COLLOQUIUM MATHEMATICUM

VOL. LIX 1990 FASC. 2

SUBSTOCHASTIC TRANSITION OPERATORS ON TREES
AND THEIR ASSOCIATED POISSON INTEGRALS

BY

MASSIMO A. PICARDELLO (L'’AQUILA)
AND MITCHELL H. TAIBLESON (ST. LOUIS, MISSOURI)

0. Introduction. Let P be a transitive nearest neighbor transition operator
on a tree T. We do not assume that T is homogeneous, i.e., that the same
number of edges touch each vertex. For most of this paper* our only
assumption on P is that it is substochastic (which is to say: submarkovian),
i.e., the transition probabilities are positive numbers whose sum at each vertex
is less than or equal to one. P acts on functions defined on T by the rule

PF(u) = p(u, v) F(v).

Functions F such that PF = F are called P-harmonic. Harmonic functions on
trees and their boundary integral representation have been studied in [Ca]:
they can be expressed as “Poisson integrals”, over the natural boundary of T,
of martingales, i.e., finitely additive measures. In the special case of stochastic
operators more explicit representation formulas have been obtained in [KPT]
(in particular in the Appendix). The martingale associated with a given
harmonic function is explicitly constructed by means of an “inverse Poisson
transform”. Explicit formulas of this type are the main tools for the study of
HP? spaces on trees [KPT]. In order to extend the H? theory to the more
general setting of substochastic operators it is necessary to derive an explicit
representation for their harmonic functions. The aim of this paper is to obtain
the Poisson representation by reducing the study of substochastic operators to
the stochastic case.

There is a very natural and well-known instance of a reduction of this
type: For each vertex v let a(v) be the sum of the probabilities of jumping out
of v. Since P is substochastic, a(v) < 1. Then we can modify the operator P by
regarding v as an absorbing vertex with probability 1—a(v). In other words,
we extend the tree T to a larger tree T' by associating (in a one-to-one way)

* The first-named author was partially supported by CNR-Gruppo GNAFA, the second-
named author was partially supported by NSF Grant # DMS 8701263.
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a new transition operator P’ by P|; = P, and p'(v, v') = 1 —a(v), p'(v', v) = 0.
Then P’ is stochastic and its harmonic functions are exactly those that are
P-harmonic on T and that vanish on T'\T. However, no boundary represen-
tation theory is available for this stochastic operator. Indeed, a basic
assumption of both [Ca] and the Appendix of [KPT] is that the transition
probabilities along each edge are positive. There is also a way of enlarging
a tree T to another tree T’ without introducing absorbing vertices: We attach
to each vertex v of T an infinite “hair”, that is, a (countable) half-line of vertices.
P can be extended to a stochastic operator P on T’ by assigning the
probability 1 —a(v) of jumping from v to the first vertex of the attached hair,
and arbitrary probabilities of sum one at the vertices along the hair. The
P-harmonic functions on T are the restrictions of the P’-harmonic functions
on T’ that vanish at the first vertex of each hair. This yields a Poisson
representation of the P-harmonic functions on T, but the Poisson integrals are
now taken over the boundary of T’ rather than of T. The principal problem is
that these types of reductions, when considered on the original tree, leave
things essentially unchanged. In particular, they fail to provide for any
privileged positive harmonic functions. If a stochastic extension P’ has positive
probabilities along all edges, then the constants are P’-harmonic.

The stochastic reduction studied in the present paper associates with each
substochastic operator P a renormalized operator P in a completely different
way. A reference vertex o is chosen and fixed. The transition probabilities of the
operator P are obtained from those of P by multiplication by suitable weights
which are determined by recurrence as we move out from the reference vertex
o. The weights associated with a given edge in the outward and inward
directions are reciprocals so that even when the tree is homogeneous and the
substochastic operator is isotropic its associated stochastic process is not. It
will be isotropic only in the forward direction (see Section 5).

We construct a positive P-harmonic function whose value at a given
vertex is the product of the weights of the edges of the geodesic arc that starts
at o and ends as the vertex. Multiplication by this function transports,
bijectively, the class of P-harmonic functions onto the class of P-harmonic
functions, and the Poisson kernel K of P to the Poisson kernel K of P. (See
Proposition 1 and Theorem 2 for precise statements.) Finally, every
P-harmonic function is expressed as the K-Poisson transform (i.e., the Poisson
integral over the boundary Q with integral kernel K) of the distribution on
Q whose K-Poisson transform is the associated P-harmonic function; the
distributions are in one-to-one correspondence with the class of martingales on
the boundary which in turn are identified with the class of finitely additive
measures on Q.

