## ΦV[h] AND RIEMANN-STIELTJES INTEGRATION

BY

## N. PAUL SCHEMBARI AND MICHAEL SCHRAMM (SYRACUSE, NEW YORK)

- 1. Preliminaries. We consider real-valued functions defined on a closed bounded interval [a,b]. Given such a function f and any interval  $I=[x,y]\subseteq [a,b]$ , we write f(I)=f(y)-f(x). We use " $\subseteq$ " to denote set containment and " $\subset$ " to denote proper containment. Any collection of intervals mentioned below shall be assumed nonoverlapping. Let f be as above and  $\Phi=\{\varphi_k\}_{k=1}^{\infty}$  a sequence of convex functions defined on the nonnegative reals such that for each k,
  - (i)  $\varphi_k(0) = 0$  and  $\varphi_k(x) > 0$  for x > 0,
  - (ii)  $\varphi_k$  is nondecreasing and  $\varphi_k(x) \to \infty$  with x, and
  - (iii) for each x > 0,  $\varphi_{k+1}(x) \le \varphi_k(x)$ .

For each positive integer n, we define the  $\Phi$ -modulus of variation of f on [a,b],  $v(n,\Phi,f) = v(n,\Phi,f,[a,b])$  to be the supremum of the sums  $\sum_{k=1}^{n} \varphi_k(|f(I_k)|)$ , taken over all collections  $\{I_k\}_{k=1}^n$  of n intervals in [a,b]. This generalized modulus of variation has many of the properties of the modulus of variation introduced by Chanturiya [C], for instance:

- (i)  $v(n, \Phi, f) \leq v(n+1, \Phi, f)$ ,
- (ii)  $v(m+n,\Phi,f) \leq v(m,\Phi,f) + v(n,\Phi,f)$ ,
- (iii)  $v(n, \Phi, f, [x, y]) \le v(n, \Phi, f, [a, b])$  if  $[x, y] \subseteq [a, b]$ , and
- (iv)  $v(n, \Phi, \sum_{k=1}^{n} a_k f_k) \le \sum_{k=1}^{n} a_k v(n, \Phi, f_k), \sum_{k=1}^{n} a_k = 1, a_k \ge 0.$

The last inequality holds since the  $\varphi_k$  are convex and nondecreasing, hence continuous.

1.1. LEMMA. Let  $c \in [a, b]$ . For any f,  $v(n, \Phi, f, [a, b]) \leq v(n, \Phi, f, [a, c]) + v(n, \Phi, f, [c, b]) + \varphi_1(B)$ , where  $B = \sup f - \inf f$ .

Proof. Let  $\{I_k\}_{k=1}^n$  be a collection of intervals in [a,b]. Let  $\{j_i\}$  be the set of integers with  $j_i \leq j_{i+1}$  and  $I_{j_i} \subseteq [a,c]$  for all i, and let  $\{k_i\}$  be the set of integers with  $k_i \leq k_{i+1}$  and  $I_{k_i} \subseteq [c,b]$  for all i. Let r be the integer,

if any, such that c is in the interior of  $I_r$ . Then

$$\sum_{k=1}^{n} \varphi_{k}(|f(I_{k})|) = \sum_{i} \varphi_{j_{i}}(|f(I_{j_{i}})|) + \sum_{i} \varphi_{k_{i}}(|f(I_{k_{i}})|) + \varphi_{r}(|f(I_{r})|)$$

$$\leq \sum_{i} \varphi_{j_{i}}(|f(I_{j_{i}})|) + \sum_{i} \varphi_{k_{i}}(|f(I_{k_{i}})|) + \varphi_{1}(B).$$

Taking suprema gives the result, since v is increasing in n.

Next, we give a sufficient condition for a function to be a  $\Phi$ -modulus of variation.

- 1.2. DEFINITION. Let h be a nondecreasing function on the nonnegative integers with h(0) = 0, and  $\Phi$  be as above. Then h is called  $\Phi$ -concave if the sequence  $\varphi_k^{-1}(h(k) h(k-1))$  is nonincreasing.
- 1.3. THEOREM. Let h be  $\Phi$ -concave. Then there is a function f such that  $v(n, \Phi, f) = h(n)$ .

Proof. Let  $a_k = \varphi_k^{-1}(h(k) - h(k-1))$  and define f on [0,1] by

$$f(x) = \begin{cases} 0, & x = 1, \\ \sum_{k=1}^{n} (-1)^{k+1} a_k, & \frac{1}{n+1} \le x < \frac{1}{n}, & n = 1, 2, \dots, \\ \frac{1}{2} \left[ \limsup_{n \to \infty} \sum_{k=1}^{n} (-1)^{k+1} a_k + \liminf_{n \to \infty} \sum_{k=1}^{n} (-1)^{k+1} a_k \right], & x = 0. \end{cases}$$

Then for any n, sup  $\sum_{k=1}^{n} \varphi_k(|f(I_k)|)$  is achieved by taking  $I_k$  with  $|f(I_k)| = a_k$ , and we have

$$v(n, \Phi, f) = \sum_{k=1}^{n} \varphi_k(a_k) = h(n). \blacksquare$$

If h is nondecreasing and concave (i.e.,  $h(tn + (1-t)m) \ge th(n) + (1-t)h(m)$  as long as h is defined at n, m and tn+(1-t)m), Chanturiya [C] has shown that h is a modulus of variation of some function f (this may be seen by taking  $\varphi_k(x) = x$  in the above); if h is also  $\Phi$ -concave, we have shown that h is a  $\Phi$ -modulus of variation for some function g. However, the functions f and g are usually different.

Let  $\Phi$  be as above and h a positive nondecreasing  $\Phi$ -concave function on the positive integers with  $h(k) \to \infty$ . (For example,  $\varphi_k(x) = x/k$  and  $h(k) = \sum_{j=1}^k 1/j$ .) Then there is an f with  $v(n, \Phi, f) = h(n)$ . It is evident that f is not of  $\Phi$ -bounded variation, but it is the case that  $v(n, \Phi, f) = O(h(n))$ . With this in mind, we make the following definitions:

1.4. DEFINITIONS. Let  $\Phi$  be as above and h a positive nondecreasing function on the positive integers (h need not be  $\Phi$ -concave) such that

(\*) for each 
$$x > 0$$
,  $\sum_{k=1}^{n} \varphi_k(x)/h(n) \to \infty$  as  $n \to \infty$ .

We define  $\Phi V[h]^*$  to be the class of functions f, defined on [a, b], for which  $v(n, \Phi, f, [a, b]) = O(h(n))$ . We also define  $\Phi V[h]$  to be the class of functions f such that  $kf \in \Phi V[h]^*$  for some k > 0. (We will soon see the reason for condition (\*).)

- 1.5. THEOREM. Let  $\Phi$ ,  $h_1$ , and  $h_2$  be as above.
- (a) If  $h_2$  is  $\Phi$ -concave and  $h_1(n) = o(h_2(n))$ , then  $\Phi V[h_1]^* \subset \Phi V[h_2]^*$ .
- (b) If  $h_1 \sim h_2$ , then  $\Phi V[h_1]^* = \Phi V[h_2]^*$ .

Proof. (a) Let  $f \in \Phi V[h_1]^*$ . Then  $v(n,\Phi,f)/h_2(n) \leq v(n,\Phi,f)/h_1(n)$  for large enough n. Since  $v(n,\Phi,f) = O(h_1(n))$ ,  $f \in \Phi V[h_2]^*$ . Next, we must show there is an  $f \in \Phi V[h_2]^*$  with  $f \notin \Phi V[h_1]^*$ . By Theorem 1.3, there is an f with  $v(n,\Phi,f) = h_2(n)$ . Then  $f \in \Phi V[h_2]^*$ , but  $v(n,\Phi,f)/h_1(n) = h_2(n)/h_1(n) \to \infty$ , so  $f \notin \Phi V[h_1]^*$ .

(b) Let  $f \in \Phi V[h_1]^*$  so that there is a positive M with  $v(n, \Phi, f) \leq Mh_1(n)$  for all n. Then  $v(n, \Phi, f) \leq M(h_2(n)/A)$  for some A, so  $f \in \Phi V[h_2]^*$ . If  $f \in \Phi V[h_2]^*$ , there is a positive N with  $v(n, \Phi, f) \leq Nh_2(n)$  for all n, so  $v(n, \Phi, f) \leq N(Bh_1(n))$  for some B and  $f \in \Phi V[h_1]^*$ .

Many of the generalized bounded variation spaces that have been considered can be obtained by making the proper choices of  $\Phi$  and h. If  $\varphi_k(x) = x$  for all k, and h(n) = 1, then  $\Phi V[h] = BV$ ; if  $\Lambda = \{\lambda_k\}_{k=1}^{\infty}$  is a  $\Lambda$ -sequence in the sense of Waterman [W],  $\varphi_k(x) = x/\lambda_k$ , and h(n) = 1, then  $\Phi V[h] = \Lambda BV$ ; if  $\varphi_k(x) = x$  for all k, and h is concave, then  $\Phi V[h]$  is the Chanturiya class V[h].

