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1. Preliminaries. We consider real-valued functions defined on a closed
bounded interval [a, b]. Given such a function f and any interval I = [z,y] C
[a,b], we write f(I) = f(y) — f(z). We use “C” to denote set containment
and “C” to denote proper containment. Any collection of intervals men-
tioned below shall be assumed nonoverlapping. Let f be as above and
® = {pr}2, a sequence of convex functions defined on the nonnegative
reals such that for each &,

(1) ¥x(0) = 0 and pi(z) > 0 for z > 0,
(ii) @k is nondecreasing and i (2) — oo with z, and
(iii) for each z > 0, @r41(z) < ().

For each positive integer n, we define the #-modulus of variation of f
on [a,D], vu(n,®,f) = v(n,d,f,[a,b]) to be the supremum of the sums
3 %=1 ?x(1f(Zk)]), taken over all collections {Ix}?_, of n intervals in [a,b].
This generalized modulus of variation has many of the properties of the
modulus of variation introduced by Chanturiya [C), for instance:

(i) v(n,®,f) < v(n + 1,9, f),
(ii) v(m + 2,9, f) < v(m, ®, f) + v(n, 9, ),
(iii) v(n,d, f,[z,y]) < v(n, P, f,[a,b)) if [z, y] C [a,d], and
(iv) v(n, B, po; e fi) < Xpeq akv(n, D, fi), i 0k =1, ax > 0.

The last inequality holds since the ¢, are convex and nondecreasing, hence
continuous.

1.1. LEMMA. Let c € [a,b]. For any f, v(n,®, f,[a,b]) < v(n,d, f,[a,c])
+ v(n, ?, f,[c.b]) + p1(B), where B = sup f —inf f.

Proof. Let {Ix}}_, be a collection of intervals in [a, b]. Let {j;} be the
set of integers with j; < jiy1 and I, C [a,c] for all ¢, and let {k;} be the
set of integers with k; < k;4+; and Iy, C [c,b] for all i. Let r be the integer,
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if any, such that c is in the interior of I,.. Then
Yo ex(1FUIND = D @il F LN + Y- er (LFTID + e (AT
k=1 t ]
< Z @5 (1F(I5)]) + Z:sok‘(lf(fk.-)l) + ¢p1(B).

Taking suprema gives the result, since v is increasing in n. =

Next, we give a sufficient condition for a function to be a #-modulus of
variation.

1.2. DEFINITION. Let h be a nondecreasing function on the nonnegative
integers with h(0) = 0, and & be as above. Then h is called ¢-concave if
the sequence ¢ (h(k) — h(k — 1)) is nonincreasing.

1.3. THEOREM. Let h be ®-concave. Then there is a function f such that
‘U(‘n, P, f) = h(n)‘

Proof. Let ax = ¢;!(h(k) — h(k — 1)) and define f on [0, 1] by

r 0, z=1,
= 1 1
> (—1)kHla,, <z<-, n=1,2,...,
f(z) = k=1 n+1 n
lim su 1)k, +hm1nf 1)k+1g z=0.
[ n_’wp Z( )" ak E 1) k]

Then for any n, sup Y ;_, ¥k(|f(Ix)|) is achieved by taking I with | f(I;)| =
aj, and we have

v(n,®d, f) = Z ¢k(ar) = h(n). »
k=1

If h is nondecreasing and concave (i.e., h(tn + (1 — t)m) > th(n) +
(1 — t)h(m) as long as h is defined at n, m and tn+(1—t)m), Chanturiya [C]
has shown that h is a modulus of variation of some function f (this may
be seen by taking ¢i(z) = z in the above); if h is also #-concave, we have
shown that A is a #-modulus of variation for some function g. However, the
functions f and g are usually different.

Let @ be as above and h a positive nondecreasing #-concave function
on the positive integers with h(k) — oo. (For example, ¢x(z) = z/k and
h(k) = E;;l 1/3.) Then there is an f with v(n,®, f) = h(n). It is evident
that f is not of #-bounded variation, but it is the case that v(n,®, f) =
O(h(n)). With this in mind, we make the following definitions:
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1.4. DEFINITIONS. Let @ be as above and h a positive nondecreasing
function on the positive integers (h need not be #-concave) such that

n
(*) for each z > 0, ngk(z)/h(n) — 00 as n — 00.
k=1
We define #V[h]* to be the class of functions f, defined on [a, b], for which
v(n,®, f,[a,d]) = O(h(n)). We also define #V[h] to be the class of func-
tions f such that kf € ®V[h]* for some k > 0. (We will soon see the reason
for condition (*).)

1.5. THEOREM. Let &, hy, and h, be as above.

(a) If hy is ®-concave and hy(n) = o(hy(n)), then ®V[hy]* C ®V[hy]*.
(b) If hy ~ hg, then SV [h1]* = BV [hy]".

Proof. (a) Let f € ®#V[hy]*. Then v(n,®, f)/h2(n) < v(n,d, f)/hi(n)
for large enough n. Since v(n,®, f) = O(hi(n)), f € #V[he]*. Next, we
must show thereis an f € ®V[h,]* with f ¢ &V [h,]*. By Theorem 1.3, there
is an f with v(n,®, f) = ha(n). Then f € &V [h,]*, but v(n,®, f)/hi(n) =
ha(n)/h1(n) — 0o, so f & SV [h]*.

