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0. Introduction. A theorem in finite dimensional Lie group theory states that
the class of abelian Lie groups coincides with the class of quotient groups of
finite dimensional real vector spaces. (Hereafter by a quotient group we shall
understand a quotient group with respect to a closed subgroup.)

In this paper we consider an infinite dimensional analogue of this situation
and we study properties of quotient groups of linear topological spaces from
the point of view of Lie theory.

All the concepts of infinite dimensional Lie groups (e.g., Banach, Fréchet,
IHL; cf. [3], [4]) are too restrictive for our purpose. In particular, when we
drop the assumption that the dimension of G is finite, none of the above-
mentioned classes of Lie groups is closed under the operation of passing to
a quotient group.

In the sequel we introduce the class of “weak Lie groups” (abbreviated to
WLG) which is defined by imposing conditions on the family of one-parameter
subgroups of a group. In this paper we consider only abelian groups. The
discussion of WLG in general will be given elsewhere.

1. Preliminaries. Let G be a topological group (all the groups dealt with are
supposed to be Hausdorff). By C(R, G) we denote the topological group of all
continuous G-valued functions on the real line R with the pointwise multi-
plication and the compact open topology .#. We shall define the exponential
map

Exp: C(R, G) > G

putting Exp(¢) = ¢(1). There is also defined a natural multiplication by reals:
RxC(R, G)>(s, ¢) > sp e C(R, G),

where (s¢)(t) = ¢(st). Observe that both the exponential map and the

multiplication by reals are continuous with respect to the topology ..
Let A(G) denote the family of all one-parameter subgroups of G, i.e., the

family of all continuous homomorphisms of the additive group of reals into G.
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A(G) is a closed subset of C(R, G), and for an abelian G it is also a subgroup of
C(R, G). Moreover, A(G) is invariant under multiplication by reals. Restricting
to A(G) the compact-open topology .#, the group multiplication and the
multiplication by reals, we get on A(G) (for an abelian G) the structure of a real
topological vector space. We shall refer to A(G) together with this structure as
to the Lie algebra of G. It is easy to observe that the topology .# is the weakest
of the real topological vector space topologies on A(G) such that the
exponential map Exp: A(G) — G is continuous.

Clearly, the kernel of the exponential map is a closed subgroup of A(G),
which will be denoted by K(G).

We shall omit simple proofs of the following propositions.

1.1. PROPOSITION. Let G;,i =1, 2, be abelian topological groups and let
p: G, = G, be a continuous homomorphism. Then the induced mapping
p: A(G,)>2¢ > podeA(Gy)
is continuous and linear. Moreover,

poExp =Expop and Pp(K(G,) < K(G,).

Observe that if p is injective, then so is p, but the analogous statement for
surjectivity does not hold in general (cf. Examples 2.12 and 2.14 below). Also
p,op, = p,0p,, le., the correspondences G — A(G) and p — p constitute
a covariant functor from the category of abelian topological groups into the
category- of topological vector spaces.

1.2. PROPOSITION. Let {U,}.. be a basis of (open) neighbourhoods of the
neutral element e in an abelian topological group G. For each o€ let

U,={¢eAG): ¢()eU, for —1 <t<1}.
Then {U,},cq constitutes a basis of (open) neighbourhoods of 0 in A(G).

1.3. PROPOSITION. If {d,}.cq is a family of (complete) right-invariant pseudo-
metrics defining the topology on a topological group G, and if I' is a closed
subgroup of G, then {9,}scn, Where

e[x], [¥]) = infd(xy™", 2),
zel
is a family of (complete) right-invariant pseudo-metrics on G/I' defining the
quotient topology. On the other hand,
0@, ¥) = sup d($(t), ¥(t), «eQ,

te[—1,1)

is a family of (complete) invariant pseudo-metrics on A(G) defining the com-
pact-open topology.
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1.4. PROPOSITION. Let I' be a topological subgroup of a topological group G.
The canonical embedding i: I' — G induces a continuous injective linear mapping
i A(I') > A(G) which is also an embedding. Moreover, the image of i is closed if
I' is closed.