The next result follows easily from Lemma 1.1; the second part since  $v(n, \Phi, kf)$  increases as k increases.

- 1.6. Proposition. Let  $c \in [a, b]$ .
- (a) If  $f \in \Phi V[h]^*$  on [a, c] and  $f \in \Phi V[h]^*$  on [c, b], then  $f \in \Phi V[h]^*$  on [a, b].
  - (b) Part (a) holds when the "\*" is removed.
- 1.7. THEOREM. (a) If  $f \notin \Phi V[h]^*$  on [a,b], then there is an  $x \in [a,b]$  such that  $f \notin \Phi V[h]^*$  on all closed intervals containing a neighborhood of x.
  - (b) Part (a) holds when the "\*" is removed.

Proof. We will consider (b), as (a) is similar. Assume  $f \notin \Phi V[h]$  on [a,b], and divide [a,b] in half. Then, by Proposition 1.6(b),  $f \notin \Phi V[h]$  on at least one of these halves. Call such an interval  $J_1$  and divide  $J_1$  in half.

Then  $f \notin \Phi V[h]$  on at least one of the halves of  $J_1$ . Call this interval  $J_2$  and divide  $J_2$  in half. Continuing in this manner we obtain a sequence of nested intervals  $\{J_k\}_{k=1}^{\infty}$  such that  $|J_k| \downarrow 0$  and  $f \notin \Phi V[h]$  on  $J_k$  for each k. The required point is  $x \in \bigcap_{k=1}^{\infty} J_k$ , since every neighborhood of x contains one of the  $J_k$ .

The next result gives the reason for condition (\*) in Definition 1.4.

1.8. THEOREM. If  $f \in \Phi V[h]$ , then f is bounded, and has only simple discontinuities.

Proof. If f is unbounded, pick nonoverlapping intervals  $\{I_k\}_{k=1}^{\infty}$  such that  $|f(I_k)| \geq 1$  for all k. Then

$$\frac{v(n,\Phi,f)}{h(n)} \geq \frac{\displaystyle\sum_{k=1}^n \varphi_k(|f(I_k)|)}{h(n)} \geq \frac{\displaystyle\sum_{k=1}^n \varphi_k(1)}{h(n)} \to \infty \quad \text{as } n \to \infty,$$

and  $v(n, \Phi, f) \neq O(h(n))$ . Now suppose f has a discontinuity that is not simple. We may assume f(x+) does not exist for some  $x \in [a, b]$ . Then there is a positive  $\varepsilon$  and a sequence of nonoverlapping intervals  $\{I_k = [a_k, b_k]\}_{k=1}^{\infty}$  with  $a_k \downarrow x$  and  $|f(I_k)| > \varepsilon$  for all k. As above, we obtain  $v(n, \Phi, f)/h(n) \to \infty$ .

Recall that  $f \in \Phi V[h]^*$  if and only if there is a positive M with  $\sum_{k=1}^n \varphi_k(|f(I_k)|) \leq Mh(n)$  for all collections  $\{I_k\}_{k=1}^{\infty}$  and all n (the same M must work for all  $\{I_k\}_{k=1}^{\infty}$ .) This condition can be weakened:

1.9. THEOREM.  $f \in \Phi V[h]^*$  if and only if for each collection  $\{I_k\}_{k=1}^{\infty}$  there is a positive M (which may depend on  $\{I_k\}_{k=1}^{\infty}$ ) such that

$$\sum_{k=1}^{n} \varphi_k(|f(I_k)|) \leq Mh(n)$$

for all n.

Proof. The "only if" part is clear from the definition of  $\Phi V[h]^*$ . Conversely, assume  $f \notin \Phi V[h]^*$ . If f is unbounded, we may obtain the result by applying the technique used in Theorem 1.8. Otherwise, let  $B = \sup f - \inf f$ , and let x be the point provided by Theorem 1.7(a). Pick  $n_1^* \geq 4$  such that  $h(n_1^*) > 2\varphi_1(B)$  and  $v(n_1^*) > 2h(n_1^*)$  (since h is increasing). Then there are intervals  $\{I_k\}_{k=1}^{n_1^*}$  such that

$$\sum_{k=1}^{n_1^*} \varphi_k(|f(I_k)|) > 2h(n_1^*).$$

Hence,  $\sum_{k=1}^{n_1^*} \varphi_k(|f(I_k)|) > h(n_1^*) + 2\varphi_1(B)$ . By deleting the intervals containing x, if any, we obtain  $\{I_k\}_{k=1}^{n_1}$  with

$$\sum_{k=1}^{n_1} \varphi_k(|f(I_k)|) > h(n_1^*) \ge h(n_1).$$

Note that  $n_1 \geq 2$  since  $n_1^* \geq 4$ .

Assuming we have chosen  $n_1 < \ldots < n_r$  and  $\{I_k\}_{k=1}^{n_r}$ , none containing x, there is a closed interval J containing a neighborhood of x with  $J \cap I_k = \emptyset$  for  $k = 1, \ldots, n_r$ . Then  $f \notin \Phi V[h]$  on J, so there is  $n_{r+1}^* > \max(n_r^*, n_r + 2)$  and nonoverlapping intervals  $\{J_k\}_{k=1}^{n_{r+1}^*}$  such that  $h(n_{r+1}^*) > n_r \varphi_1(B)$  and

$$\sum_{k=1}^{n_{r+1}^*} \varphi_k(|f(J_k)|) > (r+3)h(n_{r+1}^*).$$

Deleting the intervals containing x, if any, gives  $\{J_k\}_{k=1}^{n_{r+1}}$  (where  $n_{r+1} > n_r$ ) such that

$$\sum_{k=1}^{n_{r+1}} \varphi_k(|f(I_k)|) > (r+2)h(n_{r+1}^*)$$

since  $h(n_{r+1}^*) > n_r \varphi_1(B) > n_1 \varphi_1(B) > 2\varphi_1(B)$ . Let  $I_k = J_k$  for  $k = n_r + 1, \ldots, n_{r+1}$ . Then

$$\sum_{k=1}^{n_{r+1}} \varphi_k(|f(I_k)|) > \sum_{k=n_r+1}^{n_{r+1}} \varphi_k(|f(I_k)|) = \sum_{k=n_r+1}^{n_{r+1}} \varphi_k(|f(J_k)|)$$

$$= \sum_{k=1}^{n_{r+1}} \varphi_k(|f(J_k)|) - \sum_{k=1}^{n_r} \varphi_k(|f(J_k)|)$$

$$> (r+2)h(n_{r+1}^*) - n_r \varphi_1(B) > (r+2)h(n_{r+1}^*) - h(n_{r+1}^*)$$

$$= (r+1)h(n_{r+1}^*) \ge (r+1)h(n_{r+1}).$$

Hence, by induction, we obtain a sequence  $n_r \uparrow \infty$  and a sequence  $\{I_k\}_{k=1}^{\infty}$  of intervals such that  $\sum_{k=1}^{n_r} \varphi_k(|f(I_k)|) \ge rh(n_r)$  for all positive integers r. Thus for this sequence  $\{I_k\}_{k=1}^{\infty}$  there is no M > 0 with  $\sum_{k=1}^{n} \varphi_k(|f(I_k)|) \le Mh(n)$  for all n.

We end this section by giving a generalization of a result of Perlman [P]. We assume the sequences  $\Lambda = \{\lambda_k\}$  satisfy  $\lambda_k \uparrow \infty$  and  $\sum (1/\lambda_k) = \infty$ . For any sequence  $\{a_k\}$ , we write  $\Delta a_k$  for  $a_k - a_{k+1}$ , and let  $\Psi BV^*$  be the class of functions of  $\Psi$ -bounded variation.

1.10. THEOREM. If  $\sum h(k)\Delta(1/\lambda_k) < \infty$ , then  $\Phi V[h]^* \subseteq \Psi BV^*$ , where  $\Psi = \{\psi_k\}$  with  $\psi_k(x) = \varphi_k(x)/\lambda_k$ .

Proof. First,  $h(n)/\lambda_n = h(n) \sum_{k=n}^{\infty} \Delta(1/\lambda_k) \leq \sum_{k=n}^{\infty} h(k)\Delta(1/\lambda_k)$ , so  $h(n) = o(\lambda_n)$ . Next let  $f \in \Phi V[h]^*$ . For every collection  $\{I_k\}_{k=1}^{\infty}$  of intervals and any N,

$$\sum_{k=1}^{N} \frac{\varphi_{k}(|f(I_{k})|)}{\lambda_{k}} = \sum_{k=1}^{N-1} \sum_{j=1}^{k} \varphi_{j}(|f(I_{j})|) \Delta(1/\lambda_{k}) + \sum_{k=1}^{N} \frac{\varphi_{k}(|f(I_{k})|)}{\lambda_{N}}$$

$$= \sum_{k=1}^{N-1} \frac{\sum_{j=1}^{k} \varphi_{j}(|f(I_{j})|)}{h(k)} h(k) \Delta(1/\lambda_{k}) + \frac{\sum_{k=1}^{N} \varphi_{k}(|f(I_{k})|)}{h(N)} \frac{h(N)}{\lambda_{N}}$$

$$\leq \sup_{n} \frac{v(n, \Phi, f)}{h(n)} \Big[ \sum_{k=1}^{N-1} h(k) \Delta(1/\lambda_{k}) + \frac{h(N)}{\lambda_{N}} \Big] \leq C$$

for some constant C. Thus,  $f \in \Psi BV^*$  with  $\Psi = \{\varphi_k(x)/\lambda_k\}$ .