(b) Let f € #V[h;]* so that there is a positive M with v(n,®, f) <
Mhy(n) for all n. Then v(n,®, f) < M(hy(n)/A) for some A, so f €
DV [hy]*. If f € ®V[hy]*, there is a positive N with v(n,®, f) < Nhy(n) for
all n, so v(n,®, f) < N(Bh;(n)) for some B and f € V[h]*. =

Many of the generalized bounded variation spaces that have been con-
sidered can be obtained by making the proper choices of & and h. If
vx(z) = z for all k, and h(n) = 1, then V[h] = BV; if A = {A}2,
is a A-sequence in the sense of Waterman [W], ¢i(z) = z/Ak, and h(n) = 1,
then #V[h] = ABV; if pi(x) = z for all k, and h is concave, then #V[h] is
the Chanturiya class V[h].

The next result follows easily from Lemma 1.1; the second part since
v(n, P, kf) increases as k increases.

1.6. PROPOSITION. Let ¢ € [a, b].

(a) If f € ®V[h]* on [a,c] and f € BV [h]* on [c,b], then f € ®V[h]* on
[a, b].

(b) Part (a) holds when the “*” is removed. »

1.7. THEOREM. (a) If f & ®V[h]* on [a,b], then there is an z € [a,d]

such that f @ ®V[h]* on all closed intervals containing a neighborhood of x.
(b) Part (a) holds when the “*” is removed.

Proof. We will consider (b), as (a) is similar. Assume f ¢ #V[h] on
[a,b], and divide [a,b] in half. Then, by Proposition 1.6(b), f ¢ #V[h] on
at least one of these halves. Call such an interval J; and divide J; in half.
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Then f & #V[h] on at least one of the halves of J;. Call this interval J,
and divide J; in half. Continuing in this manner we obtain a sequence of
nested intervals {J;}$2, such that |Ji| | 0 and f & #V[h] on Ji for each k.
The required point is z € (), J&, since every neighborhood of z contains
one of the J;. m

The next result gives the reason for condition (%) in Definition 1.4.

1.8. THEOREM. If f € ®V[h], then f is bounded, and has only simple
discontinuities.

Proof. If f is unbounded, pick nonoverlapping intervals {Ix}$2, such
that | f(Zx)| > 1 for all k. Then

Yo ee(lFI) ) er(1)
v(n,d, f) 5 k=1 > k=1
h(n) ~ h(n) ~  h(n)

and v(n,®d,.f) # O(h(n)). Now suppose f has a discontinuity that is not
simple. We may assume f(z+) does not exist for some z € [a, b]. Then there
is a positive € and a sequence of nonoverlapping intervals {Ix = [a, bi]}52,
with ax |  and | f(Ix)| > € for all k. As above, we obtain v(n,®, f)/h(n) —
00. =

Recall that f € ®V[h]* if and only if there is a positive M with
Y r=1 Px(1f(I)]) £ Mh(n) for all collections {Ix}52, and all n (the same M
must work for all {I;}§2,.) This condition can be weakened:

1.9. THEOREM. f € ®V[h]* if and only if for each collection {I;}5,
there is a positive M (which may depend on {I;}2,) such that

— 00 as n — 00,

> er(IfIx)) < Mh(n)
k=1

for all n.

Proof. The “only if” part is clear from the definition of &#V[h]*.
Conversely, assume f ¢ ®V[h]*. If f is unbounded, we may obtain the
result by applying the technique used in Theorem 1.8. Otherwise, let
B = sup f —inf f, and let z be the point provided by Theorem 1.7(a).
Pick n} > 4 such that h(n]) > 2¢;(B) and v(n}) > 2h(n}) (since h is
increasing). Then there are intervals {Ik}:il such that

> @r(IF(Ik)]) > 2h(n}).
k=1
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Hence, Z',:_;__l ex(If(Te)]) > h(n}) + 2¢1(B). By deleting the intervals con-
taining z, if any, we obtain {Ix};L, with

S e(lf D) > h(ng) > h(m).
k=1

Note that n; > 2 since nj > 4.

Assuming we have chosen n; < ... < n, and {I}}}z,, none containing z,
there is a closed interval J containing a neighborhood of z with JNI; =0
for k =1,...,n,. Then f & #V[h] on J, so there is n} ; > max(n},n, + 2)

and nonoverlapping intervals {Jk}:i“l’ such that h(n;,,) > n,¢1(B) and

-
eyl

> @kl F(T) > (r + Bh(nzyy)-
k=1

Deleting the intervals containing z, if any, gives {Ji} ;.4 (where n,4; > n,)
such that

Retl

Y er(lf TR > (7 + 2)h(n}yy)
k=1

since h(n7 ) > n.01(B) > mp1(B) > 2¢1(B). Let Iy = Ji for k =
nr+1,...,7-41. Then

Yoe(fIID > Y er(fT = D xR
k=1 k=n,+1 k=n,+1
= 3 I - 3 e
k=1 k=1

> (r + 2)h(n74q) — nepr(B) > (r+ 2)h(n},,) — h(n7y;)
= (r+ Dh(n%y) > (r+ Dh(rrgn).