2. Abelian weak Lie groups.

2.1. DEFINITION. Let G be an abelian topologlcal group with the Lie algebra
A(G).

(a) G is said to be exponential iff Exp(A(G)) =

(b) G is said to be an abelian weak Lie group (AWL-group) iff Exp: A(G) - G
is an open map.

(c) An AWL-group G is said to be Hilbert (respectively, Banach, Fréchet,
nuclear, etc.) if A(G) is a Hilbert (respcctlvely, Banach, Fréchet, nuclear, etc.)
topological vector space.

2.2. Remarks. (a) Exponential groups have to be arcwise connected, and
the connected component of unity in an AWL-group is an open and
exponential subgroup.

(b) An abelian exponential topological group G is an AWL-group iff the
continuous group isomorphism

[Exp]: A(G)/K(G)— G

induced by Exp: A(G) — G is an isomorphism of topological groups. This
follows easily from the commutativity of the diagram

A(G)
l’t Exp
A(G)/ki6) —EXRL 4

Indeed, since the canonical projection = is open, Exp is open iff [Exp] is open.
(c) It is not true that each abelian exponential group is an AWL-group. As
an example, consider the additive group of reals R furnished with the topology
induced by a dense homomorphic injection of R into a torus T2. Clearly, this
topology fails to have a basis of connected neighbourhoods of 0.

2.3. THEOREM. (a) Every real topological vector space X is an AWL-group
with respect to its additive structure. Moreover, Exp: A(X)— X is an isomor-
phism of topological vector spaces.

(b) If G is an abelian topological group, then

Exp: A(A(G)) - A(G)
is an isomorphism of topological vector spaces. Moreover,
A(K(G) = {0}.
() If T is a closed subgroup of a topological vector space X, then
Exp: A>T
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is an embedding (i.e., Exp induces the original topology on A(I')) and Exp(A(I')) is
a closed subgroup of I' (and thus of X). Moreover,

A(I/Exp(A(I)) = {0}.

Proof. (a) Exp: A(X) — X is a continuous homomorphism of topological
groups. Take ¢pe A(X) and put

X, = ¢<;11-) = Exp(%q&) forn=1,2,...

Since nx, = ¢(1) = x,, we have
d)(%) = mx, =%x1 for m,n=+1, +2, ...,

i.e., gx, = ¢(q) for all rationals q. Therefore ¢(t) = tx, = t Exp(¢) for all teR
by the continuity of ¢, which shows that ¢ is linear and injective. It is easy to
see that the mapping r: X — A(X) defined by r(x)(t) = tx is the inverse of Exp.
By the continuity of multiplication by reals it follows that X has a basis {U,}.cq
of star-shaped symmetric neighbourhoods of 0. By Proposition 1.2, {U},cq is
a basis of neighbourhoods of 0 in A(X) and we have

r~{(U,) = {xeX: txeU, for —1<t<1}=U,,

1.e., r is continuous.
(b) We have the following commutative diagram:

A
ALAG) —EX2_ o 416)

Expl I,- lExp
' Exp

A4(G) ———>» 6

Since Exp(t(ﬁx\por)(cb)) = (Expolgx\por)(tqﬁ) = Exp(t¢) for all teR, we get
E/ﬂ)or = idA(G)'

Hence Fj(\p is an isomorphism of topological vector spaces since such is r by (a).
Let i: K(G) > A(G) be the canonical embedding. From the commutative
diagram

AKIG)) ——> 4(4(6)) —EX2 » 4(6)

Expj Expl ]r lExp
j Ex

KIG) —— 4(6) —=P_»

we have o~ . o~
e = ExpoioExp(t¢) = ExpoExpoi(t¢) = Exp(tExpof(qS))
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for all ¢€A(K(G)) and teR, ie.,
Expoi(¢) =0 for all ¢eA(K(G)).
Since  and Exp are injective, ¢ = 0.

