imbedding H - x,)v(G) — H, 3 (G) is compact, Corollary 2.7 implies
that the imbedding A, ,,x~: H,,(G)— H,,,~(G) is compact. Choosing
K:= Qody,,n~ one sees that K is compact (since Q is continuous and
Akyxon~ 18 compact) and that (3.8) is valid. This completes the proof. o

3.2. We say that a closed linear operator L}, ,,: H, (G)— H,,(G), which is
a restriction of L%, ,,, is a realization of L}, ,,. The proof of Theorem 3.2 gives
us immediately

THEOREM 3.4. Suppose that L is (1/ky, 1/ky)-closable and that inequality
(3.1) holds. Then there exists a realization L} ,, of Li ., so that

(3.10) R(L;, «,) = H,,(G)
and
(3.11) N(L3, x,) = {0}.

In particular, L3, ,, is a Fredholm operator with
(3.12) ind I3, 1, = 0.

Proof. Choose Lj, ,, = L, ., Where &, ., is the operator, which
appeared in the proof of Theorem 3.2. p

We show the following perturbation result

THEOREM 3.5. Suppose that k™ > 1, k, = k, and that the imbedding
Hy-pinpv(G)—=H 3 (G)Y is  compact. Furthermore, assume that L s
((k™/k,)¥, 1/ky )-closable and that there exist constants CeC and ¢ > 0 such
that

(3.13) L+ C)oliny 2 clolu-nnv  Jor all @eC3(G).
Then there exists a realization Ly , of L%, 4, which is a Fredholm operator with
(3.14) ind L} ,, = 0.

Proof. In virtue of Theorem 3.4 there exists a realization L, ,,;~ of
%1 kak~ + Chraan~ such that L, ..~ is a Fredholm operator with

(3.15) R(l—‘h.kz/k") = sz/r(G) and N(Ek..kz,/r) = '{0}»

where 4, x,x~ denotes the imbedding H, (G)— H,, ;- (G).
Since Ly, 4,4~ 1s a closed operator and since (3.15) holds, we obtain with
some y >0

(3.16) ?”I““hl < [”Ekl.kz/k“ Ul |y~ for all uED(Zkl.kz/k‘)-

4 — Annales Polonici Mathematici L.3
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Define an operator L,,,,: H, (G)—H,,(G) by

Ly, sy = Ly, e '
1.k2 1-k2/ D(i,,‘l,kzlk")nf.l:llk,/k"'(sz(G))

Then one has

(3.17) R(Li,x,) = H,(G) and  N(Ly,,) = {0}
and i view of (3.16) we obtain

(3.18) Yllullle, < WL,k Wlliope~  for all we D(Ly, 4,)-

The operator L,,,, is also (trivially) closed. Hence especially L,, ,, is a Fred-
holm operator with

ind l_‘h.kz =0.

The operator A:= —Cly,,, is Ly, i,-compact (cf. [6], p. 194): Let
{u,} = D(Ly, 4,) be a sequence such that |||Ly, 4, u,lll,, < M. Since the imbedding
H,,(G)— H,,;~(G) is compact we find a subsequence {u, } so that {L,, ., u,} is
a Cauchy sequence in H,,,~(G). Thus by (3.18) {u,j} is a Cauchy sequence in
H,“(G) and then one finds ue H, (G) such that [||lu, —ulll,, -0 with j— co. Since
Au, .k, 18 bounded we see that [||Au, — Aull|,,—>0 with j—>oo. Hence 4 is
L,” «,-compact. Since L, ;, is a Fredholm operator we get that the operator
Ly, = Ly, x,+A is a Fredholm operator with

(3.19) ind (Ly, 4,) =0
(cf. [6], p. 238). Furthermore, one has

L3, i W (@) = (L, 4, + A1) (@) = u((L+ C)p)— Cul(p) = u(Lep)

for all o e C§(G) and then L}, ,, is a realization of L}, 4,. This completes the
proof. n

COROLLARY 3.6. Suppose that ki > 1, ky > 1, k, > k, and that the

imbedding H ;. (G)— H, .y (G) is compact. Furthermore, assume that L is
(k3 /ky)Y, 1)tk k) )-closable and that there exist constants CeC and ¢ >0
such that

(3.20) L+ O ol 45y = Clelasp,y  for alloe CF(G).