These results will hold provided that the renormalized stochastic operator
is transient. This is a natural condition since a boundary value theory of this
type for P would not otherwise be available and our reduction to the stochastic
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case would be fruitless. Clearly, the renormalization depends on the choice of
the reference vertex. In Section 4 we will show that under typical uniform
bounds on the rate of escape to the boundary the boundary measures
associated with different reference vertices are equivalent.

In some cases the renormalization can be carried through for transition
operators that are not substochastic. As an application, in Section 5 we
consider the boundary representation theorem for eigenfunctions of the nearest
neighbor isotropic operator on a homogeneous tree, originally obtained in
[MZ]. We give a simple proof for all eigenvalues outside the so-called
“principal series”. The nonisotropic boundary representation studied in [FS]
could also be derived by our approach.

Several questions that we consider on trees are the discrete analogue of
problems originally formulated for the disc. It would be interesting to consider
a continuous analogue (for differential operators) of the renormalization
procedure studied in this paper. To our knowledge no such question has been
considered in the literature. If we limit our attention to the substochastic
operators on homogeneous trees that are isotropic, then the corresponding
operator on the disc is the Laplace operator (or the Laplace-Beltrami
operator, see [FP]). Thus we are led to consider the solutions of the problem
AF = cF in the unit disc, where ¢ is a positive sufficiently smooth function.
Our approach suggests that there could be a bijective correspondence between
solutions of this problem and a class of “harmonic” functions on the disc with
respect to some elliptic operator. This correspondence would then give rise to
a boundary representation of the solutions as “Poisson integrals” (with
a suitable Poisson kernel) of distributions on the circle. If ¢ is positive and we
restrict attention to positive solutions, then the boundary data will yield
positive Borel measures. For a related (probabilistic) approach to the Dirichlet
problem for the operator AF —cF with ¢ >0 and continuous boundary
values, see Section 2.2 of [Fr].

Unexplained notation, terminology, and preliminaries are as in [KPT] or
[FP].

Wolfgang Woess is our collaborator in related work and we gratefully
acknowledge many useful conversations with regard to this paper.

1. Renormalization to the stochastic setting. P is a substochastic, transitive,
nearest neighbor transition operator on an infinite tree 7. We assume further
that each vertex in T has at least two neighbors. We write u ~ v if the vertices
u and v are neighbors. We denote by a(v) the “mass” of P at the vertex v:

a()= Y p, u.

Finally, we fix a reference vertex o and for every vertex v # o we denote by v—
its predecessor in the ordering induced by the reference vertex.
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ProOPOSITION 1. (i) Let b(o) = a(o), and for v # o define

_a(v)—p, v—)
T 1—p(v, v=)bv—)

b(v)

Then the transition operator P defined by
p(v—, v) =p(v—, v)/b(v—), B, v—)=>b(v—)p(, v-)

is stochastic.

(ii) Let B(0) =1, B(v) = b(v—)B(v—) for v # o. Then for every function
F such that PF = F the function F(v) = B(v)F(v) satisfies PF = F.

(iii) The operator F—F = BF is a bijection of the space of P-harmonic
functions onto the space of P-harmonic functions.

Proof. Observe first that for a substochastic transition operator P the

normalization coefficient b(v) is bounded by the “mass” of P at v and is
bounded below by its “forward mass”:

aw)—p, v—) < b(v) < a(v) for every v # o.

It follows that b(v—) < 1, and so the denominator in the expression that

defines b(v) is always positive. Otherwise p(v, v—) =1, which implies that

p(u, v) = 0 if u— = v. But this implies that P is not transitive, a contradiction.
(i) We need to show that

Y.Blo,v) =1,
and for v # o,
pv,v=)+ Y P, u)=1.

uu—=v

The first follows from the definition: p(o, v) = a(o) p(o, v). The second identity
follows easily from the definition of b(v) by observing that

Y. plv,u)=a()-p,v-).

uu—=v

(i) We have

Y B, wyFw+p, v—)F(v—)

uwu—=v

= Y p(u, v) F(u) B()+p(v, v—) F(v—) B(v) = F(v) B(v) = F(v).

uu—=v

(iii)) Since B is a positive function, we can divide by it. The calculation in
(ii) shows that F is P-harmonic if and only if FB is P-harmonic.
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Remark 1. The function 1/B(v) is a positive P-harmonic function and
(1/B)~ = 1. The stochastic process with “law” P is Doob’s “associated process”
of (P, 1/B) in the sense that

p(u, v) = p(u, v) B(u)/B(v) for every u, v

(terminology as in [Do]; in the terminology of [KSK], Section 8.2, this is
called a “B-process”).