(c) Let i: ' > X be the canonical embedding. From the commutative
diagram

AT) —— Alx)

Epr ‘ lExp

F—i>X

where Exp: A(X) — X is an isomorphism by (a) and i is a lingar embedding by
Proposition 1.4, one can see that Exp: A(I')'— I is an embedding. Since
Expoi(A(l')) is closed in X, Exp(A(I)) is closed in I. Finally, let
. = Exp(A(I')). We have a homomorphic embedding
i,: r/;r,-X/r,
inducing the embedding
i,: A(T)T,) - AX/T ) ~ X/I',.
If ¢ A(I'/T,), then there is xe X such that

[, (¢)(t) = t[x] = [tx]e X/T ;.
Clearly, txeI for allteR,soxerl , and [x] = 0. By the injectivity of i; we have
¢ =0.
By Theorem 2.3 every topological vector space is an AWL-group. The
following two propositions provide new examples of AWL-groups.
2.4. PROPOSITION. The direct product || G, (respectively, the direct sum @ G,)

acf? aef
of a family {G,}.cq of abelian exponential groups is an abelian exponential group

with the Lie algebra [] A(G,) (respectively, ® A(G,)). The same is true for
acQ aef?

a family of AWL-groups.
The proof is standard.

2.5. PROPOSITION. Given an AWL-group G and its closed subgroup I', the
quotient group G/I' is an AWL-group. Moreover, the canonical projection
p: G - G/I' induces a continuous linear mapping

p: A(G) - A(G/T)
with dense image and the kernel equal to A(I).

Proof. From the commutative diagram
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AG) —B— A1G/T)

Expl ‘Exp
p

6 ——G/T
where p, and hence poExp = Expop are open, we conclude that
Exp: A(G/T') -» G/T
is open and that
" ker(p) = {p e A(G): Exp(tp(¢)) = e for all teR}

= {¢p € A(G): Expop(tp) = poExp(td) = e for all teR}

= {¢p e A(G): Exp(tp)eI" for all teR} = A(I).
To show the density take y € A(G/I') and a neighbourhood U of e in G/I". Our

aim is to find an element of p(A(G))e(y +U). (We use the additive notation,
since G is abelian.)

Take a neighbourhood W of the identity in G/I" such that W— W < U. Since
poExp is open, the set V= poExp(p~!(W)) is open, and there is a positive
integer n such that y(t)eV for te[—1/n, 1/n]. Let ¢,, be an element in
(p~'(W)) such that

PoExp(¢y,s) = ¥(1/n).

Put ¢ = n¢,,. For each te[—1, 1] there are an integer m and re[—1, 1]
such that t = m/n+r/n, so t¢p = me,,,+r¢,,,. Hence

p(¢)(t) = Expop(t$) = poExp(t¢)
= p(mExp(¢1/s) + Exp(r¢ 1)) = ¥ (m/n)+ poExp(réy,,)
= Y(t)+poExp(rd, ) — Y(r/n)

and we get
P(#)()—yY(t) = poExp(rdym) —Y(r/me W—W U  for all te[—1, 1],

ie., p(p) ey +U).

2.6. THEOREM, Let G be an abelian exponential topological group with the Lie
algebra A(G). Let G, denote the underlying group of G and let Q be the family of
all topological group topologies on G, providing A(G) as the corresponding Lie
algebra. Then there is the strongest topology # in Q, which is the unique
AWL-group topology on G,.

Proof. Let [Exp]: A(G)/K(G) —» G be the continuous homomorphism
induced by Exp: A(G) = G. Since [Exp] is a group isomorphism, we can
identify G, with A(G)/K(G). Put .# to be the quotient topology. Since [Exp] is
continuous, it is obvious that .# is stronger than any group topology on G,
providing A(G) as the corresponding Lie algebra. It suffices to show that

A(A(G)/K(G)) =~ A(G).
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We have the following commutative diagram of continuous homomorphisms:

A{A(G))
lExp
A(G)
e
Exp
4161/7K(6) 1E2BL_2g
Exp
[E;(p]

A(A4(G)/KI(G)) —> A (G)

where Exp: A(A(G)) — A(G) is an isomorphism by Theorem 2.3 (b), and [ET)E)] is
injective since [Exp] is injective. Hence po(Exp)~ ! is a continuous linear map
which is the inverse of [Exp], and this shows that

A(G) ~ A(A(G)/K(G)).