1.11. THEOREM. Let  $f \notin \Phi V[h]^*$  be bounded. Then there is  $\Lambda = \{\lambda_k\}$  with  $\lambda_k \uparrow \infty$ ,  $\sum (1/\lambda_k) = \infty$  and  $\sum h(k)\Delta(1/\lambda_k) < \infty$  such that  $f \notin \Psi BV$  where  $\Psi = \{\varphi_k(x)/\lambda_k\}$ .

Proof. There is a collection of intervals  $\{I_k\}$  such that  $\sum_{k=1}^n \varphi_k(|f(I_k)|) \neq O(h(n))$ . Let  $n_0 = 0$ , and choose  $n_1$  such that  $\sum_{k=1}^{n_1} \varphi_k(|f(I_k)|) \geq h(n_1)$ . Having chosen  $n_1, \ldots, n_{r-1}$ , choose  $n_r > n_{r-1}$  such that  $\sum_{k=1}^{n_r} \varphi_k(|f(I_k)|) > 2\sum_{k=1}^{n_{r-1}} \varphi_k(|f(I_k)|)$  and  $\sum_{k=1}^{n_r} \varphi_k(|f(I_k)|) > 2r^2h(n_r)$ . Then

$$\sum_{k=n_{r-1}+1}^{n_r} \varphi_k(|f(I_k)|) > \frac{1}{2} \sum_{k=1}^{n_r} \varphi_k(|f(I_k)|) > r^2 h(n_r).$$

Let  $\lambda_k = r^2 h(n_r)$  for  $n_{r-1} < k \le n_r$ . Then  $\lambda_k \uparrow \infty$ , and

$$\sum_{k=1}^{\infty} h(k) \Delta \left( \frac{1}{\lambda_k} \right) = \sum_{\{k: \lambda_k \neq \lambda_{k+1} \}} \dots$$

$$= \sum_{r=1}^{\infty} h(n_r) \left[ \frac{1}{r^2 h(n_r)} - \frac{1}{(r+1)^2 h(n_{r+1})} \right]$$

$$\leq \sum_{r=1}^{\infty} h(n_r) \frac{1}{r^2 h(n_r)} = \sum_{r=1}^{\infty} \frac{1}{r^2} < \infty.$$

Also,

$$\sum_{k=1}^{\infty} \frac{\varphi_k(|f(I_k)|)}{\lambda_k} = \sum_{r=1}^{\infty} \sum_{k=n_{r-1}+1}^{n_r} \frac{\varphi_k(|f(I_k)|)}{\lambda_k}$$

$$= \sum_{r=1}^{\infty} \left[ \sum_{k=n_{r-1}+1}^{n_r} \varphi_k(|f(I_k)|) \right] \frac{1}{r^2 h(n_r)} \ge \sum_{r=1}^{\infty} 1 = \infty$$

and so,  $f \notin \Psi BV^*$  with  $\Psi = \{\varphi_k(x)/\lambda_k\}$ . Note that  $\sum (1/\lambda_k) = \infty$  since

$$\varphi_1(\sup f - \inf f) \sum_{k=1}^N \frac{1}{\lambda_k} \ge \sum_{k=1}^N \frac{\varphi_k(|f(I_k)|)}{\lambda_k}$$

for all N.

The following extension of Perlman's result follows easily from Theorems 1.10 and 1.11.

1.12. THEOREM.  $\Phi V[h]^* = \bigcap \{ f \in \Psi BV^* : f \text{ is bounded and } \Psi = \{ \varphi_k(x)/\lambda_k \} \text{ with } \sum h(k)\Delta(1/\lambda_k) < \infty \}.$ 

The last three theorems remain true when the "\*" is removed.

- 2. The space  $\Phi V[h]$ . We begin with a definition of generalized variation that will be used to define a norm on  $\Phi V[h]$ .
- 2.1. DEFINITION. For f defined on [a,b], we define the total  $\Phi V[h]$  variation of f to be

$$V(f) = V_{\Phi,h}(f) = V(f;a,b) = V_{\Phi,h}(f;a,b) = \sup_{n} \frac{v(n,\Phi,f,[a,b])}{h(n)}$$
.

It is clear that  $f \in \Phi V[h]^*$  if and only if  $V(f) < \infty$  and, because of the convexity of  $\varphi_k$ ,

$$V\left(\sum_{k=1}^{n} a_k f_k\right) \le \sum_{k=1}^{n} a_k V(f_k)$$
 for  $\sum_{k=1}^{n} a_k = 1$ ,  $a_k > 0$ .

2.2. THEOREM.  $\Phi V[h]$  is a linear space.

Proof. Let  $\alpha \in \mathbb{R}$  and  $f, g \in \Phi V[h]$ . Then there are  $k_1, k_2 > 0$  such that  $V(k_1 f) < \infty$  and  $V(k_2 g) < \infty$ . If  $\alpha \neq 0$ , then  $V((k_1/|\alpha|)\alpha f) = V(k_1 f) < \infty$ , so  $\alpha f \in \Phi V[h]$ . Now let  $k = \frac{1}{2} \min(k_1, k_2)$ . Then

$$V(k(f+g)) \le V\left(\frac{1}{2}k_1f + \frac{1}{2}k_2g\right) \le \frac{1}{2}[V(k_1f) + V(k_2g)] < \infty,$$

so  $f + g \in \Phi V[h]$ .

Let  $\Phi V[h]_0 = \{ f \in \Phi V[h] : f(a) = 0 \}$ . We follow Musielak and Orlicz [MO] and define a "norm" on  $\Phi V[h]_0$  by  $||f|| = \inf\{ r > 0 : V(f/r) \le 1 \}$ .

- 2.3. LEMMA. (a)  $V(f/||f||) \le 1$ .
- (b) If  $||f|| \le 1$ , then  $V(f) \le ||f||$ .

Proof. (a) Let  $r_n \downarrow ||f||$  such that  $V(f/r_n) \leq 1$ . Then for any nonoverlapping  $\{I_k\}$ , and any N, we have

$$\frac{\sum_{k=1}^{N} \varphi_k(|f(I_k)|/||f||)}{h(N)} = \lim_{n \to \infty} \frac{\sum_{k=1}^{N} \varphi_k(|f(I_k)|/r_n)}{h(N)} \le 1,$$

since the  $\varphi_k$  are continuous. Thus  $V(f/||f||) \leq 1$ .

(b) For any nonoverlapping  $\{I_k\}$ , and any N,

$$\frac{\sum_{k=1}^{N} \varphi_k(|f(I_k)|)}{h(N)} \leq \|f\| \frac{\sum_{k=1}^{N} \varphi_k(|f(I_k)|/\|f\|)}{h(N)},$$

since the  $\varphi_k$  are convex and  $||f|| \le 1$ . Thus  $V(f) \le ||f||$  by (a).

We now remove the quotes from "norm".

2.4. THEOREM.  $\|\cdot\|$  is a norm on  $\Phi V[h]_0$ .

Proof. Clearly ||0|| = 0. If  $f \neq 0$ , then there is an  $x \in (a, b]$  such that  $f(x) \neq 0$ . Then

$$V(f/r) \geq \frac{\varphi_1(|f(x)-f(a)|/r)}{h(1)} = \frac{\varphi_1(|f(x)|/r)}{h(1)} \to \infty \quad \text{as } r \to 0^+.$$

Thus there is an  $r_0 > 0$  such that  $V(f/r_0) > 1$ . By Lemma 2.3(a) and the fact that V(kf) increases as k increases,  $\{r > 0 : V(f/r) \le 1\} = [||f||, \infty)$ , so  $(0, r_0) \not\subset \{r > 0 : V(f/r) \le 1\}$ , and ||f|| > 0. Now note

$$||kf|| = \inf\{r > 0 : V(kf/r) \le 1\} = \inf\{r > 0 : V((|k|/r)f) \le 1\}$$
$$= \inf\{|k|r : r > 0 \text{ and } V(f/r) < 1\} = |k|||f||.$$

Lastly, for any nonoverlapping  $\{I_k\}$  and any N,

$$\frac{\sum_{k=1}^{N} \varphi_{k} \left( \frac{|(f+g)(I_{k})|}{\|f\| + \|g\|} \right)}{h(N)} \\
\leq \frac{\sum_{k=1}^{N} \varphi_{k} \left( \frac{\|f\|}{\|f\| + \|g\|} \frac{|f(I_{k})|}{\|f\|} + \frac{\|g\|}{\|f\| + \|g\|} \frac{|g(I_{k})|}{\|g\|} \right)}{h(N)}$$

$$\leq \frac{\sum_{k=1}^{N} \left( \frac{||f||}{||f|| + ||g||} \varphi_{k} \left( \frac{|f(I_{k})|}{||f||} \right) + \frac{||g||}{||f|| + ||g||} \varphi_{k} \left( \frac{|g(I_{k})|}{||g||} \right) \right)}{h(N)}$$

(by the convexity of the  $\varphi_k$ )

$$\leq \frac{\|f\|}{\|f\| + \|g\|} + \frac{\|g\|}{\|f\| + \|g\|} \qquad \text{(by Lemma 2.3(a))}$$
  
= 1.

