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1. Introduction. A problem in real analysis and Fourier transforms is
investigated, leading in an entirely natural way to descriptive set theory. In
particular, Choquet’s theorem on capacitability of analytic sets in invoked.
Here are the necessary definitions.

A finite Borel measure px in R belongs to the Rajchman class R if the
Fourier-Stieltjes transform

pw)= [e(—ut)p(dt) (e(s) =€)
vanishes at co. When p € R then f-pu € R for test functions f, and hence
also for any f in L'(|u|). A closed F is an My-set if F' carries a measure
g # 0in R. In view of the remark about R, we can assume that p is a
probability measure. The class D' is the class of functions ¢ in C*(R) such
that ¢’ > 0 everywhere.

(a) A set F is of type Mo(D") if #(F) is of type My for every ¢ in D'.
(b) A set F is of type Myo(D") if F carries a measure y # 0 such that
¢*p is in R for every ¢ € D.

Clearly Moo(Ql) - MO(QI). Moreover, the classical examples of M-
sets of measure 0 turn out to be Moo(D") ([7]).

One more definition: a set S in a metric space (X, d) has property (L) if
there is a sequence ¢, — 0+, and for each n a partition § = |J, S (finite or
countable) such that diam (S%) < ¢, for each n and i, but d(S%, S2) > ne,
for every n and ¢ # j. For every compact linear set F of type (L) there exist
(in great abundance) functions ¢ in (D') such that ¢(F) is very far from a
set of type My ([6], [4], [3, pp. 89-96]). We are now in a position to combine
all of these concepts.

THEOREM. There ezists a compact linear set F of type Mo(D') such
that every probability measure in F' has positive mass in some closed set of

type (L).
COROLLARY. Mp(D') # Moo(D1).
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Indeed, given any signed measure A # 0 in F, || has positive mass in
some compact set F; C F of type (L). Let ¢ € D! be such that ¢(F;)
is not My. Since |¢*\| has positive mass in ¢(F}), ¢*A cannot be in the
class R. (A Rajchman measure has positive mass only in Mp-sets; this
property characterizes the class R, by a theorem of R. Lyons [9].)

To conclude the introduction we state a fact which is used in the con-
struction of F: there is a number 8 in (0,1/2) such that 32 | sin? 7A0~" =
400 for every A > 0. This can be found in [5, Ch. VI], [13, pp. 147-156]
or [11, pp. 35-36). By relatively straightforward means one can show that
limsup |sin®A@~"| > sinw/7 when 6 = 2/5 (as in [1], [8], [2]). All linear
sets are subsets of the Cantor set {3 >>_, £,0™ : €, =0 or 1}.

2. Let S be the set of strictly increasing sequences 0 = (si)§2, of
positive integers. To each element o of S we attach a set E(o) as follows.
Let kxy = 0 if s; > N and otherwise let kx be the largest integer k such
that sy < N (N =1,2,...). Thus ky < N since sy > N and ky — 400 as
N — +o00. Now E(0o)is the set of integers in ., [4",4V +kn]. If o = (sk)
and o* = (s;) are related by the inequality o < o*, i.e. s < s} for each &,
then plainly E(c) D E(0*). The part of E(c) in [1,4N 4 N] is determined
entirely by s;,...,8n (since syy3 > N) so the mapping from o to E(o)
is continuous between the usual product topologies. Before proceeding we
record an inequality about the size of the intersections E(o) N [p,2p]. For
each integer p, at most one interval [4"V,4" + N] can meet [p, 2p]; and that
is possible only if 4V < 2p, whence N < Nlog4 < log2p < p. Thus
E(o)N[p,2p) has size 1 + ky < 1+ kp; and k, < 7 when s, > p > 1.

Let A(o) be the set of all sums ¥~ £,0™, in which €, =0 or 1, and
ém = 0 for m € E(o). The mapping from ¢ to A(c) is continuous, when the
sets A(o) are provided with the Hausdorff metric on compact, linear sets.
The operator a is defined over subsets B of § by the formula

o(B) = | J{A(s): 0 € B}.
Then a(S) is an analytic set (cf. [12]). By Choquet’s capacitability theorem
we see that for every positive Borel measure x4 in R
p*(a(S)) = sup{p*(a(C)) : C compact }.