2.7. THEOREM. Let G;, i = 1, 2, be connected AWL-groups with Lie algebras
A(G)) and let ¢: A(G,) — A(G,) be a continuous linear mapping. Then there exists
a continuous homomorphism ¢: G, - G, such that ¢ = ¢ if and only if

»(K(G,)) = K(G,).
Proof. Since ¢(K(G,)) = K(G,) by 1.1, suppose that ¢(K(G,)) = K(G,).
Then ¢ induces a continuous homomorphism
[¢]: A(G,)/K(G,) - A(G,)
by the commutative diagram
A1G,) .

Exp I‘ng)/K‘G,) 'L’ A(Gz,ﬂL’Gz
llExpl ¢
61

It is easy to see that ¢ = Expo[¢]o[Exp] ! is the desired homomorphism.
The following theorem gives a useful description of AWL-groups:

2.8. THEOREM. Let G be a connected abelian topological group. Then the
following are equivalent:

(@) G is an AWL-group.

(b) G is a quotient group of a real topological vector space.

Proof. (a)=(b) follows by Remark 2.2 (b).

(b) = (a) results from Theorem 2.3 (a) and Proposition 2.5.

Thus the class of connected AWL-groups is the same as the class of

quotient groups of topological vector spaces. Observe that if I' is a closed
subgroup of a real topological vector space X, then by 2.3 we can consider A(I')
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as a closed linear subspace of X included in I We have then
X/I' = (X/AD)Ar/AT)), where A(I'/A(I) = {0},

i.e., we can reduce the vector space X and the subgroup I' to the case where
I' includes no linear subspace. This motivates the following definition:

2.9. DeFINITION. Let G be a connected AWL-group. A pair (X, I'), where
X 1s a real topological vector space and I' is a closed subgroup of X such that
A(l') = {0}, will be called a realization of G if X/I' and G are isomorphic
topological groups. We shall also write X/I' instead of (X, I') in this context.
Two realizations X,/I', and X,/I’, are called isomorphic if there is an
isomorphism ¢: X, — X, of topological vector spaces such that ¢(I')) =TI

By R(G) we shall denote the class of all realizations of G up to isomorphism.

Every connected AWL-group has at least one realization, namely
A(G)/K(G), called the canonical realization.

2.10. THEOREM. Let G be a connected AWL-group. Let X/I” be a realization of
G and let p: X — X/T" be the canonical projection. Then p induces a continuous
linear injection p: X — A(G), where p(x)(t) = p(tx), with dense image. Moreover,
p(I') =« K(G) and p(I') is dense in K(G).

In other words, we have the following exact commutative diagram of
continuous homomorphisms:

0—=>KI(G)— A(G)
Exp
Tﬁ'f Tﬁ 6
0—> I —> X /

where p and p|I" have dense images.

Proof. Since X is an AWL-group, p: X — A(G) is a dense injection by 2.5.
Clearly, p(I') = K(G). To prove the density of p(I') in K(G) suppose that there is
y€ K(G) and a neighbourhood U of e in G such that

(r+U)np(I) =

Take a neighbourhood Wof e in G such that W—W < U. We have W— W< U.
Because V: = p~}(W) is a neighbourhood of 0 in X and p is open, p(V) is
a neighbourhood of e in G. Since Exp(y+ W) is also a neighbourhood of e in
G and since p(X) is dense in y+ W, there exists yep~ !(y+ W) such that

Expop(y) = p(y)ep(V).
Take x € V'such that p(x) = p(y). We have then p(y—x) = e, i.e., y—xe I, and
py—x) = p(y)—px)ey+ W—-We y+U,

a contradiction.
Now we discuss some examples of AWL-groups and their algebras.
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2.11. ExampLE. Let (2, 2, u) be a measure space and let h: Q -+ R be
a measurable function. Put

