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Introduction. The theory of Ap-weights associated with the Hardy-
Littlewood maximal operator has proved to be a powerful tool in analysis,
and many authors have contributed to it. Since the monograph [Ga-Ru]
presents an excellent and comprehensive introduction to this theory, we
shall not further comment on it here, but refer the reader to this book.

In this article, we shall take up the study of weighted LP-estimates for
the Kakeya maximal operator My in R?, i.e. the maximal operator associ-
ated with the system of all rectangles of eccentricity N > 1 with arbitrary
direction in R2. More precisely, we are interested in estimates of the form

(A5 J My f)Pwdz < C(log2N)* [ |f|Pwdz,
R? R?

f € LP(wdz), N > 1. We say that a weight w is an Qlf-weight if (Qlf)
holds for some constants C, a > 0, for every N > 1.

The Kakeya maximal operator was first studied by A. Cérdoba [Co 1],
[Co 2]. Cérdoba gave sharp estimates for My on L?(R?), and used them
to establish a new proof of the Carleson—Sj6lin (~Fefferman-H6érmander)
theorem on Bochner-Riesz means on R? (see e.g. [Co 1] for references), thus
making precise an idea of C. Fefferman expressed in [Fe] that the Kakeya
maximal operator should exert a crucial control on Bochner-Riesz multiplier
operators. The results of Cérdoba, which refer to the case of a constant
weight w, show that it is natural to allow a growth factor (log 2N )* in (A%).

Let us mention that the correct LP-estimates of the Kakeya maximal
operator on R™ for n > 3 are still unknown. For partial results in this
direction, see e.g. [C-D-Ru] and [I].

In the non-weighted case (and n = 2), it is crucial to estimate 9ty on
L?(dz). We shall therefore also mainly concentrate on the case p = 2, and
only briefly discuss the case p > 2 in the last section {see 4.2).

Nevertheless, we state a necessary condition (compare 4.2) for w to be
in Qlf (resp. in a closely related weight space Aﬁ), and there is reason to
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believe that this condition is also sufficient. Notice that, since there is
no obvious reason that the Qlf-condition should not be the same for all
dimensions n > 2, an understanding of the weighted LP-estimates for My
on R? could perhaps also be useful in order to understand 9y in higher
dimensions.

The article is organized as follows: Section 1 is devoted to the study
of the maximal operator M.y associated with the system of all rectangles
of size 1 xr, 1 < r < N, and the corresponding weight space Az'“. The
main result of this section (Th. 1.5) is a geometric characterization of Af.
In Section 2 we show how this result can be used to characterize A3 (see
Th. 2.2). The crucial condition (1.12) in Th. 1.5 is somewhat unhandy. But
it seems to be closely related to a simpler condition, namely that, roughly
speaking, w is uniformly in A; on every line, and this relation is discussed
in Section 3. In particular, we show that the “A; on lines” condition im-
plies the A%-condition (see Cor. 3.2 and Remark 3.3), and that for radial and
monotonous weights these two conditions are in fact equivalent (Th. 3.4). Fi-
nally, in Section 4, we provide some examples and discuss further problems.

1. The maximal operator M.y. We retain the notation of [Mii]. So,
a rectangle of dimension § x N6, § > 0, N > 1, will be any rectangle in R?
which is congruent to the rectangle [0, 6] X [0, N§], and B4 n will denote the
collection of all such rectangles. The associated maximal function is given
by

1
Msnf(z) = sup Rf |f(v)| dy,

where the supremum is taken over all rectangles R in B; y containing z.
For the largest part of the paper, we shall freeze § to be § = 1.