Hence, by induction, we obtain a sequence n, 1 co and a sequence {Ix}$2,
of intervals such that Y .7, @x(|f(Ix)]) 2 rh(n,) for all positive integers r.
Thus for this sequence {J;}52, there is no M > 0 with >"%_, ox(|f(Zk)]) <
Mh(n) for all n. =

We end this section by giving a generalization of a result of Perlman [P).
We assume the sequences A = {A;} satisfy A\x 1 oo and Y (1/Ax) = 0. For
any sequence {ax}, we write Aay for ax — ar4, and let ¥ BV* be the class
of functions of ¥-bounded variation.

1.10. THEOREM. If 3 h(k)A(1/Ak) < oo, then ®V[h]* C WBV™*, where
¥ = {yx} with Yi(z) = @i(z)/Ar.
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Proof. First, h(n)/An = h(n) Y je, A(1/Ak) £ X pe, B(K)A(1/Ak), so
h(n) = o(A,). Next let f € 8V [h]*. For every collection {I;}$2, of intervals
and any N,

N-1 &k

k=1 J"’l
Nt Zw(lf(lj)l) E<p,,(| F(I))) -

i=1 = )
=k§=:l W) h(k)A(1/Ax) + ¥=2 ) e

N-1
< sup ﬂl"ﬁl[‘; h(k)A(1/ M) + h(N)] <C

for some constant C. Thus, f € ¥BV* with ¥ = {@k(z)/\¢}. =

1.11. THEOREM. Let f ¢ ®V[h]* be bounded. Then there is A = {A\;}
with A, T oo, Y (1/Ak) = o0 and Y h(k)A(1/Ax) < 0o such that f ¢ WBV
where ¥ = {pr(z)/ A}

Proof. Thereis a collection of intervals {Ix} such that 3";_; ¢x (| f(Ix)|)
# O(h(n)). Let ng = 0, and choose n; such that 3L, oi(|f(Lx)]) 2 h(n1).
Having chosen ny,...,n,_;, choose n, > n,_; such that 377, oix(|f(Lx)]) >
2373 ou(If(LL)]) and nn, @r(If(T))) > 2r2h(n,). Then

Ny

Y el > 33 el > h(nr).
k=1

k=n,._1+1

Let A\ = r2h(n,) for n,_; < k < n,. Then A; T 00, and

gh(k)A (Aik) = Y

{k:M# X1}

oo 1 1

r-l l
Also,

Z‘Pk(lf(Ik)l) f: nz er(1f(Ix)])

r=1k=n,._;+1 ’\k
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. (o o]

_Z[ Z <Pk(|f(Ik)|)],.2h(n, Z

r=1 k=n,_;+1 r=1

and so, f ¢ VBV* with ¥ = {cpk(z)/Ak} Note that Y (1/Ax) = oo since

N
¢1(sup f — inf f)z " z ‘Pk(lf(lk)l)
k=1

forallN. m

The following extension of Perlman’s result follows easily from Theorems
1.10 and 1.11.

1.12. THEOREM. ®V[h]* = N{f € ¥YBV* : f is bounded and ¥ =
{pr(z)/ A} with 3 h(K)A(1/Ak) < o0 }. =

The last three theorems remain true when the “*” is removed.

2. The space #V[h]. We begin with a definition of generalized variation
that will be used to define a norm on #V[h].

2.1. DEFINITION. For f defined on [a,)], we define the total #V[h]
variation of f to be

V(1) = V() = V(Jiah) = Vou(fia0) = sup 2oL 100D

It is clear that f € #V[h]* if and only if V(f) < oo and, because of the
convexity of ¢k,

V(Z akfk) < ZakV(fk) for Eak =1, a, > 0.
k=1 k=1

k=1
2.2. THEOREM. #V[h] is a linear space.

Proof. Let € R and f,g € #V[h]. Then there are k;,k; > 0 such that
V(k1f) < oo and V(keg) < 00. If a # 0, then V((ky/|a|)af) = V(kif) <
00, 50 af € ®V[h]. Now let k = J min(ky,k2). Then

VO +9) <V (GhS+ Jhag) < JV(RD) + V(hag)] < o

so f+g€PV[h]. m

Let #V[h]o = { f € ®V[h] : f(a) = 0}. We follow Musielak and Or-
licz [MO] and define a “norm” on V' [h]o by || f|| = inf{r > 0: V(f/r)<1}.

2.3. LEMMA. (a) V(f/IIfID £ 1.
(b) If Ifl £ 1, then V(f) < ||f]|-
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Proof. (a) Let 7, | || f|| such that V(f/r,) < 1. Then for any nonover-
lapping {Ix}, and any N, we have

N N
> oIS/ Y er(1£ (1)l /ra)
k=1

= L k=1 <
h(N) A, h(N) <L

since the ¢ are continuous. Thus V(f/||f]|) < 1.
(b) For any nonoverlapping {Ix}, and any N,

N N
> er(IfUIRI) Y e(LFII/IAD
= < A= :
h(N) h(N)
since the ¢ are convex and ||f|| < 1. Thus V(f) < ||f|| by (a). =

We now remove the quotes from “norm”.