Following [Ca], but adopting the notation of [KPT], we consider
the combinatorial version of the “hitting probability kernel” (which is
now an abuse of terminology since P is substochastic!) which is defined as
follows:

DEFINITION 1 (hitting probability). U(u, v) = Y {p(, v,) p(v,, v,)... p(Vs-1, V)},
where the sum is taken over all finite sequences of successively adjacent vertices
Uy, Vgy ovey Upy Withu ~ v, v,y ~uand v;#vforall j=1,..., n—1 Then,
as in [Ca],

U(v, v) = ) p(v, w) U(w, v),
U@, v=)=p,v=)+ Y pwUu v)U(,v-),

uu—=v

(1)

which is the combinatoric version of the Strong Markov Property.

Denote by U the kernel defined in the same way, but in terms of the
stochastic transition operator P. We now establish the relationship between
U and U. The next statement can be rephrased (and easily proved) in terms of
the “associated B-process” (see Remark 1 and [KSK], Section 8.2). In the spirit
of this paper we give a combinatoric proof.

PROPOSITION 2. U(u, v) = U(u, v) B(v)/B(u) for every pair u,v in T.

Proof. As the kernels U and U are multiplicative along rays ([Ca],
Proposition 2.6), it is enough to establish the case u ~ v. That is, it suffices to
show that

Uv—,v)=bw-)0@w—,v) and U(,v—)= U@, v—)b-—).

Every path from v— to v that hits v only at the end splits into two segments:
the first segment, possibly empty, is a closed loop which begins and ends at
v—, and may hit v— more than once, but it never hits v. The second segment
is the final jump from v— to v. But in a tree closed loops can only be
obtained by running through geodesic arcs an even number of times, the
same number of times with one orientation as the other. Because of the
relation between P and P (Proposition 1 (i)) successive cancellations yield

HP(U.'a Vis1) = Hﬁ(l’i’ Vit1)
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on each closed loop. On the other hand, the forward jump has “probability”
p(v—, v) = b(v—)p(v—, v), and therefore

Uw—, v)=b—)0@w—, v).
The same argument shows that
U(v, v—) = U, v—)/b(v—).

We remind the reader that we assume that the stochastic transition
operator P is transient. This is equivalent to the requirement that U(u, u) < 1
for all vertices u. It follows from Proposition 2 that U(u, u) = U(u, u) for all
vertices u, and so: P is transient if and only if U(u, u) <1 for all vertices u.

2. The martingale associated with a nonmarkovian transition operator. It
was pointed out in [KPT], Section 2, that with each stochastic transition
operator P we can associate, in a natural way, another stochastic transition
operator with “forward only” transition probabilities #(v—, v). The weights
#i(v—, v) are the relative volumes of a “martingale structure” (i.e., a family of
weighted partitions) on the boundary Q of the tree, and P-harmonic functions
on T can be represented as Poisson integrals over 2 of distributions defined on
this structure. It turns out ([KPT], Proposition 2) that

po—, )[1-00,0-)]
Z ﬁ(v—s W)[l_ﬁ(wa U—)]

ww— =p-—

(2 T(vo—, v) =

The normalization in (2) is chosen so that

Y  #v—,w=1.
WWw— =0—

In the present setting we have two transition operators. One of these, P, is
stochastic and is associated with a family of weights #(v—, v) as in (2). The
other operator, P, is substochastic. We will see that there is a natural family of
weights: n(v—, v) associated with P and at each vertex v the “relative forward
probabilities” will add up to the substochastic normalization factor b(v). From
Proposition 1 and (2) we have

pv—, »)[1-U(, v-)]

3) f(v—, v) = .
. -z_ —p(U—, w)[l—fj(w, U—)]

We define |

4) n(v—, v)=bv—)A(v—, v).

We are now ready to introduce martingales associated with the weights
7 and “substochastic martingales™ associated with the n’s. Following [KPT],
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consider the boundary Q of the tree T, i.e., the set of all semi-infinite rays
(geodesics) starting at the reference vertex o. For each v in T denote by E, the
subset of Q that contains v. The collection {E,: ve T} is the basis of a compact
topology on . Finally, equip Q with the Borel measure v defined as the hitting
measure on 2 of the transient process determined by the stochastic operator P.
Then, as was shown in [KPT], the weights 7 are given by

#(v—, v) = ¥(E,_)/¥(E,).

