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In the following we present a summary of some recent work on complex
polynomials orthogonal over the unit semicircle with respect to an inner
product which is non-Hermitian. The interest in such polynomials was purely
intellectual, at first, but took on a more practical bent when it was discovered
that they can be usefully employed in numerical quadrature over the semicircle.
The location of the zeros in the complex plane also presents questions of
intrinsic as well as practical interest.

1. Inner products and related polynomials

Let w be a weight function which is analytic on the unit semidisc
D, ={zeC: |zl <1, Imz > 0}, nonnegative and # 0 on [—1,1], and integ-
rable over the boundary 0D, = I'u[—1,1]. Along with the classical inner
product

L _
(1.1) [fig]= | f(x)g(x)wix)dx,
-1
we consider the complex (non-Hermitian) inner product
(12 ) = 11090 "2z = [ 1e)g € w(e") d0
r o}

(no conjugation of the second factor!). The (monic) polynomials orthogonal
with respect to the inner product in (1.1) will be denoted by p.(-) = p,.(*; w),

=0, k#l,

. I=0,1
(1 3) [pka Pl] {> 0, k — [, k; 0, ] 2:
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those orthogonal with respect to the inner product in (1.2) (if they exist) by
m() =m(:; w),

=0, k#l,
(1.4) (nk,n,){?éo’ k=1, k,1=0,1,2,...

We remark that (1.4) could not be satisfied if integration in (1.2) were over
the full circle dD (assuming w analytic in D = {zeC: |z| < 1}), since, by
Cauchy’s theorem, the inner product in (1.4) would then have the value
2n n,{0)m, (0).

It is well known that the orthogonal polynomials p, in (1.3) satisfy
a three-term recurrence relation,

(15) yk+l=(z_ak)yk_bkyk—1’ k=05 1’27"'a

where g, = a,(w) are real and b, = b (w) positive. Indeed, y_; =0, y, =1
yields y, = p,(z; w). A second (linearly independent) solution of (1.5) is given by
the so-called associated polynomnials,

pi(z; w)—p,(x; w)
Z—X

1
(1.6) gi(z) = g lz; w) = | w(x)dx, k=0,1,2,...,

-1
and is generated by the initial values y_, = —1, y, = 0 (assuming b, = [1,1]).
We need both, the orthogonal and the associated, polynomials in order to
construct the complex polynomials r,.

2. Existence and representation

In the special case w(z) =1, existence and uniqueness of the orthogonal
polynomials {m,} was originally proved via moment determinants ([2]). It is
now possible to construct the polynomias more elegantly, even for the more
general weight functions w considered in Section 1. Indeed, in [3] it is shown
that the (monic) polynomials #,(-) = =,(-; w) exist uniquely, assuming only that

T

(2.1) Repy, #0, o= [w(e?do.

0

They can be represented, moreover, in terms of the classical orthogonal
polynomials p,() = p,(-; w) and the associated polynomials g,{-) = q,(-; w) (cf.
(1.6)) by means of

(2.2) n,(z) =p,(2)—i0,-1pn-1(2), n=0,1,2,..,
where

Au‘O pn (0) + lqn(o)
iﬂo Pu-1 (O) —qu-1 (0)’

(2.3) Bpe i = 0,1 (W) = n=0,1,2,...
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The condition (2.1) ensures that the constants 6,_, are well defined, i.e., the
denominators in (2.3) do not vanish. These constants play a prominent role in
the present theory. They can be defined, alternatively, by the nonlinear
recursion

b
(2.4) 0,=ia,+——, n=0,1,2,..; 8_,=u,,
Bn—l
where a, = a,(w), b, = b,(w) are the recursion coefficients in (1.5).
An easy computation based on (2.2) shows that

(25) (‘ﬂ.’n, 7'5") = Qn—l[pn~1’ pn—l]'n h= 19 2: ) (TEO’ 7":0) = ,Ll.o.

ExAMPLE 2.1. Jacobi weight w*P(z) = (1—2*(1+2)ff, 0> -1, f> —1.

One computes y, = @ +ijlu1 w®P (x)/x dx, where the integral is a Cauchy
principal value integral. Therefore, Re u, # 0, and the orthogonal polynomials
7, (-; w*?) exist uniquely.