Thus  $||f|| + ||g|| \in \{ r > 0 : V((f+g)/r) \le 1 \}$ , and so,  $||f+g|| = \inf\{ r > 0 : V((f+g)/r) \le 1 \} \le ||f|| + ||g||$ .

2.5. THEOREM.  $\Phi V[h]_0$  is a Banach space.

Proof. All that is left to show is that  $\Phi V[h]_0$  is complete. Fix  $\varepsilon > 0$  and let  $\{f_n\}$  be a Cauchy sequence in the norm on  $\Phi V[h]_0$ , so that  $||f_n - f_m|| < \varepsilon$  for large n and m. Thus, for  $x \in [a, b]$  and large n and m,

$$\frac{\varphi_{1}(|f_{n}(x) - f_{m}(x)|/\varepsilon)}{h(1)} = \frac{\varphi_{1}(|(f_{n} - f_{m})(x) - (f_{n} - f_{m})(a)|/\varepsilon)}{h(1)}$$

$$\leq V((f_{n} - f_{m})/\varepsilon) \leq ||(f_{n} - f_{m})/\varepsilon||$$
(by Lemma 2.3(b))
$$= (1/\varepsilon)||f_{n} - f_{m}|| < (1/\varepsilon)\varepsilon = 1.$$

Hence,  $|f_n(x) - f_m(x)| < \varepsilon \varphi_1^{-1}(h(1))$ , and we can define  $f(x) = \lim_{n \to \infty} f_n(x)$ . For nonoverlapping  $\{I_k\}$ , any N, and large enough n,

$$\frac{\sum_{k=1}^{N} \varphi_k(|(f_n - f)(I_k)|/\varepsilon)}{h(N)} = \lim_{m \to \infty} \frac{\sum_{k=1}^{N} \varphi_k(|(f_n - f_m)(I_k)|/\varepsilon)}{h(N)} \le 1$$

since  $V((f_n - f_m)/\varepsilon) \le 1$ . Thus  $V((f_n - f)/\varepsilon) \le 1$ . Since  $\varepsilon$  was arbitrary,  $||f_n - f|| \to 0$ . Now f(a) = 0 since  $f_n(a) = 0$  for all n; and, for any  $\varepsilon > 0$  we can pick n such that  $V((f_n - f)/\varepsilon) \le 1$  and k such that  $V(kf_n) \le 1$ . (Recall that V(kf) decreases as k decreases.) Letting  $c = \frac{1}{2} \min(1/\varepsilon, k)$ , we have

$$V(cf) = V(c(f - f_n) + cf_n) \le V\left(\frac{1}{2}\left(\frac{f - f_n}{\varepsilon}\right) + \frac{1}{2}(kf_n)\right)$$

$$\le \frac{1}{2}V\left(\frac{f - f_n}{\varepsilon}\right) + \frac{1}{2}V(kf_n) < \infty.$$

Thus  $f \in \Phi V[h]_0$ .

Lemma 2.3(b) tells us that if  $||f_n - f|| < \varepsilon < 1$ , then  $V(f_n - f) < \varepsilon$ , so in the above proof, we also have  $f_n \to f$  in variation. Also, we see that if  $\{f_n\}$  is Cauchy in norm, then  $|f_n(x) - f_m(x)| \le \varepsilon \varphi_1^{-1}(h(1))$  for all x. Thus  $f_n \to f$  uniformly, and  $\Phi V[h]_0 \cap C$  is a Banach space in this norm.

We can use the above norm to define a norm on  $\Phi V[h]$  making it a

Banach space:

$$||f||_{\Phi,h} = |f(a)| + ||f - f(a)||.$$

Our last goal of this section is to show that  $\Phi V[h]$  satisfies an analogue of Helly's theorem. We accomplish this by placing  $\Phi V[h]$  inside a space for which this is true. In §1, we saw that  $\Phi V[h]$  is contained in the spaces  $\Psi BV$  with  $\Psi = \{\varphi_k(x)/\lambda_k\}$  with  $\sum h(k)\Delta(1/\lambda_k) < \infty$ . However, it is possible that  $\Psi BV$  does not do what we wish. Schramm has shown [S] that Helly's theorem holds on  $\Psi BV$  if  $\sum \psi_k(x) = \infty$  for each x. We incorporate this condition into our theorem.

2.6. THEOREM. Let  $\{f_n\}$  be a sequence in  $\Phi V[h]$  on [a,b]. Assume A satisfies  $\sum h(k)\Delta(1/\lambda_k) < \infty$  and  $\sum \varphi_k(x)/\lambda_k = \infty$ . If there are numbers c>0 and  $M<\infty$  such that  $|cf_n(a)|< M$  and  $V_{\Phi,h}(cf_n)\leq M$  for all n, then there is a subsequence  $\{f_{n_k}\}$  of  $\{f_n\}$  converging pointwise to  $f\in \Phi V[h]$ , with  $V_{\Phi,h}(cf)\leq M$ .

Proof. Note that for each n

$$||cf_n||_{\infty} \leq |cf_n(a)| + \sup\{cf_n(x) : x \in [a,b]\} - \inf\{cf_n(x) : x \in [a,b]\}$$
  
$$\leq M + \varphi_1^{-1}(v(1,\Phi,cf_n)) \leq M + \varphi_1^{-1}(h(1)V_{\Phi,h}(cf_n)).$$

So the functions  $cf_n(x)$  are uniformly bounded. For each  $\{I_k\}$  and each n,

$$\sum_{k=1}^{\infty} \varphi_k(|cf_n(I_k)|)/\lambda_k = \sum_{k=1}^{\infty} \left[ \sum_{m=1}^{k} \varphi_m(|cf_n(I_m)|) \right] \Delta(1/\lambda_k)$$

$$\leq V_{\Phi,h}(cf_n) \sum_{k=1}^{\infty} h(k) \Delta(1/\lambda_k)$$

$$\leq SM \quad \text{where } S = \sum_{k=1}^{\infty} h(k) \Delta(1/\lambda_k).$$

Hence  $V_{\Psi}(cf_n) \leq SM$  where  $\Psi = \{\varphi_k(x)/\lambda_k\}$ . By Helly's theorem for  $\Psi BV$ , there is a subsequence  $\{f_{n_j}\}$  of  $\{f_n\}$  converging pointwise to some  $f \in \Psi BV$ . Now  $\sum h(k)\Delta(1/\lambda_k) < \infty$ , so  $\Psi BV \subseteq \Phi V[h]$  and  $f \in \Phi V[h]$ . Finally, for any collection  $\{I_k\}$  of nonoverlapping intervals and any N,

$$\frac{\sum_{k=1}^{N} \varphi_k(|cf_{n_j}(I_k)|)}{h(N)} \leq V_{\Phi,h}(cf_{n_j}) \leq M.$$

Letting  $j \to \infty$  gives  $\sum_{k=1}^N \varphi_k(|cf(I_k)|)/h(N) \le M$ . Thus  $V_{\Phi,h}(cf) \le M$ .

3. Fourier series. The Dirichlet-Jordan theorem states that the Fourier series of a function of bounded variation converges pointwise, and converges uniformly on any closed interval of points of continuity of the function. Waterman has shown [W] that this result is also true for the functions of

harmonic bounded variation, but that this is the largest  $\Lambda BV$  space where the theorem holds in the sense that, if  $HBV \subset \Lambda BV$ , there is a continuous function in  $\Lambda BV$  whose Fourier series diverges at a point. We now give a similar result for  $\Phi V[h]$ .

3.1. THEOREM. If  $HBV \subset \Phi V[h]$  on  $[0, 2\pi]$ , there is a continuous  $f \in \Phi V[h]_0$  whose Fourier series diverges at x = 0.