2.4. THEOREM. || - || is @ norm on &V [h,.

Proof. Clearly ||0|| = 0. If f # 0, then there is an z € (a,b] such that
f(z) # 0. Then

p1(lf(z) - fa)l/r) _ er(If(2)|/r)
Thus there is an 79 > 0 such that V(f/r,) > 1. By Lemma 2.3(a) and the
fact that V(kf) increases as k increases, {r > 0: V(f/r) <1} = [||fll, o0),
s0 (0,70) ¢ {r>0:V(f/r) <1}, and ||f|| > 0. Now note

|kfl| =inf{r>0:V(kf/r)<1}=inf{r>0:V((|k|/r)f) <1}
= inf{|k|r:r>0and V(f/r) <1} = k||| Sl
Lastly, for any nonoverlapping {I;} and any N,

N
I(f + 9)Ui)|
2% ()
A(W)

i_%( AL L, el el
Sk:l

— 00 asr— 0t

A+ Tl 1A AN+ Tl el

AV
N .
WAL, (LAY, ol (lo()
g §1(||f||+ug||“"‘( i) * e )
= h(N)

(by the convexity of the i)
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m lol ) ~
ST ehen F A+ By Lemma23(2)

= 1.

Thus ||f|| +|lgll € {r > 0:V((f+g)/r) <1},andso, ||f+g| =inf{r>0:
VI(f+9)/r) <1} <|Ifl[ +lgll- =

2.5. THEOREM. ®V[h]o is a Banach space.

Proof. All that is left to show is that #V [h]o is complete. Fix € > 0 and
let { f,} be a Cauchy sequence in the norm on #V[h]o, so that ||f, — fm|| < €
for large n and m. Thus, for z € [a, b] and large n and m,

e1([fn(2) = fm(@)l/€) _ @1(I(fn = fm)(2) = (fn — fm)(a)l/€)
h(1) h(1)
SV((fa = fm)/€) < |I(fn = fm)/ell
(by Lemma 2.3(b))
= (1/e)||lfn = fmll < (1/e)e = 1.
Hence, |fu(z) — fm(2)] < ep7!(R(1)), and we can define f(z) = Jergo fa().
For nonoverlapping {I;}, any N, and large enough n,

N N

> erl|(fa = HER/E) > erll(fa = fm)(TR)/E)

k=1 = lim *=! <1
h(N) m—00 h(N) =

since V((fan — fm)/€) < 1. Thus V((fn — f)/€) < 1. Since ¢ was arbitrary,

Ifa = fll = 0. Now f(a) = 0 since f,(a) = 0 for all n; and, for any € > 0

we can pick n such that V((f, — f)/¢) < 1 and k such that V(kf,) < 1.

(Recall that V(kf) decreases as k decreases.) Letting ¢ = 1 min(1/e, k), we

have

Vien =viels - +ef) < V(5 (E22) + o)
<gv(L5L) + v <o

Thus f € $V[h]o. =

Lemma 2.3(b) tells us that if || f, — f|| < € < 1, then V(f, — f) < ¢, s0
in the above proof, we also have f, — f in variation. Also, we see that if
{fa} is Cauchy in norm, then |fn(z) — fm(z)| < ey (h(1)) for all z. Thus
fn — f uniformly, and #V[h]o N C is a Banach space in this norm.

We can use the above norm to define a norm on #V[h] making it a
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Banach space:

I lle.n = 1f(a)l + IIf - f(a)ll-

Our last goal of this section is to show that #V[h] satisfies an analogue
of Helly’s theorem. We accomplish this by placing #V[h] inside a space for
which this is true. In §1, we saw that #V[h] is contained in the spaces ¥ BV
with ¥ = {@i(z)/A¢} with 3 h(k)A(1/Ak) < co. However, it is possible
that ¥ BV does not do what we wish. Schramm has shown [S] that Helly’s
theorem holds on BV if Y ¥x(z) = oo for each z. We incorporate this
condition into our theorem.

2.6. THEOREM. Let {f,} be a sequence in ®V[h] on [a,d]. Assume A
satisfies ) h(k)A(1/Ak) < 0o and 3 pr(z)/Ax = oo. If there are numbers
c¢> 0 and M < oo such that |cfa(a)| < M and Vg h(cfn) < M for alln, then
there is a subsequence {fn, } of {fn} converging pointwise to f € ®V[h],
with Vg n(cf) < M.

Proof. Note that for each n
llefalleo < lefn(a)l + sup{cfn(z) : z € [a,b] } - inf{cfn(z) : z € [a, ]}
<M+ 7' (v(1,8,¢f0)) < M + o7 (R(1)Ve a(cfn)).
So the functions cf,(z) are uniformly bounded. For each {I;} and each n,

0o 0o k
> erllefalTN/Ae = 30[ S emllefalIn)D] A(1/20)
k=1

k=1 m=1
< Van(efa) Y h(k)A(1/M)
k=1

<SM  where § =) h(k)A(1/Ax).