Thus a(S) is universally measurable, since the sets a(C) in the supremum
are compact. The map from o to A(o) is increasing:

o <o*=> E(c*)C E(0)=> A(o) C A(c*).

LEMMA 1. A measure p > 0, with positive mass in a(S), has positive
mass in some compact set of type (L).
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Let us recall that a(S) is y-measurable. By the capacitability theorem,
we have only to verify that each set a(C), with C a compact set in §, is
of type (L). The elements of C have a single majorant g in 5, so that
a(C) C A(0g). Now the set E(ag) contains segments of consecutive integers
of unbounded lengths. Since 0 < 6 < 1/2, a sketch confirms that A(ay) is
of type (L), and so also a(C).

___3. To explain the next step in our construction we remark that the set
a(S) is too large; in fact it is of type Moo(D'), as may be proved by the
considerations in the last paragraph. Hence we shall replace each set A(o)
by a subset A’(c), obtaining thereby a new operator o', etc. Before defining
A'(o), we consider a number ¢ in the set a’(S5)\ a(S). Thus ¢t = lim¢;, where
t; € A'(o;) and (0;) is a sequence in S. If the sequence (o;) admitted an
accumulation point ¢ in S, then it would follow that ¢t € a(S5), contrary
to our assumption. Thus there must be some fixed integer k¥ > 1, and
a subsequence _along which s; — +oo. This gives some control over the

“residual set” o/(S)\ a(S). In the process of replacing each set A(c) b by a
smaller set, we cannot make it so small that the My(D") property of a(S)
is lost. Thls necessity imposes an extra complication in the definition of
A'(o).

Let w(k,£,n) be a one-one function into the positive integers, defined
for k > 1,£ > 1, n > 1. Then J(k,¢,n) is defined to be the interval
[2-4N,2.4N + N, with N = w(k,{,n). These intervals are disjoint from
each other, and from all the intervals [4V,4"Y 4+ N] used in defining the
sets A(c). The set M}(o) is defined to be the set of all sums Y oo_, £, 0™
in which €,, = 0 or 1, and ¢,, = 0 for a.ll mtegers m in all the mterva.ls
J(k,€,n), 1 < n < 8. Let My(o) = Ut_ Mf(o), M(0) = Nz, Mi(0),
and A'(0) = A(o) N M (o).

LEMMA 2. The set a'(5)\ a(S) is a countable union of sets of type (L).

Proof. Each point in the difference is obtained as lim;, where ¢; €
A'(0;) and the sequence (o;) has the property that the kth coordinate 3’
+00, for a certain fixed k¥ > 1. We shall prove that those numbers ¢, atta.med
with a fized k, are contained in at most k sets of type (L). Each t; belongs
to a set M,f" (o), with 1 < {; < k. Plainly we can suppose that £; = £,
the same for all j. Thus ¢t; = Y oo_ €,0™, with €}, = 0 for all'm in
the intervals J(k,f,n), 1 < n < si. Inasmuch as si — 400, we see
that t = Y >_, em0™, where £,, = 0 for all m in the intervals J(k, £y, n),
1 £ n < 40o. The interval J(k,¥€p,n) has length 1 + w(k,¥€y,n) — +oo.
Thus, for a fixed k£ and £, we obtain an (L)-set, and the union of these sets
contains o/(S) \ (S). (This device for handling the closure of an analytic
set is adapted from Mazurkiewicz and Sierpinski [10].)



96 R. KAUFMAN

We can now define F' = o/(S) and obtain from Lemmas 1 and 2

LEMMA 3. Each probability measure in F has positive mass in some set
of type (L).

4. The remaining task is to prove that for each ¢ € D! there is some o
such that ¢(A’(c)) is an My-set. We do this for the larger set ¢(A(0)) in 4a,
and then for ¢(A’(c)) in 4b. The analysis is similar to that in [7]. Each
set A(o) carries a product measure []' 1(8(0) + 6(6™)), where the prime
in a product (or sum) means that m > 1, m ¢ E(o). Sets like A(o), and
the associated (convolution) product measure, are called standard. (The
convergence of the product is of course assured by Yoo 0™ < 1)