On the other hand, the weights = do not give rise to a measure on Q. Instead
they determine a subadditive functional v over €(£2) determined by the rule
W(xz,) = B@) ¥(E,)

The g-algebra o/, generated by the sets {E,: dist(v, 0) = n} gives rise to an
expectation &, on &/, -measurable functions on 2, defined in terms of the
measure 7. We will consider martingales f'= {f;: k=0, 1,2,...} on @, with
respect to the family of expectations {&,}. By definition, f} is constant on those
sets E, for which dist(v, 0) > k. As in [KPT] we shall realize a martingale { on
Q as a function on the vertices of T which (by a convenient abuse of notation)
we denote again by f. (Warning: In the terminology of [KPT] this function is
denoted by f'. The notation f in that reference has a completely different
meaning.) This function is defined by

1 .
— fidv

f(U) =]:||Ev = V(Ev) i

for any k > n = dist(v, o). In this setting the martingale property is given by the
additivity condition

(5) Y &, w)f(w)=f(v) for every v.

These relationships can also be interpreted in terms of distributions on the
boundary. In this setting a distribution is a finitely additive linear functional on
the linear space generated by characteristic functions of the sets E,. It is easy to
check (using f for yet a third construct) that f(yg)= V(E,) f(v) is a dis-
tribution.

In the spirit of Proposition 1 we now define a “substochastic martingale”
associated with the weights n(v—, v) (as defined by (4)) as a function f on
T such that f(v) = f(v)/B(v) for f a martingale with respect to the weights {#}.
It is now obvious that f has the martingale property with respect to the
weights {7} if and only if f satisfies the analogous property with fespect to the
weights {n}; ie.,

Y @, w)f(w)=f(v) for every v.

wiw— =p

Indeed,
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Y &, wfw—fw)= Y =@ w)f(w)—f() for every v

wiw— =9 wiw— =v

as follows from (4) and (5).
We finish this section by deriving a more convenient expression for (2)
which will be useful in Remark 4 below.

NoTtATION. We write vow if w— =u.

LEMMA 1. If u—v—w, then

_ B, w[1=Uw, v)] U, u)
o, w[1-U(v, w)] b(v) b(w)

Proof. In view of (2), the statement is equivalent to the identity

~

(v, w)

Y. P, )[1-U(s, )] = b@)b@)[1-U(v, W)/, ).

S:Is—=v
We now make use of the equalities
a@)—p, W= 3 p@>s)

Sis—=v

and

U, u)=pw, w+ Y, B, s)U(s, v)U(v, u)

S s—=v

— P, Wb+ ¥ ”,‘)‘;;;)U(s, 0 00, u).

Then the identity above reduces to
a(v)—p, u)—b(v) = —p(v, u) b(v) b(u).
This follows, in turn, from the definition of the function b in Proposition 1.

3. P-harmonic functions and their Poisson representations. We start by
recalling the probabilistic definition of the Poisson kernel.

DEFINITION 2 (Poisson kernel). For v in T and @ in Q,

_ UG, s)
K= lm i

where the limit is taken in the natural topology of Tu Q.

The limit always exists for nearest neighbor operators on trees because
the quotient on the right-hand side stays constant as s moves in the ray w past
the confluence point with the ray “coming from v”. It was noted in [Ca]
(Theorem 2.1 and Proposition A4) that each P-harmonic function F can be
expressed as the Poisson integral of its associated martingale:
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For every u in T,

(6) F(u) = [ K(u, 0)dpg(0),
Q

where y, is a martingale on Q. For the stochastic operator P, this martingale is
the associated martingale of Section 2. By realizing martingales over Q2 as
functions on T; as in Section 2, we obtain explicit expressions for f in terms of
F and F and conversely:

LemMa 2 ([KPT], Appendix). Suppose P is a stochastic transition operator,
F is P-harmonic, and f' is the associated martingale.
(i) Inverse Poisson transform:

Fw)-UO@, v=)F@v-)
1-U(v, v—)

(i) Poisson representation: Let m = dist(v, 0) and let v, denote the k-th
vertex in the ray from o to v. Then

floy=Fo), fo=

for v #o.

Fo)=flo, Fw= é [1~T @, %-1)1U(v, v) f(v)+ U, 0) fl0).

We want to establish analogous relations in the substochastic setting.

THEOREM 1. Suppose P is a substochastic operator on a tree, F is
P-harmonic, and f is its associated substochastic martingale. Then, with notation
as above, we have:

(i) Inverse Poisson transform:

Fw)—U(v, v—)F(v—)
1-U(, v—)

fl0)=F() f(v)= for all v #o.

(ii) Poisson representation:

FO) = 3 (1= 00, 001U 5) )+ UG, 0) £(0).
k=1
Proof. To prove (i) note first that f(o) = f(0) = F(0) = F(0). For v # o,
Lemma 2 yields
Fv)—-UOWw, v=)Fv-)
Bw)[1-U(, v—)]

_F(0)=U(v, v=) Fo—)/b(v—) _F(v)=U(v, »—) F(v—)
- 1-UO(v, v—) - 1-U(v, v—)

f@) = f(v)/B(v) =

by Proposition 1 (ii) and Proposition 2. Part (ii) now follows by inverting this
formula.