Hence Vy(cf,) < SM where ¥ = {¢x(2)/Ar}. By Helly’s theorem for ¥ BV,
there is a subsequence { f,; } of { f»} converging pointwise to some f € ¥ BV
Now Y h(k)A(1/Ak) < o0, so YBV C ®V[h] and f € #V[h]. Finally, for
any collection {I;} of nonoverlapping intervals and any N,

N
Y erllefn; (Te))
k=1

h(N)
Letting 7 — oo gives 22;1 ek(lef(IR)|)/M(N)< M. Thus Vg p(cf/) < M. m

S V¢.h(cfnj) S M'

3. Fourier series. The Dirichlet-Jordan theorem states that the Fourier
series of a function of bounded variation converges pointwise, and converges
uniformly on any closed interval of points of continuity of the function.
Waterman has shown [W] that this result is also true for the functions of
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harmonic bounded variation, but that this is the largest ABV 3pace where
the theorem holds in the sense that, if HBV C ABV, there is a continuqus
function in ABV whose Fourier series diverges at a point. We now give a
similar result for #V[h].

3.1. THEOREM. If HBV C &V [h] on [0,2x], there is a continuous f €
@V [h]o whose Fourier series diverges at z = 0.

Proof. If HBV C ®V/[h], there is a sequence {ax} with ax | O,
Yo r=19k(ax) = O(h(n)) and Y ;2,ax/k = oo. Let by be defined by
by = by = a3, b3 = by = a4, ... Then, since by < a, for each k,
S22 ¢e(be) = O(h(n)), but T30 bu/k > S, az,/(2k) = co. Choose
e > 0 with Yp_, px(ebr) < h(n) for all n, and let ¢ = ebi. Then
ek | 0, cak—1 = o for k = 1,2,..., Yp_,ex(ck) < h(n) for all n,
and Y 72, ck/k = 0o. Define
fulz) = {c. if(2i-2r<(n+1/2)z<(2i-1)rfori=1,...,n+1,

mer otherwise,

Then Z(Pk(ck)
Von(fa) = sup UN, D fn) _ k=i

=sup ——— <1,
BN) TN A)
so fu(z) € ®V[h]. We also have ||fu|| = inf{r > 0: Var(fu/r) <1} <L
Now let S, (f) be the nth partial sum of the Fourier series of f at z = 0 and

Do(t) = sin(n + 1/2)t

2sint/2
be the Dirichlet kernel Then

7Sn(fn) = f Fu(O)Da(t) dt > f it Y2

n+l  (2k-1)r/(n+1/2)
sin n+ 1/2 t
=Y [ e
k=1 (2k-2)7/(n+1/2)
n+1 (2k=-1)x/(n+1/2) .

_ E o f sm(n-:- 1/2)t dt

k=1 (2k-2)x/(n41/2)
n+1 (2k-1)x/(n41/2)
n+1/2 _
>
Z "(2k— 7 f sin(n + 1/2)tdt
(2k=-2)7/(n+1/2)
n+1 1 (2k-1)n

= gckm f sintdt

(2k-2)n
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n+1 n+1 n+1

_Z(2k—-1)1r ZL-1/2—_Z

Without changing their norms or variations, the functions fx, £ =1,2,...,
may be altered on a set of small enough measure so that they are continuous
and the partial sums of their Fourier series differ from those of f; by an
arbitrarily small amount. Thus

n+1
(1/7%) ) ex/k
"Sn” > Sn(fn) > kgl k — 00.
— Sl T | £l

Hence, by the principle of uniform boundedness (applied to the Banach
space ®V[h]o N C) there is an f € V[h]o N C such that {S,(f)} does not
converge. =

4. Riemann-Stieltjes integrals. In this section, the classic theorem
on Riemann-Stieltjes integration (“If f is continuous and g € BV, then
[ f dg exists”) will be adjusted in a manner analogous to that of Young [Y]
and Lesniewicz and Orlicz [LO], by strengthening the requirements on f and
weakening those on g. In what follows, we assume that all nondecreasing
functions h are such that h(1) > 1.

4.1. DEFINITION. Let & = {¢,}, ¥ = {¥n}, h1, hs, and positive
constants A and B be given. L. C. Young’s series for &, ¥, h,, h,, A,
and B is

Y o (A/RYYL (BIR)ha (k)ha(K),
k=1

which we will denote LCY (&, V¥, hy, hs, A, B).
4.2. LEMMA. If LCY (®,V¥, hy, hy,1,1) converges, then LCY (®,¥, hy, ho,
A, B) converges.

Proof. Let m be a natural number with A,B < m. For im < k <
(¢4 1)m, we have A/k < 1/i and B/k < 1/, so

> oF(A/RYS (B k)hy (K)ha ()
k=1

m-1
= ) o (A/k)p; (B/k)ha (k)ha (k)
k=1
oo m(i+1)

+3° Y e (A/R)Y (B/k)h(K)ha(k)

i=1 k=mi
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SC+Y). Y @t (1/d)b ' (1/i)ha(k)ha(k)

i=1 k=mi

oo m{it1) 2m 2m
<0+32 3 witn (mgam) ot (=650

i=1l k=mi
X hy(m(i + 1))ha(m(: + 1)).
Since k£ no longer appears in this sum, the above

- 2m 2m
-1 -1
SO+ m Patery (m(i ¥ 1)) m(iH) (m(i ¥ 1))

i=1
X hy(m(i + 1))ho(m(i + 1)).
For any convex ¢ and a > 1, we have ¢p~!(az) < a(p'l(z). Consequently
the above

1 1
< C + 4m3 E‘Pm(,+1) (M) ¢m(1+1) (m(1+ 1))

i=1
X hy(m(i + 1))ha(m(i + 1)) < oo.
If & = {pn} is as above and F is convex, we may consider the sequence of

convex functions F'® = {Fp,} and the set F®V[h] (which may or may not
have the properties we have examined).