LP=LPQR2, 2, p for0<p< o
and let
Kf ={feL": f(w)eZ h(w) for u-almost all w},

where Z is the set of all integers. (We consider only real-valued functions.) It is
easy to see that KJ is a closed subgroup of L? and that A(Kf) = {0}. Consider
the AWL-group Gf = L?/Kf. We shall show that for 0 < p < oo the algebra
A(KF) is the completion of L? furnished with the Fréchet norm |||, , induced
by the metrizing modular ¢,,: L - R, defined by

epn(f) = !I) min(|f1°, |AI")du,

where

(k) if k@) #0,
hlw) = {+ o if h(w)=0.

It is easy to observe that ||||,, can be explicitly defined by
| /llp.n = inf{e > 0: g,u(ffe) < €}.

Since L” has a complete Fréchet norm |||, Gf and hence A(Gf) have complete
invariant metrics by Proposition 1.3. We have a dense linear injection
p: L? > A(Gf) induced by the canonical projection

p: L? - [?/K} ~ Gf,

so we can identify the linear metric space A(Gf) with the completion of L?
induced by the injection p. Writing ||| f]||,,» instead of d, ,(f, 0) for fe L?, by 1.3
we have

WfIlps= sup inf ||tf—kll,
te[—1,1] keKh
where

ligll, = ({ lglPdp)minct/e-1)

is the F-norm on L?, 0 < p < o0.
For feL? put
f(w) if h(w) =0,
50 = o) i Hoy 20
where
la) = {[a] if a <[a]+3,
[aJ+1 if a> [a]+3,

and ta] is the integer part of a. Observe that |f,| < 2|f|, so f,€ Kf, and that
inf || f—kll, = Il =All,-

keK;
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Thus we can write

WS lllpn = sup [itf=@E ll,

tef—1,1]

= {0eQ: |f(o) < i)},
B=N\A and F(o,1)=|tf(0)-t)).

F is a measurable function on Qx R. If weB, then

Flo, t) = {t |f(w)l for |t| < 3h(@)/f(w),
’ lh(@)|—t|f(@)| for }h(w)/f(w) <t < |[h(@)/f(w),
and F(w t+|h/f|(w)) = F(w, t). Hence for e B we have

Put

f(w) Iy 22 e _ |f(w)|] |h(w)|? |h(w)|
mce
[ (w)] h(@)
h(w) f(w)
we get
iF(w, tydt 2 C lh(w)l? for weB and C, = m
On the other hand, for we A we have F(w, t) = t|f(w)], so
* o @)
£F(a),t) dt = P
and finally
§(f F, 0ra)au) > L duo) + €, hiwauco)

> C,( I 12f1Pdu +I |h|Pdp).

Changing the order of integration, we conclude that there is t,€[0, 1) such
that

[F, toPdp@) = C,( | Rffdp@+ [ )
0 {we:]2 f(w)] {0we:]2 f(w)]
< |h(w)]} > |h(w)]}

= C, | min(2/P, IAP)du
= C, | min(2/P, IA)du > C, | min( 117, *)dp

p e p.h(f) .
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But
NANGEED = litgf— (o > ®Y = | Flw, to)Pdu(w),
(o]

SO

WANZEPD = Cepu(f)-

On the other hand, since
|tf(w)— (/@) = tf(w) < |2f(w)] for wed and —1<t<1

.and .
[tf(w)—(tf)() < |hw)l for weB and teR,

we get

fitf(@)—-N@Pduw) < | Rf(Pduw)+ |

Q {we2:|2 f(w)] (0eR:)2 f(w)]

< |h(w)]} Z [w)])
= fmin(2f?, |AP)dp < 27,4/,
Q

ie.,

I Mpm = sup [litf(w)—@NHw)Pduw) < 270, 4f).

te[—1,1]102

This shows that |[||'{ll,, and |||, induce the same topology. We shall
reformulate the result of the above example in the three special situations.