4a. Since all sets in question are contained in [0, 1], we can assume that
0 <a <¢ <a; < oo, and ¢ is uniformly continuous, with modulus of
continuity w. Now w(0+4) = 0 and w(2t) < 2w(t) for t > 0. Therefore there
is an integer r = r(u) such that 4" — +o00 but u8™w(f7) — 0 as u — +o0.
In case 8" > u—2/3 it will be convenient to increase r so that =1 > u~2/3 >
67; it will remain true that u6” — 400, u6™w(8") — 0. Also, p = p(u) is
defined by the inequalities 1 < uf? < 6~'. Thus p(u) — r(u) —» +oo as
u — +o0o but p(u) < 2r(u) for large u. There is a function h(u) — oo as
u — 400 such that

p-r

z:sin2 A0~ > h(u), a3 <A<af7l

j=0
this is a consequence of Dini’s theorem on monotone sequences of continuous
functions.

The sequence o is chosen so that, for large u, and ¢ = [h(u)/2], we
have s; > p(u). This is possible because h(u) — +o00 as u — +00. The
integer k,, defined through o, therefore satisfies k, < [h(u)/2]. Thus the
interval [r(u), p(u)] contains at most h(u)/2 elements of o.

With this choice of o, the standard measure p in A(o) is defined, and
we proceed to estimate the Fourier transform of ¢*u. For each u > 1 we
factor p into a product A; * A; of standard measures: A; is the product
over the integers m ¢ E(o), m > r(u), and A; over the integers m ¢ E(o),
m < r(u). We use the formulas

| fe(—y¢(t)) u(dt)l = | ff e(—ud(z + y)) M(dz) A2(dy)|
< s1!11p| f e(—ugp(z + y) Al(dz)l.

The support of A\; has diameter < 20", so that ¢(z + y) can be estimated
by Taylor’s formula and the modulus of continuity of ¢', yielding an upper
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bound
sup |1 (ug'(3))] + 4w ub"w (@),
v

By the choice of r = r(u), we have u8"w(#") — 0 as u — +0o. Hence it is
sufficient to estimate |\;(ud'(y))|.
We use the formulas

3 2 _ =~y 2 m =y : 2 m
M@ = H cos® td™ < exp -Z sin® 716
m=r m=r
Py
< exp(—z sin? 7rt0"‘).

m=r

Since the intersection E(o)N [r(u), p(u)] has size < h(u)/2, we can write

|A1(2)[? < exp (— Zp: sin? 1rt0"‘) exp(h(u)/2).

m=r

In this formula we substitute ¢t = u¢’(y)8?; we see that |\;(2)|? < exp(—h(u))
x exp(h(u)/2), or |A1(t)] < exp(—h(u)/4) = o(1) as u — +0o. Thus we
have proved that ¢*u is in the Rajchman class and ¢(A(c)) is an Mp-set.
Before passing to 4b, we observe that this estimation depends only on the
intersection [r(u), p(u)] N E(0), and r(u) < p(u) < 2r(u).

4b. To complete the proof that ¢(A’(c)) is an My-set, we first examine
the set M(o). It is an uncountable union of intersections M{(a)N M$2(o)N
..nM,f*(a)n ...where {; =1,1<4£;,<2,...,1 < £ <k,...Intersecting
each of these sets with A(o) yields a standard set and a standard prod-
uct measure. The measure p is then obtained by averaging the standard
measures over all choices of ¢, £, ...

Each set in the average is obtained by suppressing certain intervals
[2-4N,2-4N + N] from the standard measure over A(c). Foreach u > 1, the
estimation in 4a is unchanged unless one of the intervals [2-4V,2.4V + N]
omitted intersects [r(u),2r(u)], and this defines at most one integer N =
N(u). This N occurs only if N = w(k,{,n), wherein 1 < ¢ < k,
1 £ n < 8x. We recall that w(¢,k,n) is one-one. As u — 400, then
r(u) — 400 and N(u) — +0o. Since the numbers s;,s3,...,3k,... do not
depend on ¢,¢,,...,¢,..., we must have kK — 400 with u. Thus the esti-
mate in 4a is effective except in a proportion 1/k(u), and k(u) — +oo with u.
Therefore ¢*u belongs to the Rajchman class R, and we have proved that F
is of type Mp(D'). At the same time, the second property of F, stated in
the theorem, is just the one in Lemma 3.
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