4.3. LEMMA. If LCY(®,¥, hy,hy,1,1) converges, there is a convez F :
[0,00) — [0,00) such that LCY (F®,F¥,h,,hy,1,1) converges, F(0) = 0,
F(z) > 0 forx > 0, and F(z) = o(z) asz — 0.

Proof. By Lemma 4.2, LCY(®,¥, hy,hs,3n,3n) converges for n =

1,2,... We may choose {k,}, a sequence of natural numbers, with kn4; >
(14+1/n)k, and

f: 5 (3n/k)Y 1 (3n/k)hi(k)ha (k) < 1/n?  for each n.
k=kn

Set
p(t)= {i/na 1/kn+1 <t51/km
+t, l/kl <t.
Then p(t) is a positive, increasing function and p(t) — 0 as t — 0. Let
F(z) = [; p(t)dt for £ > 0. Then F is convex, F(0) = 0, and F(z) =
o(z) as ¢ — 0. We now see that LCY(F®, F¥, hy,h,;,1,1) converges. If
nk, < k < nkpqq,

3n 3n/k 2n/k n n 1 1
F(T)= [ ptydt> | p(t)dt>z (k)—F'Z=E'

0 nfk
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Likewise, for nkp,41 < k < (n + 1)kp4,
(2n+1)/k
F(3)> [ pwyar>Zp(2) =2,
k k k k
(n+1)/k

so that F(3n/k) > 1/k for nk, < k < (n + 1)kn41 (and F~1(1/k) < 3n/k
for k in that range). Then

Y (Fo) 1 (1/k)(Fp)~(1/k)ha(k)ha(k)
k=1

=) e P 1k F1 (1/k)ha(k)ha(K)
k=1

ki -1
= Y @i PN (1 ko P (1/ k)b (R)ha(K)
k=1

oo (n+1)kay41-1

+3 %GR F ke F (1 k)R (K)ha(K)

k=1 k=nk,
oo (n+1)kn+l -1

SC+), ) @i (3n/k)g; (3n/k)h(K)ha(k)

k=1 k=nky
|
<C+ Z oy <o00.®m
n=1
Let xn(®,2) = F(on(z))/en(z) for z > 0, and x,(#,0) = 0. Taking into
account the properties of the sequence ¢ and the function F, we have:

(i) xn(®, z) is nondecreasing as a function of z,
(1) xnt1(P,2) < xXn(P, z) for all n, and
(iii) xn(®,z) = 0 as z — 0.

4.4. LEMMA. If B(f) = sup f — inf f, then

(i) ¢1(B(f)) < Va n(£)R(1),
(ii) Vren(f) < x1(®, B(f))Va n(f).

Proof. Part (i) is clear. To establish part (ii):

2 For(1f(Zx))) z Xk(®, | f (T er(1 £ (Te)))
_ k=1 =1
VF’J&(!) = sup h(n) h(n)

= sup &=
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> ex(lf(T)D)
< x(#, B(f)) sup =—ps—— = xa(®, BU)V(, h)(/). =

(Note that part (ii) implies #V[h] C FSV[h].)

We introduce some notation for the computations that follow. Let & =
{¢n} be as above, h a nondecreasing function on the positive integers, a =
{a,.} a sequence of real numbers, and § = {6,} a sequence of integers with
0< 8 < 6, < ... Define

> ei(lax) 6
pn(P,h,a) = k=1—h(n)_’ 6(a) = (8(a)n) = ( Z ak)v
k=6n_1+1

P:z(d)’ h, a) = sup pn(®, h, 6(“’))’
é

A sequence §(a) is the result of replacing some of the commas in (a,, az,...)
with +, the sequence é determining which commas should be replaced.

4.5. LEMMA. For any & = {¢}, h, and a as above,

e

Proof. Using the arithmetic-geometric mean inequality, Jensen’s in-
equality, and the properties of convex functions, we have

So(l_ﬂ:sh_%kﬂ_)s ""((l/n)h %=1 ak) . % (z;‘:’:(i,;(a,,))

and the result follows. =

l/n

_ (%Pn(¢, h, a)) h(n), n = 1, 2, ceoe

4.6. LEMMA. If a = {ax} and b = {b;} are real sequences, ® and ¥ as
above, and h, and h; are nondecreasing functions on the positive integers,
then for every n there is a kg with 1 < kg < n such that

1 1
bl < 07" (3008 11,0)) 83 (2pu(@ha,8)) ba(m)ha(r)
Proof. Let ko be such that |ak,bx,| = min{ |akbk| :1<k<n}. Then
= IE ak

and the result follows from Lemma 4.5. =

1/n l/ﬂ 1/"

n
Nakgbiy| < IZ arby
k=1

k_
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4.7. THEOREM Let &, V¥, a, b, hy, and h, be as above. Then

IZ Za bkl < o171 (p3(D, h1,a))¥7 Y (p3(P, by, b))hy(1)R2(1)

=1 i=1
+Z<P (3or(@,0)) 97" (010010, Ba(Bha(h)

(where the sum is taken to be 0 when n =1).