Proof. If  $HBV \subset \Phi V[h]$ , there is a sequence  $\{a_k\}$  with  $a_k \downarrow 0$ ,  $\sum_{k=1}^n \varphi_k(a_k) = O(h(n))$  and  $\sum_{k=1}^\infty a_k/k = \infty$ . Let  $b_k$  be defined by  $b_1 = b_2 = a_2$ ,  $b_3 = b_4 = a_4$ , ... Then, since  $b_k \leq a_k$  for each k,  $\sum_{k=1}^n \varphi_k(b_k) = O(h(n))$ , but  $\sum_{k=1}^\infty b_k/k \geq \sum_{k=1}^\infty a_{2k}/(2k) = \infty$ . Choose  $\varepsilon > 0$  with  $\sum_{k=1}^n \varphi_k(\varepsilon b_k) \leq h(n)$  for all n, and let  $c_k = \varepsilon b_k$ . Then  $c_k \downarrow 0$ ,  $c_{2k-1} = c_{2k}$  for  $k = 1, 2, \ldots$ ,  $\sum_{k=1}^n \varphi_k(c_k) \leq h(n)$  for all n, and  $\sum_{k=1}^\infty c_k/k = \infty$ . Define

$$f_n(x) = \begin{cases} c_i & \text{if } (2i-2)\pi < (n+1/2)x < (2i-1)\pi \text{ for } i=1,\ldots,n+1, \\ 0 & \text{otherwise,} \end{cases}$$

Then

$$V_{\Phi,n}(f_n) = \sup_{N} \frac{v(N,\Phi,f_n)}{h(N)} = \sup_{N} \frac{\sum_{k=1}^{N} \varphi_k(c_k)}{h(N)} \leq 1,$$

so  $f_n(x) \in \Phi V[h]$ . We also have  $||f_n|| = \inf\{r > 0 : V_{\Phi,h}(f_n/r) \le 1\} \le 1$ . Now let  $S_n(f)$  be the *n*th partial sum of the Fourier series of f at x = 0 and

$$D_n(t) = \frac{\sin(n+1/2)t}{2\sin t/2}$$

be the Dirichlet kernel. Then

$$\pi S_n(f_n) = \int_0^{2\pi} f_n(t) D_n(t) dt \ge \int_0^{2\pi} f_n(t) \frac{\sin(n+1/2)t}{t} dt$$

$$= \sum_{k=1}^{n+1} \int_{(2k-2)\pi/(n+1/2)}^{(2k-1)\pi/(n+1/2)} f_n(t) \frac{\sin(n+1/2)t}{t} dt$$

$$= \sum_{k=1}^{n+1} c_k \int_{(2k-2)\pi/(n+1/2)}^{(2k-1)\pi/(n+1/2)} \frac{\sin(n+1/2)t}{t} dt$$

$$\ge \sum_{k=1}^{n+1} c_k \frac{n+1/2}{(2k-1)\pi} \int_{(2k-2)\pi/(n+1/2)}^{(2k-1)\pi/(n+1/2)} \sin(n+1/2)t dt$$

$$= \sum_{k=1}^{n+1} c_k \frac{1}{(2k-1)\pi} \int_{(2k-2)\pi}^{(2k-1)\pi} \sin t dt$$

$$=\sum_{k=1}^{n+1}\frac{2c_k}{(2k-1)\pi}=\frac{1}{\pi}\sum_{k=1}^{n+1}\frac{c_k}{k-1/2}\geq \frac{1}{\pi}\sum_{k=1}^{n+1}\frac{c_k}{k}.$$

Without changing their norms or variations, the functions  $f_k$ , k = 1, 2, ..., may be altered on a set of small enough measure so that they are continuous and the partial sums of their Fourier series differ from those of  $f_k$  by an arbitrarily small amount. Thus

$$||S_n|| \ge \frac{S_n(f_n)}{||f_n||} \ge \frac{(1/\pi^2) \sum_{k=1}^{n+1} c_k/k}{||f_n||} \to \infty.$$

Hence, by the principle of uniform boundedness (applied to the Banach space  $\Phi V[h]_0 \cap C$ ) there is an  $f \in \Phi V[h]_0 \cap C$  such that  $\{S_n(f)\}$  does not converge.

- 4. Riemann-Stieltjes integrals. In this section, the classic theorem on Riemann-Stieltjes integration ("If f is continuous and  $g \in BV$ , then  $\int f \, dg$  exists") will be adjusted in a manner analogous to that of Young [Y] and Leśniewicz and Orlicz [LO], by strengthening the requirements on f and weakening those on g. In what follows, we assume that all nondecreasing functions h are such that  $h(1) \geq 1$ .
- 4.1. DEFINITION. Let  $\Phi = \{\varphi_n\}$ ,  $\Psi = \{\psi_n\}$ ,  $h_1$ ,  $h_2$ , and positive constants A and B be given. L. C. Young's series for  $\Phi$ ,  $\Psi$ ,  $h_1$ ,  $h_2$ , A, and B is

$$\sum_{k=1}^{\infty} \varphi_k^{-1}(A/k) \psi_k^{-1}(B/k) h_1(k) h_2(k),$$

which we will denote  $LCY(\Phi, \Psi, h_1, h_2, A, B)$ .

4.2. LEMMA. If  $LCY(\Phi, \Psi, h_1, h_2, 1, 1)$  converges, then  $LCY(\Phi, \Psi, h_1, h_2, A, B)$  converges.

Proof. Let m be a natural number with  $A, B \leq m$ . For  $im \leq k < (i+1)m$ , we have  $A/k \leq 1/i$  and  $B/k \leq 1/i$ , so

$$\sum_{k=1}^{\infty} \varphi_k^{-1}(A/k) \psi_k^{-1}(B/k) h_1(k) h_2(k)$$

$$= \sum_{k=1}^{m-1} \varphi_k^{-1}(A/k) \psi_k^{-1}(B/k) h_1(k) h_2(k)$$

$$+ \sum_{i=1}^{\infty} \sum_{k=m_i}^{m(i+1)} \varphi_k^{-1}(A/k) \psi_k^{-1}(B/k) h_1(k) h_2(k)$$

$$\leq C + \sum_{i=1}^{\infty} \sum_{k=mi}^{m(i+1)} \varphi_k^{-1}(1/i) \psi_k^{-1}(1/i) h_1(k) h_2(k)$$

$$\leq C + \sum_{i=1}^{\infty} \sum_{k=mi}^{m(i+1)} \varphi_{m(i+1)}^{-1} \left( \frac{2m}{m(i+1)} \right) \psi_{m(i+1)}^{-1} \left( \frac{2m}{m(i+1)} \right)$$

$$\times h_1(m(i+1)) h_2(m(i+1)).$$

Since k no longer appears in this sum, the above

$$\leq C + m \sum_{i=1}^{\infty} \varphi_{m(i+1)}^{-1} \left( \frac{2m}{m(i+1)} \right) \psi_{m(i+1)}^{-1} \left( \frac{2m}{m(i+1)} \right) \times h_1(m(i+1)) h_2(m(i+1)).$$

For any convex  $\varphi$  and a > 1, we have  $\varphi^{-1}(ax) < a\varphi^{-1}(x)$ . Consequently the above

$$\leq C + 4m^{3} \sum_{i=1}^{\infty} \varphi_{m(i+1)}^{-1} \left( \frac{1}{m(i+1)} \right) \psi_{m(i+1)}^{-1} \left( \frac{1}{m(i+1)} \right) \\ \times h_{1}(m(i+1)) h_{2}(m(i+1)) < \infty.$$

If  $\Phi = \{\varphi_n\}$  is as above and F is convex, we may consider the sequence of convex functions  $F\Phi = \{F\varphi_n\}$  and the set  $F\Phi V[h]$  (which may or may not have the properties we have examined).

4.3. LEMMA. If  $LCY(\Phi, \Psi, h_1, h_2, 1, 1)$  converges, there is a convex  $F: [0, \infty) \to [0, \infty)$  such that  $LCY(F\Phi, F\Psi, h_1, h_2, 1, 1)$  converges, F(0) = 0, F(x) > 0 for x > 0, and F(x) = o(x) as  $x \to 0$ .