2.12. EXAMPLE. Suppose that () < oo and put k(@) = 1. We shall show
that ¢, ,(f) =0 iff f, -0 in measure. Let

epilfy) = !)min(lj;l", )du—0

and take 0 < ¢ < 1. Since

[ Wldu+ [ 1fPdu+p{lfi=>1}-0
{Ifnl<e} fe<|fnl<1}

eu{e<Ifil<ih< | |flPdy,
e<fnl<1)

u({lf,l > &) = 0.

On the other hand, let f, — 0 in measure. Take 0 < ¢ < 1 and § > 0. We have

p{lfil >e}) <é for n>=0.

and

we get

Hence

epulf) = !) min(f,l", Ddp< [ IfLP+u{lfl > €})

Il <e)
<efu(2)+6 for n= 0.

Since ¢ and & may be chosen arbitrarily small, ¢, ,(f) - 0.
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This shows that, in this case, A(Gf) equals L°, the space of all measurable
functions on Q2 with the topology of convergence in measure. Note that the
same arguments apply if we take h such that 0 < m < |h(w)| < M < oo for some
m, MeR and p-almost all we Q instead of h = 1. Since the kernel K(Gf) of
Exp: A(Gf) —» Gf is the closure in L° of Kf L° we have

K(Gh) = {feL®: f(w)eZ hw)}.
In particular, Gf are isomorphic for all 0 < p < .

2.13. EXAMPLE. Let I =[P (i.e., Q is countably infinite and u is purely
atomic with atoms of measure 1) and let h = 1. Then

[+ o]

epi(f) = Y, min(lf(m)?, 1) < |If)IF>*P.

m=1
On the other hand, if || £]|, — O, then for sufficiently large n we have |f, (k)| < 1
for k=1,2,..., so
0p.i(fo) = IfIIFPY > 0.
This shows that A(Gf) = I” in this case.
2.14. ExaMPLE. Let I? =[P and let hel?, h(k) #0,k=1,2,... If

ep.i(fy) = Y min(|f(k)?, |h(K)P) -0,
k=1
then clearly f,,(k)—;O for each k=1, 2, ... On the other hand, if
f,,(k)—;O for k=1,2, ...,

then for each ¢ > 0 there is k, such that

[« o]

Y |h(k)P < ¢&/2

k=ko
and there is n, such that

no—1

Y f(kIP <e/2  for n>n,
k=1 :

Hence g¢,,(f,) < € for n > n,, which shows that in this case A(Gf) = [°, the
space of all sequences with the topology of pointwise convergence. Since [° is
nuclear, Gf is then an example of a nuclear AWL-group.

3. Classes of realizations of AWL-groups. In this section we shall investigate
realizations of a given connected AWL-group.

3.1. THEOREM. The following are equivalent:
(@) G has a realization X/I' with discrete I.



QUOTIENT GROUPS 47

(b) K(G) is discrete.

(c) G has no small circle subgroups (i.e., there exists a neighbourhood U of
e in G in which there is contained no closed subgroup isomorphic to T?).

(d) For each realization X/I" of G, the subgroup I is discrete.

Moreover, if either of (a), (b), (c), (d) is satisfied, then any two realizations of
G are isomorphic, i.e., R(G) = {A(G)/K(G)}.

"Proof. (a)=(b). Let U be a neighbourhood of 0 in X such that

rn(U-U)= {0}

and let p: X - X/I' = G be the canonical projection. Then p|U: U —» G as
a homeomorphism of U onto p(U) is an injective continuous and open map.
Take ¢ ep(U)n K(G). Since

¢()ep(U) for te[—1,1] and ¢(1)=ce,
we have ¢(t)ep(U) for all teR. The mapping
Rat—x, = (plU)"(¢()

is a one-parameter subgroup of X such that x, = tx for some xe X. But x;, =0,
so x=0 and ¢ =0, ie., K(G) is discrete.

(b)=(c). There exists a neighbourhood U of 0 in A(G) such that
K(G)n(U—-U) = {0}. Thus Exp|U: U — Exp(U) is an isomorphism of local
topological groups. Since U contains no circle subgroup, Exp(U) contains no
circle subgroup.