Proof. By induction: For n = 1, we have

larby| = <P1'1(h¢t§|)01|)) '/’flg:l’zgl)bll))hlu)hz(l)

<ol (‘P’ll(l(all)l)) 'dj-l (¢;(I(bll)|))h1(1)h2(l)
< o1 (P1 (D, ke, a))¥1 (p7(¥, b2, b))ha(1)h2(1).

For n > 1, define a sequence a’ = {a},} by @} = ax41. By Lemma 4.6, there
is a kg with 1 < kg < n — 1 so that

_ 1
la;cobkol = lako+1bko| = ¢n-1-1 (n _ 1pn—l(¢v hlaa'))

X ¥l (n L a2 hg,b)) ha(n = 1)hy(n — 1)

- 1
< ‘Pnll (';'_'__lpn-l (¢9 hi, a))

X ¥1 (ni lp‘,‘,_l(f', hz,b)) hi(n — 1)hy(n - 1).

Let 6 be given by éx = 1 for k # ko and 6, = 2, and let ¢ = §(a) and
d = §(b). Then

n-1 k
Z Z cidy = agy41bi, + Z Z a;bx
k=1 i=1 k=1 i=1
" n n-1 k
IZ Z @i b"l < |Z Ectdkl + |aro+1bx, |
k=1 i=1 k=1 i=1

and the result follows by the induction hypothesis. =

We turn now to Riemann-Stieltjes sums. Let P = {[zx_1,2k] : K
1,...,n} be a partition of [a,d], with & = {& : 1 < k < n, 2
& < 2z} a collection of intermediate points. We denote the Riemann-
Stieltjes sum of f with respect to g constructed from these elements by

IA I
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S(f,9,P,Z) = Y31 F(€k)(9(zk) — 9(Tk-1))-
4.8. THEOREM. Let &, ¥, hy, and hy be given, P and = be as above and
f(a) =0. Then

1S(f,9.P.E)I < 2Zso,, (3% 0) ¥ (£%0(@)) (Kl
Proof. Take §, = a. Then

15(£,9,P,E)] = |3 F(&r)a(ar) - 9(2x-1))|
k=1

n k

= |30 S0 - FE1) (o) - glan-0)]

k=1 i=1

Let o; = f(&) — f(§i-1) fori=1,...,n, a; =0for ¢ > n, Br = g(zx) —
g(zk—1)fork=1,...,n, B; =0for k> n, a={a;},and 8 = {B}. Then
the above

= |zn:zk:aiﬂk|

k=1 1=1
< ¢ I(Pl(d’ h1, @)y (p1 (¥, he, B))h1(1)Ra(1)

+ U Zpi(B,hyya) ) vt | Zp5(W, b, B) ) ha(k)ha(k
;% (kPk 1 a)) k (kl’k 2 )) 1(k)h2(k)
< o7 (Vo n, (MW7 (Va,ny(9))h1(1)ho(1)

+:2=:-:¢;‘( Fou(1) 95 (§V00a(0)) B (RIba(h)

n-1

< 2’;99;1( |7 h,(f)) P! ( Ve h,(g)) hi(k)hz (k). w

We now establish our main result:

4.9. THEOREM. Suppose LCY (®,¥, hy, he,1,1) converges, f € ®V[h1]oN
C, and g € YV |[h3] on [a,b]. Then f:fdg erists.

Proof. Wemay assume that Vg ,(f) < 0o and Vy »,(g) < 0o. Let P, =
{[zk_1>zk]}rL, and P, = {[z%_,,22]}}2, be partitions of [a, b] with interme-
diate points =; = {£}} and Z; = {£2} respectively. Let P = {[z)-1,zx]}}?_,
be the common refinement of P, and P,. Define step functions f; and f; by

T = a,

0,
fi(z) = fi(z, P, 55) = { e, o L feri=12

Ty, <z <Lz,



438 N. P. SCHEMBARI AND M. SCHRAMM

Then, for i = 1,2,

5(f,9,P;, Zi) = Z f(E)g(=z}) = 9(zkor)) = Z fi(=k)(9(zk) — 9(k-1))
k=1 k=1

= fizi)(9(zx) - 9(zx-1)),
k=1
so that the difference

S(f,9,P1,51)— S(f,9, P2, Z2) =2 %(fl(mk) = f2(zk))(9(zk) — 9(Zk-1))
k=1

(the 2 and 1/2 are for later convenience). Note that the above sum is
25(%(f1 - f2)aga P7 P) Appl}’ll'lg Theorem 4.8 to %(fl - f2)7 9, F¢7 FW,
hi, and hy (F having been chosen in Lemma 4.3), we have

Is(f’g,Pl’sl)_S(fag’PhEZ)l
= 1 1
<4 (F(P )-l =V yha —(f—f)

x (Pou) ™ (Vroa(@)) b,
By Lemma 4.4,

Vren(3(fi — f2)) < x2(S, B3 (fr — f2)WVaer(3(fi — f2))
< 3x1(%, B(3(fi = £2)))(Van(f1) + Vau(f2))
< x1(®, B(3(f1 = f2)))Vau(f).