Proof. By Lemma 4.2,  $LCY(\Phi, \Psi, h_1, h_2, 3n, 3n)$  converges for n = 1, 2, ... We may choose  $\{k_n\}$ , a sequence of natural numbers, with  $k_{n+1} > (1+1/n)k_n$  and

$$\sum_{k=k_n}^{\infty} \varphi_k^{-1}(3n/k)\psi_k^{-1}(3n/k)h_1(k)h_2(k) < 1/n^2 \quad \text{for each } n.$$

Set

$$p(t) = \begin{cases} 1/n, & 1/k_{n+1} < t \le 1/k_n, \\ 1+t, & 1/k_1 < t. \end{cases}$$

Then p(t) is a positive, increasing function and  $p(t) \to 0$  as  $t \to 0$ . Let  $F(x) = \int_0^x p(t) dt$  for  $x \ge 0$ . Then F is convex, F(0) = 0, and F(x) = o(x) as  $x \to 0$ . We now see that  $LCY(F\Phi, F\Psi, h_1, h_2, 1, 1)$  converges. If  $nk_n < k < nk_{n+1}$ ,

$$F\left(\frac{3n}{k}\right) = \int_{0}^{3n/k} p(t) dt \ge \int_{n/k}^{2n/k} p(t) dt \ge \frac{n}{k} p\left(\frac{n}{k}\right) = \frac{n}{k} \cdot \frac{1}{n} = \frac{1}{k}.$$

Likewise, for  $nk_{n+1} \leq k < (n+1)k_{n+1}$ ,

$$F\left(\frac{3n}{k}\right) \geq \int_{(n+1)/k}^{(2n+1)/k} p(t) dt \geq \frac{n}{k} p\left(\frac{n+1}{k}\right) = \frac{1}{k},$$

so that  $F(3n/k) \ge 1/k$  for  $nk_n \le k < (n+1)k_{n+1}$  (and  $F^{-1}(1/k) \le 3n/k$  for k in that range). Then

$$\begin{split} \sum_{k=1}^{\infty} (F\varphi)^{-1} (1/k) (F\psi)^{-1} (1/k) h_1(k) h_2(k) \\ &= \sum_{k=1}^{\infty} \varphi_k^{-1} F^{-1} (1/k) \psi_k^{-1} F^{-1} (1/k) h_1(k) h_2(k) \\ &= \sum_{k=1}^{k_1 - 1} \varphi_k^{-1} F^{-1} (1/k) \psi_k^{-1} F^{-1} (1/k) h_1(k) h_2(k) \\ &+ \sum_{k=1}^{\infty} \sum_{k=nk_n}^{(n+1)k_{n+1} - 1} \varphi_k^{-1} F^{-1} (1/k) \psi_k^{-1} F^{-1} (1/k) h_1(k) h_2(k) \\ &\leq C + \sum_{k=1}^{\infty} \sum_{k=nk_n}^{(n+1)k_{n+1} - 1} \varphi_k^{-1} (3n/k) \psi_k^{-1} (3n/k) h_1(k) h_2(k) \\ &\leq C + \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty. \quad \blacksquare \end{split}$$

Let  $\chi_n(\Phi, x) = F(\varphi_n(x))/\varphi_n(x)$  for x > 0, and  $\chi_n(\Phi, 0) = 0$ . Taking into account the properties of the sequence  $\Phi$  and the function F, we have:

- (i)  $\chi_n(\Phi, x)$  is nondecreasing as a function of x,
- (ii)  $\chi_{n+1}(\Phi, x) \leq \chi_n(\Phi, x)$  for all n, and
- (iii)  $\chi_n(\Phi, x) \to 0$  as  $x \to 0$ .
- 4.4. LEMMA. If  $B(f) = \sup f \inf f$ , then
- (i)  $\varphi_1(B(f)) \leq V_{\Phi,h}(f)h(1)$ ,
- (ii)  $V_{F\Phi,h}(f) \leq \chi_1(\Phi,B(f))V_{\Phi,h}(f)$ .

Proof. Part (i) is clear. To establish part (ii):

$$V_{F\Phi,h}(f) = \sup \frac{\sum_{k=1}^{n} F\varphi_k(|f(I_k)|)}{h(n)} = \sup \frac{\sum_{k=1}^{n} \chi_k(\Phi,|f(I_k)|)\varphi_k(|f(I_k)|)}{h(n)}$$

$$\sum_{k=1}^{n} \varphi_k(|f(I_k)|) \le \chi_1(\Phi, B(f)) V(\Phi, h)(f). \blacksquare$$

(Note that part (ii) implies  $\Phi V[h] \subseteq F\Phi V[h]$ .)

We introduce some notation for the computations that follow. Let  $\Phi = \{\varphi_n\}$  be as above, h a nondecreasing function on the positive integers,  $a = \{a_n\}$  a sequence of real numbers, and  $\delta = \{\delta_n\}$  a sequence of integers with  $0 \le \delta_0 < \delta_1 < \dots$  Define

$$\rho_n(\Phi, h, a) = \frac{\sum_{k=1}^n \varphi_k(|a_k|)}{h(n)}, \quad \delta(a) = (\delta(a)_n) = \Big(\sum_{k=\delta_{n-1}+1}^{\delta_n} a_k\Big),$$
$$\rho_n^*(\Phi, h, a) = \sup_{\delta} \rho_n(\Phi, h, \delta(a)).$$

A sequence  $\delta(a)$  is the result of replacing some of the commas in  $(a_1, a_2, \ldots)$  with +, the sequence  $\delta$  determining which commas should be replaced.

4.5. LEMMA. For any  $\Phi = \{\varphi_k\}$ , h, and a as above,

$$\left| \prod_{k=1}^{n} a_k \right|^{1/n} \leq \varphi_n^{-1} \left( \frac{1}{n} \rho_n(\Phi, h, a) \right) h(n), \quad n = 1, 2, \dots$$

Proof. Using the arithmetic-geometric mean inequality, Jensen's inequality, and the properties of convex functions, we have

$$\varphi_n\left(\frac{|\prod_{k=1}^n a_k|^{1/n}}{h(n)}\right) \le \varphi_n\left(\frac{(1/n)\sum_{k=1}^n a_k}{h(n)}\right) \le \frac{1}{n}\left(\frac{\sum_{k=1}^n \varphi_k(a_k)}{h(n)}\right)$$

and the result follows.

4.6. LEMMA. If  $a = \{a_k\}$  and  $b = \{b_k\}$  are real sequences,  $\Phi$  and  $\Psi$  as above, and  $h_1$  and  $h_2$  are nondecreasing functions on the positive integers, then for every n there is a  $k_0$  with  $1 \le k_0 \le n$  such that

$$|a_{k_0}b_{k_0}| \leq \varphi_n^{-1} \left(\frac{1}{n}\rho_n(\Phi, h_1, a)\right) \psi_n^{-1} \left(\frac{1}{n}\rho_n(\Psi, h_2, b)\right) h_1(n)h_2(n).$$

Proof. Let  $k_0$  be such that  $|a_{k_0}b_{k_0}| = \min\{|a_kb_k| : 1 \le k \le n\}$ . Then

$$|a_{k_0}b_{k_0}| \le \left|\sum_{k=1}^n a_k b_k\right|^{1/n} = \left|\sum_{k=1}^n a_k\right|^{1/n} \left|\sum_{k=1}^n b_k\right|^{1/n}$$

and the result follows from Lemma 4.5.

4.7. THEOREM. Let  $\Phi$ ,  $\Psi$ , a, b,  $h_1$ , and  $h_2$  be as above. Then

$$\left| \sum_{k=1}^{n} \sum_{i=1}^{k} a_{i} b_{k} \right| \leq \varphi_{1}^{-1} (\rho_{1}^{*}(\Phi, h_{1}, a)) \psi_{1}^{-1} (\rho_{1}^{*}(\Psi, h_{2}, b)) h_{1}(1) h_{2}(1)$$

$$+ \sum_{k=1}^{n-1} \varphi_{k}^{-1} \left( \frac{1}{k} \rho_{k}^{*}(\Phi, h_{1}, a) \right) \psi_{k}^{-1} \left( \frac{1}{k} \rho_{k}^{*}(\Psi, h_{2}, b) \right) h_{1}(k) h_{2}(k)$$

(where the sum is taken to be 0 when n = 1).

**Proof.** By induction: For n = 1, we have

$$|a_{1}b_{1}| = \frac{\varphi_{1}^{-1}(\varphi_{1}(|a_{1}|))}{h_{1}(1)} \frac{\psi_{1}^{-1}(\psi_{1}(|b_{1}|))}{h_{2}(1)} h_{1}(1)h_{2}(1)$$

$$\leq \varphi_{1}^{-1} \left(\frac{\varphi_{1}(|a_{1}|)}{h_{1}(1)}\right) \psi_{1}^{-1} \left(\frac{\psi_{1}(|b_{1}|)}{h_{2}(1)}\right) h_{1}(1)h_{2}(1)$$

$$\leq \varphi_{1}^{-1}(\rho_{1}^{*}(\boldsymbol{\Phi}, h_{1}, a))\psi_{1}^{-1}(\rho_{1}^{*}(\boldsymbol{\Psi}, h_{2}, b))h_{1}(1)h_{2}(1).$$

For n > 1, define a sequence  $a' = \{a'_k\}$  by  $a'_k = a_{k+1}$ . By Lemma 4.6, there is a  $k_0$  with  $1 \le k_0 \le n-1$  so that

$$|a'_{k_0}b_{k_0}| = |a_{k_0+1}b_{k_0}| = \varphi_{n-1}^{-1} \left(\frac{1}{n-1}\rho_{n-1}(\Phi, h_1, a')\right)$$

$$\times \psi_{n-1}^{-1} \left(\frac{1}{n-1}\rho_{n-1}(\Psi, h_2, b)\right) h_1(n-1)h_2(n-1)$$

$$\leq \varphi_{n-1}^{-1} \left(\frac{1}{n-1}\rho_{n-1}^*(\Phi, h_1, a)\right)$$

$$\times \psi_{n-1}^{-1} \left(\frac{1}{n-1}\rho_{n-1}^*(\Psi, h_2, b)\right) h_1(n-1)h_2(n-1).$$

Let  $\delta$  be given by  $\delta_k = 1$  for  $k \neq k_0$  and  $\delta_{k_0} = 2$ , and let  $c = \delta(a)$  and  $d = \delta(b)$ . Then

$$\sum_{k=1}^{n-1} \sum_{i=1}^{k} c_i d_k = a_{k_0+1} b_{k_0} + \sum_{k=1}^{n} \sum_{i=1}^{k} a_i b_k$$

so

$$\left| \sum_{k=1}^{n} \sum_{i=1}^{k} a_{i} b_{k} \right| \leq \left| \sum_{k=1}^{n-1} \sum_{i=1}^{k} c_{i} d_{k} \right| + \left| a_{k_{0}+1} b_{k_{0}} \right|$$

and the result follows by the induction hypothesis.