By a weight we shall always mean a measurable function w on R? with
values in [0, 00]. For the study of weighted estimates, it will be more conve-
nient to consider the bigger maximal operator

Mcnf:= sup M,f
1<r<N
instead of M; n. The main question which we shall address is the following:
For which weights w on R? are there constants @ = a(w) > 0 and C > 0
such that

(1.1) [ (Mcnf)wdz < Clog2N)™ [ |f*wdz
R2 R

for all f € L*(wdz) and N > 1 7 Notice that even for the constant weight
w = 1 (1.1) can only hold if @ > 1/2 (see [Co 2], [Mii]), so that it appears
natural to allow a growth factor (log N)* in (1.1).
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Observe also that, with L = [log N/log2] + 1,
(12) Al(Nf S 2 g})a.x LMI,Z"““f’

since for 2™ < r < 2™+ M, . f < 2 M} 3m+1f. (1.2) shows that an estimate
of the form (1.1) for M; n f instead of My f is in fact equivalent to (1.1).

Let us fix some further notation. If A is any set of a positive Lebesgue
measure |A|, we set

w(A)
Wy 1= ——=, w(A):= | wdz.
By {Q:}ier we shall always denote the family of all unit cubes of the unit
lattice in R?, and we shall use the abbreviations

wi=wg, (wl)i:=(wl)g,.

The letter C will usually denote a constant which is independent of the
weight w and N, but which may change from statement to statement. The
expression a ~ b will be used to indicate that ca < b < Ca, where0 < ¢ < C
are constants of the type described before. If R is any rectangle and r > 0,
then rR will denote the rectangle obtained from R by the dilation with
scaling factor 7 and fixed point the center of R. If r = 4, we shall also write
R instead of 4R. |

In the sequel, there will frequently arise the situation that to every unit
cube @; there is associated a rectangle R; such that R; N Q; # @, and we
shall then denote by I; the index set I; := {j: Q; N R; # @ }, which gives a
“discretization” of R; on the level of the unit scale.

The following lemma describes some results which follow from standard
arguments in the theory of weighted estimates for the Hardy-Littlewood
maximal function (see e.g. [Ga-Ru], p. 387 ff.).

LEMMA 1.1. Assume that
(1.3) J (Mcnflwdz < A [ |fPwde
R? R?
for every f € L*(wdz). Then
(i) wr(w~')r < AN for all rectangles R € Ui<ren Bi,r
(ii) 1 < wi(w™1); < AN for every i.
(iii) wg < CAYwq if Q,Q' € By, have distance dist(Q, Q') < 10.
(iv) If {R:} is a collection of rectangles in B, ,, 1 <r < N, then

f wldz < An z wj‘1 < An f w1 dz.
R;NR, JeELNI, ﬁinﬁk
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(v) If (1.3) holds for every N > 1, then either w = 0 a.e., or w = ©
a.e., or w > 0 a.e. and w is locally integrable.

Proof. (i) follows completely analogous to estimate (1.10) in [Ga-Ru],
p- 390 (for p = 2), and (v) from the analogue of (1.6), p. 388 in [Ga-Ru).

(ii) follows from (i) and Holder’s inequality (in order to obtain the esti-
mate from below).

(iii) Applying a suitable motion of R?, we may assume that Q' is a cube
in the unit lattice. Since there are at most 16 cubes @; in the unit lattice
which intersect @, we may, by looking at estimates for w(Q;), assume that
also @ is a cube in the unit lattice. Then there is a cube @; such that the
convex hull R of QU@ ; and the convex hull R’ of Q;UQ’ are both rectangles
in Uy<,<10 B1,r- So, by (i), w(Q) < w(R) < 10An(w™ )5}, and (w™!)g >
%(w'l)Q,-» hence wg < 100ANwq;. Similarly, wg; < 100ANwqr, and we
obtain (iii).

(iv) We have R; N Rx C U1, @i 2nd, by (ii), fQ:’ w™ldz < Aywj?,
which gives the first estimate. The second follows equally easily. =

The next proposition provides a necessary condition for (1.1) to hold.