Since f is uniformly continuous, for given ¢ > 0 we may choose partitions
P, and P, sufficiently fine so that B(1(fi — f2)) < €. Then

1S(.9: P11 50) = 81,9, Po Z2)| < 4 Y (Poo)™ (ra(@.e)Vrens(1)
k=1

X (Fpr)™? (%Vm.hg(!))) h1(k)ha(k),

which is bounded for € > 0 by Lemmas 4.2 and 4.3. Since x;(®,¢) — 0 as
€ — 0, we may make this sum as small as we like by making € small. =

5. Generalized variations. While the classes V3 »(f) encompass a
large number of those previously examined, they all depend on the expres-
sions |f(I)| for their definition. Concepts of variation not involving this
expression have also been studied:
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1. Brown [B] considers the n-th variation, based on sums of the form
E:’;{,’ (";_'_;1)|A£‘,f(z,.)| wherea =20 <21 < ... <2, <b, 2 —2Zp_1=h
fork=1,...,n, b—z, < h,and Ak f(z) = Efz.o(—l)k"(f)f(a: +'rh).

2. Russell [R] considers the sums E::ok(sz - z)|Qk(f; iy s Tivk)|
where a < 29 < 71 < ... < 2, < b and Qk(f;v0,---,Yk) = ZLo[f(y,-)/
P(i, k)] with P(i, k) = H,’;:o,j#i(?/i — ¥j)-

3. Let w be a nondecreasing function defined on [a,b] and let S C [a, )]
be the set of continuity points of w. Let f be a function that is continuous
at each point of S such that lim,_, .+ es f() and lim,_, - ;es f(Z) exist
finitely for ¢ € [a,b]\ S. Bhakta [Bh] considers the total w-variation of such
an f in sums of the form Y7, |f(zi+) — f(zi—)| where w(a) = w(zp) <
w(z1) < ... <w(zy) = w(b).

In view of this variety, we attempt to prove the following result in the
most general terms possible:

5.1. DEFINITION. Let F be the class of (finite-valued) functions defined
on [a,b]. A variation function is any function G: F - {r€R:r>0}U
{o0}. GBYV is the class of all functions f satisfying G(f) < oo.

5.2. THEOREM. Let G be a variation function such that GBV satisfies
an analogue of Helly’s theorem (i.e., if {fn(a)} is bounded and {f,} are of
uniform bounded G-variation, then there is a subsequence {f,;} of {fs}
and f € GBV with f,, — f everywhere). Assume L, is a sequence of
linear operators on GBV satisfying

(i) Ln(g) — g everywhere.

(ii) For every n, G(Ln(g)) < CG(g) for some constant C which may
depend on g. Then f € GBV if and only if L,(f) have uniformly bounded
G-variations.

Proof. Assume f € GBV. Then G(L,(f)) < CG(f) < 00, so L,(f)
have uniformly bounded G-variations. Conversely, assume L,(f) have uni-
formly bounded G-variations. Since L,(f)(a) — f(a), {Ln(f)(a)} is
bounded. Hence, by the Helly analogue, there is n; T 0o and ¢ € GBV
such that L,,(f) — g everywhere. Since L,(f) — f everywhere, f = g,
and thus g € GBV . =

This theorem has applications to many spaces—we give two. The first
is a result of Zygmund [Z, p. 138].

5.3. COROLLARY. Let f be regulated and periodic. Then f is of bounded
variation if and only if the (C,1) means of the Fourier series of f, on(f),
have uniformly bounded variations.
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Proof. Let V(f) be the variation of f. Note that V satisfies Helly’s
theorem. Since f is regulated and periodic, Fejér’s theorem [Z, p. 189]
gives o,(f) — f. Finally, let K,(t) be the linear means of 1 + Y32, coskt
(Z, pp. 84-85]. For any partition {zk}z_l of [a, b),

Zlan(u) onlzed) = 23| [ Uen+0) = floucs + O1Kalt) de

k=1 -1r
n

1 ¢ .
<= [ [kZIf(-Tk +) = f(zr-1 +)|| Knt) dt
(since I, is positive)

< V(f) (since f is periodic and f K.(t)dt = ).

-7

Thus V(o.(f)) < V(f), and the theorem applies. =

5.4. COROLLARY. Let f be regulated and periodic. Vg r(f) < oo if and
only if Vg n(on(f)) are uniformly bounded.

Proof. V; 4 satisfies Helly’s theorem and o,(f) — f by Fejér’s theorem.
For any sequence of nonoverlapping intervals,

N N n
Y elloama) 2o ex(|7 [ AU+ (1) dt])
k=1 k=1 -

W Ty T A
N L
S en(r [ 15+ OIKA(t) dt)
k=1 -7
: A(N)
(since @i is nondecreasing for each k)
N T
Y [ or(f (T + 1)) Kn(t) dt
< k=1 -«
- h(N)
(by Jensen’s inequality)
N
Lo Y er(1f Uk + 1))
_ X k=1
=1 | B K@@t Vea ()

Thus Vg x(0,) < Ve r(f). (In(t), F(I+2) = f(y+t)— f(z+t) for I = [z, y].)
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