9 — Colloquium Mathematicum LIX.2
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Denote by K (v, w) the Poisson kernel of the nonstochastic process P, and
by K (v, w) the Poisson kernel for the associated stochastic process P. We now
write the Poisson representation formula as an integral representation over the
boundary.

DEerFINITION 3 (Poisson integral). The stochastic Poisson integral of the
(stochastic) martingale (distribution) f on Q is the function on T given by

A f(v) = [ K(v, w)df(@) = lim [ K(v, ) f(0) d¥(o) = fTK@, )],
Q2 k— o0 2

where in the last expression f is being interpreted as a distribution and, as

usual, the integral in the third term is independent of k as soon as k > dist(v, o).

Similarly, let

Hfw) = [ K, w)df (@) = fTR @, )].
Q

THEOREM 2. (i) For every u in T and o in Q, K(v, w) = K(v, w)/B(v).

(ii) Let F be P-harmonic, and denote by F its associated P-harmonic
function and by f its (stochastic) martingale. Then F = X'f. In particular, every
positive P-harmonic function is the Poisson integral of a positive Borel measure
on Q.

(iii) Denote by B the “stochastic renormalization” of Sections 1 and 2 (that
is, multiplication by the function B), and by B~' the operation of multiplication
by the function 1/B. Then the following diagram commutes:

|

N ——————— Ty

F

/

F ]
B-1
v 4 v 4

/
—
Proof. Once part (i) is proved, the remainder of this theorem is
a restatement of the previous results. (For part (ii) observe that if F is positive,
then so is F and, consequently, f is a positive and finitely additive function and
it follows that f is g-additive.) To prove (i) denote by ¢ the vertex in the
geodesic @ which is closest to v, and let v = vy, v,, v,, ..., v, = ¢ be the finite
geodesic arc from v to ¢. Then K(», -) and K(v, -) are both constant on the sets

E,cQ j=0,1,...,n On E, we have

_U@,v) _ U, v) Bv)/B(v)
U(o,v) Ulo, v)) B(v)/B(o)

K(@, o) = R(v, 0)/B(v)

by Proposition 2.



TRANSITION OPERATORS 289

We observe that an explicit form for the Poisson formula is available in
two ways. One of these is by Definition 2, and the other is by an application of
Lemma 2. It is easy to see that the function

k(v, w) = (1/3(xe,) " * 1. (@)

is a martingale kernel associated with the process P in the obvious sense, that
is,

fo) = ’{E(v, ) df () = fTk(, *)].

Observe that k(-, ) is the martingale associated with K (-, g;) so that part (ii) of
Lemma 2 provides a formula for the computation of K.

Remark 2. The reader should observe that, in the diagram of the
boundary representations in Theorem 2 (iii), the arrow: f— F must be carefully
interpreted. Indeed, the seemingly “natural” Poisson representation

F = [ Kdf = lim | Kf,,dv
Q m Q

does not make sense for nonstochastic martingales, because a martingale of this
type does not define an integral over Q (or, equivalently, a subadditive
functional on €(£2) does not give rise to a measure on ). Indeed, the purpose
of the theorem is to reinterpret this “Poisson representation” in terms of
meaningful Poisson integrals. Observe, however, that by lifting integrals over

Q to sums over T, we can give' a direct meaning to the expression [ Kdf: the

Q
Poisson representation formula of Theorem 1 (ii) should be understood in this
sense.

Remark 3. In the proof of Theorem 1 we made use of nontrivial results
about the inverse Poisson transform proved in [KPT]. For the reader’s benefit
we will now give a direct proof of the fact that the formula of Theorem 1 (i)
does, indeed, give rise to a substochastic martingale. Let

f@)=(Fo)—=U, v=)F@w-))/(1-U(,v—)) for v+#o,
S(0) = F(o).
By (4), if v— = o, then
n(0, v) = b(0)n(o, v) = b(0) plo, v) [1 - U (v, 0)1/D,,

where

D,= Y p(o, w[1—-U(w, 0)].

w~o

Therefore,
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. %0, )10 = 22(E p(0, ) F9)~ 3. plo, 0)[1~U(w, 0)] F)
b
= (1= X plo, ) U, 0)) F(o)
1
_ (D_ S plo, ) [1-T, 0)]>f(0) =1 (o),
because

b(o) = a(0) = ). p(o, v).

v~o

For v # o, we obtain the identity

2wl w) f(w)—f ()

wiw— =p

— U(U’ U_) _ _
= bo—) p, v—)[1-U(®, v—)] (sgwp(v, s)F(s)—F(r)) =0

by making use of Lemma 1.