PROPOSITION 1.2. Assume that

(1.3) [ Munfiwdz< A [ |ffPwdz
R? R?

for every f € L*(wdz). Then

(i) wr(w=')r < A for every rectangle R € Ui<r<an Bi,r-
(ii) If 1 < r < N, and if for each unit cube Q; we devise a rectangle
R; € By, with R;NQ; # 0, then for every k

(1.4) Zw,- Z w;! < CA%r*(log2r)*.

i JELNI,

Proof. By Lemma 1.1, we only have to prove (ii). So, fix r and a
rectangle R; in the given system of rectangles. There is no loss in generality
to assume that r = N. Because of the observation (1.2), we shall even
assume that N = 2M with M € N. After a suitable motion of the coordinate
system, we can assume that Rx = [0, N]x[0, 1]. Of course, under this motion
the unit lattice in R2 will perhaps not be left invariant. But, by Lemma 1.1
(iii), averages over nearby cubes in both lattices are comparable, which
leads at most to an additional factor A% in the estimate of the left-hand side
of (1.4). So, we shall also assume that we work with the usual unit lattice
in R2,
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We now set

u(s) := jw'l(s,t) dt, s€[0,N],
0

and »(J) = [, uds for any interval J C [0, N]. For the remainder of this
proof, an interval J in [0, N] will always mean an interval with integer
endpoints. For m=0,...,M, let
ap, = max{u(J) : J an interval of length 2™ in [0, N] },

and let 2, ;, j = 0,...,m, denote the set of all intervals J C [0, N] of
length |J| = 2™ such that 2-7"1a,, < u(J) < 27 a,,. By A,, we denote
the set of all j such that £2,, ; # 8. We choose for every j € A,, intervals
I 55 I ; of length 2™ in [0, N] such that:

(15) 27 lap Su(Ji ) <279 am;
(1.6) all intervals J € £, ; lie “between” J; . and J}

m,j?
iie. minJ_ ; <minJ and maxJ <ma.xJ+

m,j =
Define

Z (7m,JXR +7m,JXR+ )
JEAm

where R,”,i,j = J,ﬁ,j X [0 1] C Ry, and

V= SR = 2w (R

and set g := Z:{_o gm-

We claim that for every ¢
(1.7) Y wi' <CN*(Myung(z))?, z€Qi
jELNI,
To see this, assume that I; N I} # @, and choose an interval J in [0, N] such
that J x [0,1] contains the set J' = J;.;, @; and |J| = 2™ < 2|J'|.
a) If u(J) < 2~™"1q,,, then there exists a unit cube Q; C J,':;'o x [0,1]
such that w=1(Q;) > u(J), since otherwise u(J} ;) < 2™u(J) < am /2.

Given z € Q;, we can find a rectangle R’ € B, 4n with z € R’ such that
|R' N Q] > 1 (see Fig. 1). This implies

>
4N ~ C= N ’

Mcang(z) > Myango(z) > 1

hence

Y wi' <u(J) <27 lam < ao/2 < CN*(Mcang(z))2.
JELNI,
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Fig. 1

b) Assume now that u(J) € ]2-7-1a,,, 2-7a,,] for some j € {0,...,m},
i.e. J € 2y, ;. Let z € Q;. Then J lies between J ; and J} ., and assume
for instance that dist(Q;, R}, ;) > dist(Q;, R, ;).

Fig. 2

Then elementary geometric considerations show that there exists a rect-
angle R' € B, 4N containing z such that |R'N R;,J-l > |RY ;1/10 = 2™ /10
(see Fig. 2). This implies

Mcang(z) > Myan(17 iXrz (=)
2™ /10 (2~ am)!/? u(J)1/?
+ 2 /7 \e Om) A
2MmigN 2w 205
hence

E w;! < u(J) < CN}(Mung(2))?,
JELNI,

and (1.7) is proved.
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From (1.7) we get
(1.8) Zw. E w‘1 < Csz f (mm (Mcyng)?)wdz

t JEL;NI,

< CN? f (M4ng) wdz.
“2

Now, by (1.3),

f(M«Ng)Z"’dz < AllgllZ 2w dz)»

and

M
"g"lﬂ(wd:) S Z Z Z I|7m,JXR‘ ”L’(wdz)

m=0 jEA,, e==%1
But, by Lemma 1.1(i),
||‘Ym,JXR* ||L=(w dz) = (7m,1)2w(R ,) =272 -I(R )w(Ri,j) < 4,
and thus
"g"L’(wdz) < CMzAl/za
hence
Y wi Y w;!' <CA’N%(log2N)'. m
i JELNI,
Let us remark that the power A® in (1.4) is most likely not best possible,

but it is certainly sufficient for our purposes.
We now turn to a converse of Prop. 1.2.