EXAMPLE 2.2. Symmetric weight. _
Here, w is assumed analytic in D = {zeC: |z| < 1} and satisfying

(2.6) w(~z)=w(z), zeD; w(0)>0.

In this case, u, = mw(0) > 0, hence the polynomials =,(*) = m.(*; w) again exist
uniquely. Moreover, since all coefficients a, = a,(w) in (1.5) are zero, it follows
from (2.4) that 0, > O for n > 0, hence, by (2.5), that (r,, =,) >0 for n =0,
notwithstanding that w, is complex-valued.

ExaMpLE 2.3. w(z) = z2.

In this case, clearly, y, = [7€**df =0, and the polynomials ,(; w) do
not exist, even though the p.(; w) do.

3. Recurrence relation

From the property (zp, q) = (p, zq) of the inner product (1.2) it is clear that the
polynomials {m,(-; w)}, if they exist, must satisfy a three-term recurrence

relation. We write it in the form
(3.1) T 1(2) = (z—ie)m (2) = Byme—1(2), k=0,1,2,..,
' no1(z) =0, mlz)=1,

where a, = «,(w), S, = f,(w), in general, are complex. An elementary com-
putation, based on (2.2) and (1.5), yields the following formulae for these
coefficients:

a0=00_la0; ak=0k_0k_.1—iak, k=1,2,...;

(3.2) .
ﬁkzok—l(ok—l-lak—l)’ k=1,2,...
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(The coefficient B, in (3.1) is not .needed, but is conveniently defined by
Bo = o) ) _
For symmetric weight functions (cf. Example 2.2), since g, = 0, it follows
that all &, are real and f8, = 67_; > 0.
Comparison of the coefficient of z* on the left and right of (3.1) easily yields
n—1
(3.3) n(z;w) =2"— (B, + ), a,)z" '+ ...
m=0
This gives useful information about the location of the zeros of z, (cf. Section
4). Another consequence of (3.1) is the fact that these zeros are the eigenvalues
of the matrix

g 1 0
By ey 1
(3.4) W= By i
T 1
0 Bt i

This can be used to compute the zeros, especially in the symmetric case, where
the problem can be reduced to an eigenvalue problem for a real, nonsymmetric,
tridiagonal matrix [3], § 6.1.

4. Zeros

Relatively complete results are known only for symmetric weight [unctions (cf.
Example 2.2). In this case one knows that all zeros are located in the upper half
of the complex plane, symmetrically with respect to the imaginary axis [3],
Theorem 6.1, and, in fact, are all contained in the unit upper semidisc D, , with
the possible exception of a (simple) zero iy,, yo = 1 [3], Theorem 6.2. We
sketch a proof of this last statement.

According to a result of Giroux [4], either all zeros are in the upper half
plane, or all are in the lower half plane. Equation (3.3) (where 0,-, > 0 and all
a,, = 0) shows that the first alternative must hold. In fact, more precisely [4], il
{ 1s a zero of m,(-; w), then

4.1) Im{ >0, |Re(|<¢, <1,

where ¢, i1s the largest zero of p,(-; w). It thus suffices to show [{| < !.
Assume first Re{ # 0, so that by symmetry, { and —{ are both zeros of =,
and n 2 2. Then, by (2.2),

(4.2) (%) = p,(x) =0y~ 1 pu-1(x) = (x = (x+r, - (x),
where r,_, # 0 is monic of degree n— 2. Multiplying (4.2) by 7, - , and using the
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orthogonality of p, and p,_ to polynomials of lower degree, there follows
1 1
@3) 0= [ m,(x)r_s(Iw)dx = [ (x—=0) e+ Dlry— 2012w (x) dx.
-1 -1

Noting (x—~{)(x+{) = x>*—2ixIm{—|{|%, and taking the real part of (4.3),
yields

1
_I (x* =[P iru- 2 () w (x)dx = 0,

which clearly implies |{] < 1. In the same way one shows that =, cannot have
two (distinct or confluent) zeros on the imaginary axis with imaginary parts
> 1. This completes the proof.