(c)=(d). Let X/A be a realization of G with I' non-discrete and let
p: X = X/I be the canonical projection. For U being a star-shaped neighbour-
hood of 0 in X, we can find yeI’ such that Usy # 0. Then

R>t - p(t-y)eX/I

is a circle subgroup in U.
(d)=(a) is obvious.
Assume now that X/I'e R(G) and suppose that (d) is satisfied. Since

p:X—->X/IT'=G and Exp: AG) -G

are local homeomorphisms as in the proof of (a) = (b), p: X — A(G) is open. By
2.5, p(I') is dense in K(G) and K(G) is discrete, so p(I') = K(G), i.e., X/I" and
A(G)/K(G) are isomorphic realizations.

3.2. THEOREM. Let G be a connected AWL-group. Then the following are
equivalent:

(@) G has a realization X/I", where X has no small subgroups and I is discrete.

(b) G has no small subgroups.

(c) For each realization X/I" of G, X has no small subgroups and I is discrete.
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Proof. (a)=(b). Since I' is discrete, the canonical projection
p:X->X/I'=G

induces an isomorphism of local topological groups.

(b)=(c). Let X/I'" be a realization of G. I is discrete by 3.1, so X has no
small subgroups by the same reasoning as in (a)=>(b).

(c)=>(a) is obvious.

3.3. THEOREM. If X is a locally bounded Fréchet space and I is a closed
non-discrete subgroup of X, then p: X — A(X/I') induced by the canonical
projection p: X — X/TI" is not a bijection. In particular, A(X/T') is not a locally
bounded Fréchet space.

Proof. Since X is a Fréchet space, X/I' and A(X/I') have complete
invariant metrics. Thus, by the Banach open map theorem, if p: X - A(X/I') is
“onto”, then p is a homeomorphism. Let y,eI" be such that y, # 0, y, = 0, and
let t,eR be chosen in such a way that t,y,+0. It is easy to see that

B(t,y,) =0

since tpeU if peK(G)n U and teR. Hence p is not a homeomorphism.

If A(X/IY is a locally bounded Fréchet space, then K(G) has to be discrete,
since Exp: A(A(X/I')) = A(X/T) is an isomorphism.

3.4. COROLLARY. (a) If G is a Banach AWL-group, then K(G) is discrete.

(b) An AWL-group G is Banach iff G is an abelian Banach Lie group.

Proof. (a) follows by 3.3. To prove (b) observe that if G is a Banach
AWL-group, then K(G) is discrete by (a), and then G, = A(G)/K(G) is
a Banach Lie group. On the other hand, if G is an abelian Banach Lie group,
then A(G)/K(G) = T,(G) is a Banach space. Moreover, for the Banach Lie
group the exponential map is locally open at 0.

If A is a subset of a vector space (respectively, a group) X, then by span(A4)
(respectively, Gr(A)) we shall denote the linear subspace (respectively, a sub-
group) of X generated by A.

3.5. DEFINITION. A topological group G is said to be locally generated if
Gr(U) = G for each neighbourhood U of e in G.

It is easy to see that each connected topological group is locally generated.

3.6. PROPOSITION. Let X/I” be a realization of a connected AWL-group G, let
p: X = A(G) be the injection induced by the canonical projection

pX->X/I'=¢G
and let X~ be a basis of symmetric star-shaped neighbourhoods of 0 in X. Then
5(() span(U n IN) = () conv(D).

UeZ UeX
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In particular, if
‘ () span(U N I) # {0},

UeZ

then A(G) is not locally convex.
Proof. Take UeZ. For each ye U N I" and each te R we have p(ty)e U, so

conv(U) o span(p(U n IN) = p(span(U N I") > p((") span(U N I)).
UeZ

3.7. ExamMpPLE. Take L? = L?(0, 1) and h =1 (cf. 2.11). It is easy to observe
that Kf is arcwise connected in this case, so U n Kf generates the whole Kf, for
each neighbourhood U of 0 in L. Thus span(U n Kf) = span(Kf) is dense in
I?, p(L?) is dense in A(Gf), so the convex hull of every neighbourhood of 0 in
A(Gf) contains a dense linear subspace, i.e., equals A(Gf). In fact, A(Gf)
=190, 1) (cf. 2.12).