We turn now to Riemann-Stieltjes sums. Let  $P = \{[x_{k-1}, x_k] : k = 1, \ldots, n\}$  be a partition of [a, b], with  $\Xi = \{\xi_k : 1 \le k \le n, x_{k-1} \le \xi_k \le x_k\}$  a collection of intermediate points. We denote the Riemann-Stieltjes sum of f with respect to g constructed from these elements by

$$S(f, g, P, \Xi) = \sum_{k=1}^{n} f(\xi_k)(g(x_k) - g(x_{k-1})).$$

4.8. THEOREM. Let  $\Phi$ ,  $\Psi$ ,  $h_1$ , and  $h_2$  be given, P and  $\Xi$  be as above, and f(a) = 0. Then

$$|S(f,g,P,\Xi)| \leq 2 \sum_{k=1}^{n-1} \varphi_k^{-1} \left( \frac{1}{k} V_{\Phi,h_1}(f) \right) \psi \left( \frac{1}{k} V_{\Psi,h_2}(g) \right) h_1(k) h_2(k).$$

Proof. Take  $\xi_0 = a$ . Then

$$|S(f,g,P,\Xi)| = \Big| \sum_{k=1}^{n} f(\xi_k) (g(x_k) - g(x_{k-1})) \Big|$$

$$= \Big| \sum_{k=1}^{n} \sum_{i=1}^{k} (f(\xi_i) - f(\xi_{i-1})) (g(x_k) - g(x_{k-1})) \Big|.$$

Let  $\alpha_i = f(\xi_i) - f(\xi_{i-1})$  for i = 1, ..., n,  $\alpha_i = 0$  for i > n,  $\beta_k = g(x_k) - g(x_{k-1})$  for k = 1, ..., n,  $\beta_i = 0$  for k > n,  $\alpha = {\alpha_i}$ , and  $\beta = {\beta_k}$ . Then the above

$$= \left| \sum_{k=1}^{n} \sum_{i=1}^{k} \alpha_{i} \beta_{k} \right|$$

$$\leq \varphi_{1}^{-1}(\rho_{1}^{*}(\Phi, h_{1}, \alpha)) \psi_{1}^{-1}(\rho_{1}^{*}(\Psi, h_{2}, \beta)) h_{1}(1) h_{2}(1)$$

$$+ \sum_{k=1}^{n-1} \varphi_{k}^{-1} \left( \frac{1}{k} \rho_{k}^{*}(\Phi, h_{1}, \alpha) \right) \psi_{k}^{-1} \left( \frac{1}{k} \rho_{k}^{*}(\Psi, h_{2}, \beta) \right) h_{1}(k) h_{2}(k)$$

$$\leq \varphi_{1}^{-1}(V_{\Phi, h_{1}}(f)) \psi_{1}^{-1}(V_{\Psi, h_{2}}(g)) h_{1}(1) h_{2}(1)$$

$$+ \sum_{k=1}^{n-1} \varphi_{k}^{-1} \left( \frac{1}{k} V_{\Phi, h_{1}}(f) \right) \psi_{k}^{-1} \left( \frac{1}{k} V_{\Psi, h_{2}}(g) \right) h_{1}(k) h_{2}(k)$$

$$\leq 2 \sum_{k=1}^{n-1} \varphi_{k}^{-1} \left( \frac{1}{k} V_{\Phi, h_{1}}(f) \right) \psi_{k}^{-1} \left( \frac{1}{k} V_{\Psi, h_{2}}(g) \right) h_{1}(k) h_{2}(k) . \blacksquare$$

We now establish our main result:

4.9. THEOREM. Suppose  $LCY(\Phi, \Psi, h_1, h_2, 1, 1)$  converges,  $f \in \Phi V[h_1]_0 \cap C$ , and  $g \in \Psi V[h_2]$  on [a, b]. Then  $\int_a^b f \, dg$  exists.

Proof. We may assume that  $V_{\Phi,h_1}(f) < \infty$  and  $V_{\Psi,h_2}(g) < \infty$ . Let  $P_1 = \{[x_{k-1}^1, x_k^1]\}_{k=1}^{n_1}$  and  $P_2 = \{[x_{k-1}^2, x_k^2]\}_{k=1}^{n_2}$  be partitions of [a, b] with intermediate points  $\Xi_1 = \{\xi_k^1\}$  and  $\Xi_2 = \{\xi_k^2\}$  respectively. Let  $P = \{[x_{k-1}, x_k]\}_{k=1}^n$  be the common refinement of  $P_1$  and  $P_2$ . Define step functions  $f_1$  and  $f_2$  by

$$f_i(x) = f_i(x, P_i, \Xi_i) = \begin{cases} 0, & x = a, \\ f(\xi_k^i), & x_{k-1}^i < x \le x_k^i, \end{cases}$$
 for  $i = 1, 2$ .

Then, for i = 1, 2,

$$S(f, g, P_i, \Xi_i) = \sum_{k=1}^{n_i} f(\xi_k^i)(g(x_k^i) - g(x_{k-1}^i)) = \sum_{k=1}^{n_i} f_i(x_k^i)(g(x_k^i) - g(x_{k-1}^i))$$

$$= \sum_{k=1}^{n} f_i(x_k)(g(x_k) - g(x_{k-1})),$$

so that the difference

$$S(f,g,P_1,\Xi_1) - S(f,g,P_2,\Xi_2) = 2\sum_{k=1}^{n} \frac{1}{2} (f_1(x_k) - f_2(x_k))(g(x_k) - g(x_{k-1}))$$

(the 2 and 1/2 are for later convenience). Note that the above sum is  $2S(\frac{1}{2}(f_1-f_2),g,P,P)$ . Applying Theorem 4.8 to  $\frac{1}{2}(f_1-f_2),g,F\Phi,F\Psi,h_1$ , and  $h_2$  (F having been chosen in Lemma 4.3), we have

$$|S(f,g,P_{1},\Xi_{1}) - S(f,g,P_{2},\Xi_{2})|$$

$$\leq 4 \sum_{k=1}^{n} (F\varphi_{k})^{-1} \left(\frac{1}{k} V_{F\Phi,h_{1}} \left(\frac{1}{2} (f_{1} - f_{2})\right)\right)$$

$$\times (F\psi_{k})^{-1} \left(\frac{1}{k} V_{F\Psi,h_{2}}(g)\right) h_{1}(k) h_{2}(k).$$

By Lemma 4.4,

$$V_{F\Phi,h}(\frac{1}{2}(f_1 - f_2)) \leq \chi_1(\Phi, B(\frac{1}{2}(f_1 - f_2)))V_{\Phi,h}(\frac{1}{2}(f_1 - f_2))$$

$$\leq \frac{1}{2}\chi_1(\Phi, B(\frac{1}{2}(f_1 - f_2)))(V_{\Phi,h}(f_1) + V_{\Phi,h}(f_2))$$

$$\leq \chi_1(\Phi, B(\frac{1}{2}(f_1 - f_2)))V_{\Phi,h}(f).$$

Since f is uniformly continuous, for given  $\varepsilon > 0$  we may choose partitions  $P_1$  and  $P_2$  sufficiently fine so that  $B(\frac{1}{2}(f_1 - f_2)) < \varepsilon$ . Then

$$|S(f,g,P_{1},\Xi_{1}) - S(f,g,P_{2},\Xi_{2})| \leq 4 \sum_{k=1}^{n} (F\varphi_{k})^{-1} \left(\frac{1}{k} \chi_{1}(\Phi,\varepsilon) V_{F\Phi,h_{1}}(f)\right) \times (F\psi_{k})^{-1} \left(\frac{1}{k} V_{F\Psi,h_{2}}(g)\right) h_{1}(k) h_{2}(k),$$

which is bounded for  $\varepsilon > 0$  by Lemmas 4.2 and 4.3. Since  $\chi_1(\Phi, \varepsilon) \to 0$  as  $\varepsilon \to 0$ , we may make this sum as small as we like by making  $\varepsilon$  small.