Then there exists a realization L}, ;, of L}, ., which is a Fredholm operator with
(3.21) ind (L}, 4,) =0

and

(322) D(Lkl kz) < HklkT(G)'
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Proof. Theorem 3.5 implies that there exists a Fredholm realization

A # -
Liuk?.kz of Lk:kf.kz such that

(3.23) ind L = 0.

kiki k2

We define L3, ,,: H, (G)—H,(G) by

A _F#
ky. k2 — Lkl,kle(L';‘lk;kz)'

Then L3 ., is closed. In virtue of the proof of Theorem 3.5, L;“k; K

-

C"hk.‘.k:’ where kak;.kz

obeys

- Lklk;.kz -

(324) ymu"lk!k; < "lLklkr.kzu'”kz/k; for all uED(Lklkr'kz)‘

Hence we obtain (since k3 > 1 and k, > k,)

(3.25) PRl o < LR, e el + Clllell,

which implies that L; ,, is closed. Trivially one has ind L, ,, = 0, which
completes the proof. o

CoRrOLLARY 3.7. Suppose that k, €K', ki €K', k,eK; ky =21, k, 2 k,,
that L is (1/k5, 1/(k, k1')")-closable and that there exist constants CeC and
¢ >0 such that

(3.26) IL+C)ol v = clol Jor all 9eCg(G).

1/(kiky) 1/ky
Furthermore, assume that the inclusion

(3.27) N(L%, 4o + Chiy i) = HiSs1(G)

holds. Then every solution of the equation
Lfc].kzu =.f; fE sz(G)
lies in H 5= (G).

Proof. In virtue of Theorem 3.4 there exists a realization L} ,~,, of
L;:Lkr.kz-’-Clklkr.kz SUCh that

(3.28) R(I} 4= 4,) = Ho (G).

Let u be in D(L%,,,) and let L} ,,u =f. Then f+Cu lies in H, (G) (since
k, 2 k,) and so we find an element we D(L; ;> ,) < H,,,;(G) such that

L":lki-'kz w =f+ Cu.
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For all ¢ € C§(G) we obtain
W((L+C) @) = (L3 4; 1, W) (@) = (f+ Cu)(¢) = u((L+ C) o)

and then u—we N (L}, 4, +Cly,4,) < H~(G). Since H, ,~(G) © H-(G) we
see that ue H\>,-(G) which finishes the proof. o

4. Applications to partial differential operators

4.1. In this section we suppose that k, = k, = 1, that is, H, (G) = H,,(G)
= H, (G) = H,,(G) = L,(G).
We have

THEOREM 4.1. Suppose that k™ = 1 and that the imbedding H,-(G)— L,(G)
is compact. Furthermore, assume that L: Cy(G)— C§(G)is (k™ ", 1/k™ " )closa-
ble and that there exist constants C, >0 and C, > 0 such that

(4.1) Re(Lg, 9)o = Cilloli-v—Cllol§  for all 9eCF(G).

Then there exists a realization L~ of L*:= L%, which is a Fredholm
operator with

4.2) indL* =0
and
4.3) D(L*) =< H,~(G).

Proof. In virtue of (4.1) we have
IL+Celiu= lell=v = [(L+Cre, @)o| = Re((L+Cr)e, @)y = C,lloliE-
and then
(4.4) L+ Collu~v = Cllpli-v  for all eCF(G).
Hence the assertion follows from Corollary 3.6. o

Remark 4.2. (A) In the case where C, =0 one has

R(L*)=L,(G) and N(L")={0}

(cf. the proof of Theorem 3.5).