An important example is provided by the Gegenbauver weight

(4.4) w(z) = whz) = (1 -2 12, > —%.

Can there be any zero of =,( ; w*) on the imaginary axis outside the unit disc?
Suppose { =iy, y 2 1, is one. Then, by (2.2), since clearly p,_,(iy) # 0, one
finds

(45) wn(y) = On—l’

where w,(y) = p,(iy)/(ip,- 1(iy)). From the recurrence formula (1.5) one easily
deduces that

(4.6) w,MN=y; o= k=2,3,...

b -

4 e

w1 (Y)

Since y > 1 and b,-, > 0, this shows that w,(y) is real and
(4.7) w,y)=1, allnz=1l.

On the other hand, 6,_; = 6,_(w") can be expressed explicitly in terms of
gamma functions, which, combined with known inequalities for gamma
function ratios, yields [3], pp. 401-402,

(4.8) 0,1 <1, al nz=2.

The two inequalities (4.7), {4.8) show that (4.5) is impossible when #n > 2. Hence,
all zeros of m,(-; w"), n = 2, lie in D, . This is also true for n = 1, if A > 0, but
not for n=1and -3 <i<0.

Interestingly, the polynomial nj = 7,(; w*) satisfies a linear second-order
differential eqation,

(4.9) P(z)y"+Q(z)y' + R(z)y = 0,
where P, Q and R are cubic, quadratic and linear polynomials in z, respectively

[31, § 7. Since all points in D, happen to be regular points for (4.9), it follows
that the zeros of n} are simple. Indeed, il there were a multiple zero {, it would
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necessarily have to be in D, so that 7;({) = (d/dz)n}({) =0 would imply
7} = 0, a contradiction.

There is considerable numerical evidence suggesting that the absence of
zeros outside of D, (when n = 2) holds also for the Jacobi weight w®# (cf.
Example 2.1) for any a > ~1, § > —1. Nevertheless, this is not a property
valid for general weight functions: In [1] we construct a (symmetric!) weight
function w, (depending on a parameter a) such that x, (:; w,), for any fixed even
n, has a zero iy,, y, > 1, provided a is large enough. Indeed, as a— oo, zeros
iy, with y, arbitrarily large can be so produced. Similarly, another weight
function w? is constructed which has analogous properties for n odd.

5. Applications

If m,(-; w) has n simple (complex) zeros {,,v=1,2, ..., n, one can construct
a Gauss—Christoffel quadrature formula for integrals over the semicircle,

n

[9(@w(@)dd = ¥ 0,g(L)+R.(0),
(5.1) 0 v=1 .
Rn(g)=0= all gEPZn—l-

If w is symmetric (cf. Example 2.2), the vector ¢ = [0,, 0,, ..., 0,] of the
weights in (5.1) can be obtained from a linear system of equations V, o = ¢,
where the columns of ¥V, are eigenvectors of a real, nonsymmetric, tridiagonal
matrix (see [2], § 7, for the case w=1) and el =[1,0,..., 0] is the first
coordinate vector. To a pair of (distinct) zeros ({,,—,) there corresponds a pair
(g,, 7,) of conjugate complex weights, and to a purely imaginary zero {, a real
weight a,.

The example g(z) = ce®, ¢ > 0 (and w = 1) shows [2], Example 7.1, that
the quadrature formula (5.1) can outperform its two closest competitors:
the Gauss—Legendre formula (with Gaussian nodes on the semicircle
{e?: 0 < 0 <=} and the composite trapezoidal rule.

The formula (5.1) can also be used for integration over the full circle, if the
latter is broken up into two halves and the lower half transformed into the
upper by a change of variables. In this way, one can numerically implement
Cauchy’s theorem. To illustrate, suppose we want to approximate the first.
derivative f'(a) at a real point a, assuming fanalytic in the disc |z—a| < h/2 and
mapping reals into reals. Then,

1% _. . o
(5.2) fla=— e °Lf(a+3he”)—f(a—%he")]d0,

and (5.1) (with w=1) and the symmetry properties mentioned above give

n/2

2
(5.3) f'(a) zﬁz Re {% [f(a+%h{v)-j'(a—%hcv)]}, n even.

The error is O(h*")as h—0.
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