5. Generalized variations. While the classes  $V_{\Phi,h}(f)$  encompass a large number of those previously examined, they all depend on the expressions  $|f(I_k)|$  for their definition. Concepts of variation not involving this expression have also been studied:

- 1. Brown [B] considers the *n*-th variation, based on sums of the form  $\sum_{r=0}^{n-k} {n-r-1 \choose k-1} |\Delta_n^k f(x_r)| \text{ where } a = x_0 < x_1 < \ldots < x_n \le b, \ x_k x_{k-1} = h$  for  $k = 1, \ldots, n, \ b x_n < h, \ \text{and} \ \Delta_n^k f(x) = \sum_{r=0}^k (-1)^{k-r} {k \choose r} f(x+rh).$
- 2. Russell [R] considers the sums  $\sum_{i=0}^{n-k} (x_{i+k} x_i) |Q_k(f; x_i, \ldots, x_{i+k})|$  where  $a \leq x_0 < x_1 < \ldots < x_n \leq b$  and  $Q_k(f; y_0, \ldots, y_k) = \sum_{i=0}^k [f(y_i)/P(i,k)]$  with  $P(i,k) = \prod_{j=0, j \neq i}^k (y_i y_j)$ .
- 3. Let  $\omega$  be a nondecreasing function defined on [a,b] and let  $S \subseteq [a,b]$  be the set of continuity points of  $\omega$ . Let f be a function that is continuous at each point of S such that  $\lim_{x\to c^+, x\in S} f(x)$  and  $\lim_{x\to c^-, x\in S} f(x)$  exist finitely for  $c\in [a,b]\setminus S$ . Bhakta [Bh] considers the *total*  $\omega$ -variation of such an f in sums of the form  $\sum_{i=0}^{n} |f(x_i+)-f(x_i-)|$  where  $\omega(a)=\omega(x_0)<\omega(x_1)<\ldots<\omega(x_n)=\omega(b)$ .

In view of this variety, we attempt to prove the following result in the most general terms possible:

- 5.1. DEFINITION. Let F be the class of (finite-valued) functions defined on [a,b]. A variation function is any function  $G: F \to \{r \in \mathbb{R} : r \geq 0\} \cup \{\infty\}$ . GBV is the class of all functions f satisfying  $G(f) < \infty$ .
- 5.2. THEOREM. Let G be a variation function such that GBV satisfies an analogue of Helly's theorem (i.e., if  $\{f_n(a)\}$  is bounded and  $\{f_n\}$  are of uniform bounded G-variation, then there is a subsequence  $\{f_{n_j}\}$  of  $\{f_n\}$  and  $f \in GBV$  with  $f_{n_j} \to f$  everywhere). Assume  $L_n$  is a sequence of linear operators on GBV satisfying
  - (i)  $L_n(g) \rightarrow g$  everywhere.
- (ii) For every n,  $G(L_n(g)) \leq CG(g)$  for some constant C which may depend on g. Then  $f \in GBV$  if and only if  $L_n(f)$  have uniformly bounded G-variations.
- Proof. Assume  $f \in GBV$ . Then  $G(L_n(f)) \leq CG(f) < \infty$ , so  $L_n(f)$  have uniformly bounded G-variations. Conversely, assume  $L_n(f)$  have uniformly bounded G-variations. Since  $L_n(f)(a) \to f(a)$ ,  $\{L_n(f)(a)\}$  is bounded. Hence, by the Helly analogue, there is  $n_j \uparrow \infty$  and  $g \in GBV$  such that  $L_{n_j}(f) \to g$  everywhere. Since  $L_n(f) \to f$  everywhere,  $f \equiv g$ , and thus  $g \in GBV$ .

This theorem has applications to many spaces—we give two. The first is a result of Zygmund [Z, p. 138].

5.3. COROLLARY. Let f be regulated and periodic. Then f is of bounded variation if and only if the (C,1) means of the Fourier series of f,  $\sigma_n(f)$ , have uniformly bounded variations.

Proof. Let V(f) be the variation of f. Note that V satisfies Helly's theorem. Since f is regulated and periodic, Fejér's theorem [Z, p. 189] gives  $\sigma_n(f) \to f$ . Finally, let  $K_n(t)$  be the linear means of  $\frac{1}{2} + \sum_{k=1}^{\infty} \cos kt$  [Z, pp. 84-85]. For any partition  $\{x_k\}_{k=1}^n$  of [a,b],

$$\sum_{k=1}^{n} |\sigma_{n}(x_{k}) - \sigma_{n}(x_{k-1})| = \frac{1}{\pi} \sum_{k=1}^{n} \left| \int_{-\pi}^{\pi} [f(x_{k} + t) - f(x_{k-1} + t)] K_{n}(t) dt \right|$$

$$\leq \frac{1}{\pi} \int_{-\pi}^{\pi} \left[ \sum_{k=1}^{n} |f(x_{k} + t) - f(x_{k-1} + t)| \right] K_{n}(t) dt$$
(since  $K_{n}$  is positive)
$$\leq V(f) \qquad \text{(since } f \text{ is periodic and } \int_{-\pi}^{\pi} K_{n}(t) dt = \pi \text{)}.$$

Thus  $V(\sigma_n(f)) \leq V(f)$ , and the theorem applies.

5.4. COROLLARY. Let f be regulated and periodic.  $V_{\Phi,h}(f) < \infty$  if and only if  $V_{\Phi,h}(\sigma_n(f))$  are uniformly bounded.

Proof.  $V_{\Phi,h}$  satisfies Helly's theorem and  $\sigma_n(f) \to f$  by Fejér's theorem. For any sequence of nonoverlapping intervals,

$$(\dagger) \frac{\sum_{k=1}^{N} \varphi_k(|\sigma_n(I_k)|)}{h(N)} = \frac{\sum_{k=1}^{N} \varphi_k\left(\left|\pi^{-1} \int_{-\pi}^{\pi} f(I_k + t) K_n(t) dt\right|\right)}{h(N)}$$

$$\leq \frac{\sum_{k=1}^{N} \varphi_k\left(\pi^{-1} \int_{-\pi}^{\pi} |f(I_k + t)| K_n(t) dt\right)}{h(N)}$$

(since  $\varphi_k$  is nondecreasing for each k)

$$\leq \frac{\pi^{-1}\sum_{k=1}^{N}\int\limits_{-\pi}^{\pi}\varphi_{k}(|f(I_{k}+t)|)K_{n}(t)dt}{h(N)}$$

(by Jensen's inequality)

$$=\frac{1}{\pi}\int_{-\pi}^{\pi}\frac{\sum_{k=1}^{N}\varphi_{k}(|f(I_{k}+t)|)}{h(N)}K_{n}(t)\,dt\leq V_{\Phi,h}(f).$$

Thus  $V_{\Phi,h}(\sigma_n) \leq V_{\Phi,h}(f)$ . (In (†), f(I+t) = f(y+t) - f(x+t) for I = [x,y].)

## REFERENCES

- [Bh] P. C. Bhakta, On functions of bounded ω-variation, Riv. Mat. Univ. Parma (2) 6 (1965), 55-64.
- [B] G. Brown, Continuous functions of bounded n-th variation, Proc. Edinburgh Math. Soc. (2) 16 (1969), 205-214.
- [C] Z. A. Chanturiya, The modulus of variation of a function and its applications in the theory of Fourier series, Soviet Math. Dokl. 15 (1974), 67-71.
- [I] P. Isaza, Functions of Generalized Bounded Variation and Fourier Series, Doctoral dissertation, Syracuse University, 1986.
- [LO] R. Leśniewicz and W. Orlicz, On generalized variations (II), Studia Math. 45 (1973), 71-109.
- [MO] J. Musielak and W. Orlicz, On generalized variations (I), ibid. 18 (1959), 11-41.
  - [P] S. Perlman, Functions of generalized variation, Fund. Math. 105 (1980), 199-211.
  - [R] A. M. Russell, On functions of bounded k-th variation, J. London Math. Soc. (2) 3 (1971), 742-746.
  - [S] M. Schramm, Functions of Φ-bounded variation and Riemann-Stieltjes integration, Trans. Amer. Math. Soc. 287 (1985), 49-63.
  - [W] D. Waterman, On convergence of Fourier series of functions of generalized bounded variation, Studia Math. 44 (1972), 107-117.
  - [Y] L. C. Young, An inequality of Hölder type connected with Stieltjes integration, Acta Math. 67 (1936), 251-282.
  - [Z] A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Press, New York 1979.

## N. Paul Schembari

Michael Schramm

DEPARTMENT OF MATHEMATICS SYRACUSE UNIVERSITY SYRACUSE, NEW YORK 13214 U.S.A. DEPARTMENT OF MATHEMATICS

LE MOYNE COLLEGE

SYRACUSE, NEW YORK 13214-1399

U.S.A.

Reçu par la Rédaction le 30.3.1990