Remark 4. It is interesting to compare our Poisson representation with
that of [Ca]. It was shown in [KPT], Proposition 2, that the martingale u, in
(5), regarded as a finitely additive measure on £, is given by

Fv)—U(, v—)F(v-)

#F(Ev) = U(O’ U) 1 —U(U, U—) U(U—, v)'

Actually, this formula was proved in [KPT] for stochastic operators only.
However, the proof relies on the combinatorial Strong Markov Property and
holds for all transient operators. By making use of Proposition 1 (ii) and
Proposition 2, it now follows that

Fw)-UOw,v—)Fo—-)

- ~ = fs(E,).

1-U(@, v—=)U(@w—, v)

Therefore the nonstochastic Poisson representation of [Ca] is actual]'y given by

the Poisson integral of the same (stochastic) martingale which arises in the
renormalization procedure studied in this paper.

up(E,) = Ulo, v)

4. Change of reference vertex and regularity. The renormalized stochastic
operator P depends not only on P but also on the choice of reference vertex.
Therefore, for different choices of origin we have different boundary represen-
tations for the same P-harmonic function F; of course, the Poisson kernels also
vary so that the Poisson integrals coincide.
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Consider a new choice of origin o' and the associated renormalizing
function B'. On an elementary open set E, of Q, the ratio of the martingales
associated with the origins o and o’ is B(v)/B'(v). It is conceivable that this
ratio is bounded, which would imply that the associated finitely additive
measures on Q are equivalent. We do not know if this is true for a general
substochastic operator. On the other hand, the question concerns the asymp-
totic ratio of the rates of outward dissipation of mass for the process P, for
two different choices of outward orientation. Therefore, it is natural to restrict
attention to processes with uniform outward rate of escape. A natural
condition of this type, considered in [KPT], is that in the ordering induced by
some choice of origin, and for some § > 0, p(v, v—) < 3—46 for every v # o.
We now show that, under a relativized version of this condition: p(v, u)
< a(v)(3—38), we have B(v)/B’(v) ~ 1 for all v, with constants that depend only
on m = dist(o, 0').

Choose a ray o = (o, vy, v5, ..., 0, ...), and let

b, =b(v), b,=>b'(v), and p, = p(v, vx_y).

The b, satisfy the recurrence relation b, = (a,—p)/(1 —p,bx-,), and if k > m,
the b, satisfy the same recurrence. We observed in Section 1 that a,—p,
< b, < a,. This, together with p, < a,(3—9), yields % < b,/b, <2 for all k.
Now take a k> m. Write by = (1+¢)b,. Then

b;c+l=1_pk+lbk= 1 —py+1by —1—¢ Pi+1by
bys1 1—pxs1by  1—prsi(1+¢)b, kl—pk+l(1+£k)bk

In other words, by (/bx+; = (1+&+,), and

— Pr+1by — Pr+1by
kl—pk+l(l+8k)bk kl—pk+lb;c

We have py..b, < 3—0)ay+ b, <3—6. Similarly, 1—p;, b =>4+6. Con-
sequently, |e+,| < Alg), where A =(3—9)/(3+) < 1, and so

0 <&y

Y led < A(1—2),

k=Zm

since [¢,| < 1. Thus

B)/Bm<2"[[(1+g)<C-2m
k=m
for a constant C > 0 independent of v. By symmetry, B'(v)/B(v) = (1/C)-2™™.
This completes the proof.

An examination of the proof shows that the restriction on the relative size
of the transition probabilities can be weakened if we have particular infor-
mation on the size of the a(v) or other information about the process P.
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5. Applications.

1. Substochastic HP theory on trees. H? spaces related to nearest neighbor
stochastic transition operators on trees have been introduced and studied in
[KPT], under suitable regularity assumptions, similar to those considered in
Section 4. Namely, the stochastic operator P should satisfy p(v, v—) < 4—6,
P(v, u) = 6 for all pairs of neighbors u, v and for some positive § independent of
u and v. Given a substochastic operator P, we can use the stochastic
normalization process to transfer to P the H? theory of [KPT]. In this way, all
the results of [KPT] extend to the substochastic operators P for which
P satisfies the’ above bounds. By making use of Proposition 1 it is straightfor-
ward to check when these conditions are satisfied. An instance is given in the
next subsection.