38. LEMMA. Let i: I - G be a continuous dense injective homomorphism of
topological groups. Then

(@) if I is locally generated, then G is locally generated,

(b) if G is locally generated, then i(I') (with the induced topology) is locally
generated.

Proof. (a) Let U be a neighbourhood of e in G and let V=i~ !(U). Since
UV*=rI, where V"=V+...+V

- meN ntimes
we have
iN) = ivy= [y o
neN neN neN
But
G=U
neN

is an open and hence closed subgroup of G, so G’ o cl(i(I) = G.

(b) Let U be a neighbourhood of e in G and let V= U ni(I'). Clearly,
U < cl(V). The group

H=V
neN

is a closed subgroup of i(I'), i.e., cl(H) ni(I') = H, where cl denotes the closure
in G. On the other hand,

cl(H) = cl(L%V") > Jd(> )y U=6.

neN neN neN

39. THEOREM. Let G be a connected AWL-group. The following are
equivalent:

(@) G has a realization X/I' with I locally generated.

(b) K(G) is locally generated.

4 — Colloquium Mathematicum LIX.1



50 J. GRABOWSKI AND W. WOJTYNSKI

(c) For each X/I'e R(G), I' is locally generated.
Proof. (a)=(b). From the commutative diagram

0 > KI(G) —» A(G)

Tﬁ'r Tﬁ \G

0—>» T —>»X P

where p|I': I' - K(G) is a continuous dense injective homomorphism, we
conclude by Lemma 3.8 (a) that K(G) is locally generated.

(b)=(c). Let X/I' be a realization of G. Choose a neighbourhood Wof 0 in
X and take a neighbourhood U of 0 in X such that

U3=U+U+UcW.

Take ¢ ep(U), ¢ = p(y), yeI'. Hence ¢(t)ep(U) for all teR, i.e., p(ty) = p(U)
for all teR. For each te R we can find y,e I' such that ty—y,e U. We can also
choose y, = 7. Let n be a natural number such that tyeU for —1 < nt < 1.
Since

Y= (yl—))n—lln)'*' +(yl/n_0)a
where

Yr+ l/n_))k/ner,
and

('})k +1/n ™ yk/n)

k+1 k+1 k k
n n n n
we have
ye(U3n ) c (WnT).
Therefore ye Gr(WnT), and thus ¢ €p(Gr(WnT)). This shows that
p(U)n p(I') < p(Gr(WNTI)) = Gr(p(Wn T)),

and hence
Gr(p(U) n p(I)) = Gr(p(Wn I).

By Lemma 3.8 (b), Gr(p(U) n p(I')) = p(I'). Hence
p(I) = Gr(p(Wn ) < p(I'
and
Gr(p(Wn I) = (GH(Wn IN)) = p(I),
so Gr(WnI)=T.

4. Concluding remarks. Theorems 3.1 and 3.9 provide examples of situation
when topological properties of a quotient group G = X/I' are described in
terms of the corresponding closed subgroup I' of a linear topological space X.
We do not know explicitly such a description of G in the case of I' locally
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generated. It would be interesting to have a more complete list of types of
I' from the point of view of resulting quotient groups. Observe that by the
result of [1] such a classification would be simpler for nuclear AWL-groups
than for Banach ones.

Theorem 3.3 implies that, for an AWL-group G with Fréchet locally
bounded Lie algebra A(G), the exponential map is a local isomorphism. Hence
two Fréchet locally bounded AWL-groups with the same Lie algebra A(G) are
locally isomorphic. A similar conclusion does not hold in general — the groups
discussed in Example 2.12 are not locally isomorphic with their Lie algebras.
We do not know how two AWL-groups having the same Lie algebra are
related in general.
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