(B) We recall that in the case where G is bounded and k™ ({) — oo with
&l — o0, the imbedding H,-(G)— L,(G) ts compact.
14! g 1y 2 P

THEOREM 4.3. Suppose that k™ €K’'; k™ > 1, that L: CF(G)—>CZ(G) is
(1, 1/k™¥)-closable and that inequality (4.1) holds. Furthermore, assume that

(4.5) N(L* +C, 1) « H*(G).
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Then the inclusion
(4.6) D(L#) c H}f‘f(G)
is valid.

Proof. The assertion follows immediately from (4.4) and from Corollary
37. o

COROLLARY 4.4. Suppose that G is bounded and that k™ eK'; k™ ({)—>
with || > co. Let L(x, D)= ). a,(x)D°® be a linear partial differential operator

la| <r

with C*(G)-coefficients such that
@7)  Re(L(x, D)@, @)o = C,ll@olZ-v —C,l@l3  for all peCF(G)
and that

(4.8) IL(x, D)ollip~v < Cloll-v  for all peCg(G).

Then there exists a realization L of L* which is a Fredholm operator with
4.9) indL* =0
and

D(L") < H,-(G).
In addition, in the case where
N(L* +C,I) = Hi*(G)
one has
D(L*) = H{X(G).

Proof. In virtue of (4.8) one obtains that L is (k™ Y, 1/k™ ¥)-closable.
Hence the assertion follows from Theorems 4.1 and 4.3. o

Remark 4.5. (A) Relation (4.9) follows without the assumption (4.8) since
L(x, D) is always (ki , 1)-closable (cf. Theorem 3.5).

(B) Suppose that the formal transpose L': CF(G)— Cg(G) of L exists.
Then L'* is the extension (a so-called maximal realization of L) of L. We have
for all ¢, Y€ CF(G)

(LY) (@) = ¥(L ).

In the case where L’ exists, the operator L, ;: L,(G)— L,(G) is closable (since
C§ (G) is dense in L,(G)). The minimal closed extension L™ (a so-called minimal
realization of L) satisfies L~ < L' = L'* for any realization L* of L'*.

42. Let LD)= ) a,D° be a (non-trivial) linear partial differential
ol <r

operator with constant coefficients a,e C. Then L: H, (G)}— H,,(G) is closable
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when k, and k,eK. Define a function L™ e K by
(4.10) L@ =(Y IR,
la| <r
o°L .
06“(C)' We have

LEMMA 4.6. Let k be in K’ and let G be a bounded set in R". Then there exists
a constant ¢ > 0 such that

(4.11) ILD)@ll ik~ = cll@lliny  Sfor all peCy(G). o

For the proof cf. [10] (Lemma 3.3 and Theorem 3.4; we remark that in
[10] k belongs to the Hormander class K < K’ of weight functions, but one
easily sees that the proofs runs similarly when k lies in K').

where L@ (&) =

Theorem 3.2, Corollary 3.3 and Lemma 4.6 yields us immediately

THEOREM 4.7. Let k be in K’ and let G be a bounded set in R". Then one has
(i) there exists a continuous linear operator Q: H,(G)— H,,~(G) such that

(4.12) Li-400Q =1,
(ii') Suppose that
4.13) L™ (&)— o0 with |- 00.
Then there exists a compact operator K: H,(G)— H,(G) such that
4.14) Ll oK =1,

Proof. Conclusion (i) follows immediately from Theorem 3.2. Choosing
k =k/L” in (4.11) one finds that

4.15) ILD)ollyu¥ = cllellw-n~  for all geCF(G).