2. Boundary representation of eigenfunctions of the isotropic Laplace
operator on a homogeneous tree. So far we have limited attention to substochas-
tic transition operators. However, the stochastic renormalization can work for
other operators as well. The necessary conditions for this method are that the
renormalization weights be nonzero and that the renormalized stochastic
operator be transient. In this section we apply our method to obtain
a boundary representation for eigenfunctions of the isotropic nearest neighbor
transient operator on a homogeneous tree. Let T be a homogeneous tree with
q+1 edges touching each vertex, and denote by R the nearest neighbor
isotropic operator on T: r(u, v) = 1/(q+1) if u ~ v. We shall obtain, for some
eigenvalues, a variant of the following representation theorem proved in [MZ]
(see also Chapters 4 and 6 of [FP]):

Let F be a function on T such that RF = yF for some complex number y.
Denote by v the “harmonic” or “equidistributed” measure on Q, that is, v(Q2) = 1
and v(E,) = v(E,) if dist(v, 0) = dist(w, 0). Choose a complex number z such that

1 .
y=m(q=+q1") and z # iknflogq, keZ.

(If y* = 4q/(q+1)?, there is one such z, and two otherwise.) Then there exists
a martingale f= {f;} on Q such that, for every v in T,

F(v) = [ K*(v, w)df(w) = lim | K*(v, w)dv(w).
Q i Q

A boundary representation theorem as complete as this cannot follow by
our renormalization method. Indeed, our approach reduces attention to the
study of P-harmonic functions; the problem RF = yF is transformed into
PF = F fot P =y~ !R. Clearly, this restatement of the problem is meaningless
for the eigenvalue y = 0. However, it will be necessary to discard other
eigenvalues as well, in order to make sure that the renormalized weights do not
vanish and that P is transient, as we now show.
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By applying the transformation of Proposition 1 (i), we generate a sequen-
ce of weights b;. Because of isotropy the weight depends only on the distance of
the vertex from o. The recurrence relation is

-1
(@+1)y—b;

This recurrence relation fails to generate a sequence {b;} only if b; = (g +1)7
for some j. For the moment we assume that does not happen. If the sequence
{b;} converges to a limit b, then b satisfies the condition b>—(q+1)yb+q =0.
By setting b = ¢, it follows that

bj+] ,j>0., b0=

~2 | -

_qz+ql—z
q+1

Moreover, the renormalizing function B is radial, that is, it depends only on the
distance of the vertex from o. If dist(v, 0) = n, then

n—1
b(v) = [] b;.
j=0

Moreover, 1/B is P-harmonic, by the proof of Proposition 1, provided only
that b; # O for all j. Then 1/B is a radial y-eigenfunction of R, and 1/b(0) = 1.
Therefore, by the results of Chapter 3 of [FP], 1/B coincides with the “spherical
function” ¢, associated with the eigenvalue y. The recurrence relation fails (i.e.,
(@+1)y = b; for some j) exactly for those values of z for which ¢, has zeros.
With an abuse of notation, let us denote by ¢,(n) the value of ¢, on vertices at
a distance n from o. Then the formula P,(z) = ¢,(n) defines a polynomial of
degree n and gives rise to the sequence of orthogonal polynomials for the
Plancherel measure of the convolution algebra of the radial functions (see [FP]
and [Cal]). It is well known that the zeros of these polynomials are contained in
the support of the Plancherel measure. In the parameterization used above, this
is the line Re z = 1. In fact, ¢, does not necessarily have zeros for every z in this
line, but for the sake of implicity, we shall exclude all the eigenvalues
corresponding to this line (the so-called “principal series” in the terminology of
[FP]). The explicit formulas of Chapter 3 of [FP] show that, outside the
principal series, the sequence ¢,(n) is asymptotic to an exponential sequence,
and therefore b, = ¢,(n)/¢,(n+1) does have a limit for the range of eigen-
values that we are considcring. The excluded set is the real line segment

(—2\/;1/(q-+1), 2\/5/(q+1)). This range is much larger than the set of
eigenvalues which make P = y~!R substochastic. The latter set is simply

{z: y > 1} = {z: Imz = 2kn/logq for some ke Z, |Rez—3| > 1}.

However, to make use of the renormalization method we first must show that
P is transient. By Proposition 1, if v # o and dist(v, 0) = n, then
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Bo—, 5) = 1 __$.n+1)
’ (@+1)yb(v—) (g+1)ye.(n)
whereas
N _ ¢.(n)
P, =) = ) yd 1)

Therefore, the explicit formulas for ¢, (see Chapter 3 of [FP]) show that for
large n

@ N +q ) if z=s+it with 5> 4,

Py, v—) ~ {qs/(qs+ql-s) if z=s+it with s < f

It follows that if Re z # 2, there is a constant 0 < 6 < 4, which depends only on
z, such that p(v, v—) < 1—4 for all but, at most, a finite number of vertices.
This implies that P is transient (see the appendix to [KPT]).