Since L~ (¢)— oo with || > 00 and since G is bounded, the imbedding

H.~ v (G)— Hy v (G) is compact. Hence assertion (ii) follows from Corollary
33. 0

Suppose that ke K’ and that G is bounded. In virtue of Theorem 3.4 and
inequality (4.11) there exists a realization L ~, of L~ so that

(4.16) R(LiL- ) = Hi(G),  N(LiL-,) = {0}.
In virtue of the Closed Graph Theorem the inequality
Mullee~ < ClllLie~xullle  for ue D(Lir~ )

holds.
Supposing that k~eK’; k™ < CL™ and that

(4.17) N(LZW) = Hig-(G)
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one sees by (4.16) that
(4.18) D(L}) < H-(G).
We show the following

COROLLARY 4.8. Suppose that ke K’ and that G is a bounded open set in R".
Then the inclusion

(4.19) D(LY) < H }:}f‘/L'"(G)

holds, where L~ €K' is defined by

(4.20) L7 =( ) L9
|zl >0

Proof As we mentioned above it suffices to establish the inclusion
(4.21) N(LE) « Hig -1~ (G).

Choose ue N(L{,) and let ® € C§ (G). Furthermore, let G’ be an open subset of
G such that supp @ = G’ and that G' = (G. Choose ¢ = CF(G) so that
@'(x) = 1 for all xe G'. Then one has by the Leibniz formula (for distributions)
(cf. also [4], p. 65)

(422)  (Pu)(L'(D)g) = (#9'u)(L' (D)) = (L(D)(PP'u))(p)

= ELO@ W)+ T D" ED)@0)(e)
a|>0 %"

=0+g(p) for all peC*(R"),

where

g:= IQE‘O%(D“‘D'E"’(D)((P'u))eHf(l,Lw(R")
(note that keK’). Applying (4.22) with ¢ = e~ "%? one finds that
(4.23) L(E) F(Pu) (&) = (Fg)(¢) for all EcR".

Noting that L™ (&) < |[L(&)j+ L™ (&) one sees by (4.23) that (kL™ /L~) F(du)e L,
and then ue Hi¥-~ -~ (G). o

Remark 4.9. We remark that by repeating the reasoning at the end of the
proof of Corollary 4.8, we get

(4.24) N(LE) < Hgi~ . ~~(G)  for each NeN.

References

[1] R.Bealsand C. Fefferman, Spatially inhomogeneous pseudo-differential operators I, Comm.
Pure Appl. Math. 27 (1974), 1-24.

[2] R. Beals, Spatially inhomogeneous pseudo-differential operators 11, Comm. Pure Appl. Math.
27 (1974), 161.-205.



278 J. Tervo

(31 L. Hormander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag,
Berlin—Heidelberg-New York-Tokyo 1983.

[4] —, The Analysis of Linear Partial Differential Operators 11, Springer-Verlag, Berlin-Heidel-
berg—New York-Tokyo 1983.

[5] N.Jacob and B. Schomburg, On Garding's inequality, Aequationes Math. 31 (1986), 7-17.

[6] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin-Heidelberg-New
York 1966.

[71 1. S. Louhivaara and C. G. Simader, Uber nichtelliptische lineare partielle Differen-
tialoperatoren mit konstanten Koeffizienten, Ann. Acad. Sci. Fenn. Ser. A | Math. 513 (1972),
1-22.

[8] F. Stummel, Rand- und Eigenwertaufgaben in Sobolewschen Rdumen, Lecture Notes in
Math., Springer-Verlag, Berlin—Heidelberg-New York 1969.

[9] M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N. J., 1981

[10] J. Tervo, On the properties of k™ -coercive linear partial differential operators, Studia Sci.
Math. Hungarica 19 (1984), 221-229.

[11] —, On algebraic characterization of coercive linear partial differential operators with constant
coefficients, Ann. Polon. Math. 49 (1988), 209-219.

[12] K. Yosida, Functional analysis (Fourth edition), Springer-Verlag, Berlin—Heidelberg-New
York 1974.

Regu par la Rédaction le 23.02.1988