Since the nearest neighbor transition probabilities are constant for the
operator P and the b, converge to a nonzero limit, the lower bound condition is
met trivially.

Thus the renormalization applies for every eigenvalue outside the prin-
cipal series and leads to the representation theorem for the corresponding
eigenfunctions of R as boundary integrals of martingales. It is interesting to
compare our boundary representation and that of [MZ]. Both these integral
representations are of the type

F(v) = !)K(v, ) f(w) dv(w),

where v is a positive Borel measure on @, K is an integral kernel and f is
a martingale (regarded as a sequence of locally constant functions on ). Let us
denote by (vg, Kz, fz) the measure, kernel, and martingale of [MZ], and by
(vs, Kp, f3) the triple of this paper. Observe that we now write K instead of K 5
for consistency of notation; indeed, our integral kernel is the Poisson kernel for
the nonstochastic operator P = y ! R. On the contrary, we adopt the notation
(vs, f;) because our boundary representation involves the hitting distribution
and the martingale on Q associated with the renormalized operator P (see
Theorem 2 and Remark 2).

However, the measures vy and v; coincide. Indeed, vy is the equidistributed
probability measure on Q: vg(E,) = vg(E,) if dist(v, 0) = dist(w, 0). On the
other hand, the operator P = y~!R is isotropic, and therefore the weights n of
Section 2 are isotropic in the forward directions. Therefore v; is also
equidistributed. On the contrary, K} # K. Indeed, the Poisson kernel K is
given by (see [FP], Chapter 3) Ki(v, w) = q #**, where H(v, w) is the
“horocycle number”, which is the number of edges shared by the arc from o to
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v and the infinite ray (see [Ca] for more details about horocycles on trees). Let
us now compute Kz. By Theorem 2 (i),

Kﬁ(vs w) = KP(U’ w)/¢z(v)

By Definition 2, K p(v, @) = Up(v, ¢)/Up(o, c), where c is the confluence point of
the ray w with the arc coming from v, that is, the vertex in w at distance H (v, w)
from o. Let now up, = Up(u, v) for u ~ w. (Remember that P is isotropic.) As U,
is multiplicative, it follows that K,(v, w) = uf®*. The number u, can be
computed by using (1):

up—(1+1/g)yup+1/q =0.
The corresponding equation for the operator R is
ug—(1+1/q)ug+1/9 =0,

whose solutions are uy = 1/q and ug = 1. The former solution leads to the
Poisson kernel Kg, the latter to the trivial positive harmonic function 1.
Returning to the operator P, we obtain the two solutions in the form

up = (1/29)((g+ 1)y £/y*(g+1)*>—4q).

One of these two numbers, according to the value of y (and so of z), is used to
form the Poisson kernel (see [FS] for more details). It is easy to see that, for
generic y, K} # K.

3. Boundaries of graphs with tree-like foliations. Consider the Cartesian
product of a homogeneous tree T and a finite set. For simplicity we restrict
attention to a set with two elements. The resulting graph can be visualized as
a “sandwich” of two copies of T: a “lower” tree T, and an “upper” tree T;. In
other words, this graph I' is a “fiber bundle” with base T and fibers all equal to
Z, = Z (mod 2). Let P be a nearest neighbor, stochastic transition operator on
I’ which is a convex combination of the isotropic, nearest neighbor, stochastic
transition operator on the base T and of the symmetric operator with
probabilities 4 on the fiber Z,. A study of the Poisson and Martin boundaries
associated with the operator P will appear in a forthcoming paper [PTW].
Denote by F; (i = 0, 1) the restrictions of a P-harmonic function F to the lower
and upper trees T; (i = 0, 1), respectively. The determination of the boundary of
P on I can be reduced to a problem on the tree T by considering, instead of F,
two new functions on T defined by F, = Fo+F, and F_ = F,—F,. It is easy
to see that F, is R-harmonic, whereas F_ is an eigenfunction of R for the
eigenvalue 3. In fact, F is P-harmonic on I if and only if F, and F _ have the
properties described. We can then get a Poisson representation theorem for
P-harmonic functions on I' on a boundary which is a Cartesian product of the
boundary of T with Z,. The boundary values are vector pairs of distributions
on the boundary of T. It turns out that if F is a P-harmonic function that is
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either nonnegative or bounded, then F_ = 0. This says that the Martin and
Poisson boundaries of (P, I') are both one-dimensional, being isomorphic to
the boundary of a single tree, while the full boundary is two-dimensional.
Details will appear in [PTW].
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