PROPOSITION 1.3. Assume that w is a weight with the following proper-
ties:

(i) wg,(w™1)q, < A for all cubes Q;. |
(ii) For every choice of rectangles R; € B, N with R; N Q; # @ one has

2w ) wi'<B
1 JELNI,
for every k, where B does not depend on the choice of R;’s.
Then

(1.9) i (Ml,Nf)zwdz<AF€- [ 1fPwds
R? R?

Jor every f € L} (wdz).
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Proof. By the usual linearization method (see [Co 1] or [Mii]), it suffices
to prove that

for every g > 0 in L?(wdz), where T is the linearization
~ 1
Tg:= z':m(é‘f gd-'t)XQ.-

of M; n associated with an arbitrary system of rectangles {R;} as in (ii).
Since |R;| = N for every i, we set

Tg:= E( f gdz)XQ.-,
it R;
and have to show that ||Tg||? L2(wdz) < AB ||9||L=(w dz)*

To this end, let w = {w;}, let 2 be the Hilbert space I2 := { {z;}; € R :
I{z;}I: = X;erlzil®w; < 00}, and identify any infinite matrix U = (u;;);;
with the kernel operator U(z); := ) uijz;w;. Then we have

(110) "Tg”iz(wdz) = Z( f gdz) w;
< Z(Z ;) = U ,
t JEI

where y; := fQ’_ gdz and u;; = s;;w;’, with
. {1 if j € I,
Yo if j ¢ I.

Then the adjoint operator U* of U is given by the kernel U* = (uj;);;, so
that the kernel of UU™ is

(UU")ix = Zu,,uk,wJ = Zs,,w skjwilw; = E w;

JELNI,
Since UU* is symmetric, by Young s inequality this implies
I0IF = ovef <sup3o( 3 wit)we < B.
k jeLNI,
Together with (1.10) we therefore obtain

IT9llZ 2w az) < Bllyll -
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Moreover, since

( f gdm)2 _ ( f (gu'/?)w=1/2 da:)2 < f w-) dz f Fwdsz,
Qi Q; .

Qi

we finally obtain, invoking also (i),

IT9l|E 3w dz) < BZ( f ydm)zws < B (wh)w f gwdz
i Qi i Qi

< ABZ f gz‘UJd:t = ABIIg"iz(wdz) -8
tQ
DEFINITION 1.4. We shall denote by Af = Af(R?) the convex cone of

all weights w on R? for which there are constants A > 0 and a > 0 such
that

(1.11) [ (Mcnf)Pwdz < A(log2N)* [ |fPwdz
R? R?
for every f € L?(wdz) and every N > 1.
Notice that because of (1.2) we could also replace M¢ny by M; n in
(1.11).
The following main result, which gives a geometric characterization of
A#-weights, follows immediately from (1.2) and the preceding propositions.

THEOREM 1.5. Let w be a weight on R?2. Then w € A if and only if
there are constants B, 3 > 0 such that the following hold:
(i) wg(w~1)g < B for all cubes Q € B, ;.
(ii) For every N > 1 and any choice of rectangles R; € By n such that
R;NQ; # 0 one has

(1.12) Y wi ) wj! < BN%(log2N)P,
i JELNI,
for every k.

2. The maximal operator M . In this section, we shall consider
maximal functions where only the eccentricity N is kept fixed, but § varies.
So, let

1
M f(z) = sup Ms,nf(2) = sup oor Rf | £(v)| dy,

where the supremum is taken over all rectangles in By = J;50 Bs,n con-
taining z. Also, define

MNS:= sup M,f.
1<r<N
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DEFINITION 2.1. A} = AH(R?) will denote the convex cone of all
weights w on R? for which the analogue of (1.11), with M N replaced by
M~ (or, equivalently, by Iy ), holds.

Since the family B is scale-invariant, it is easy to see that also 2% is
scale-invariant, i.e. if w € AF, then also w(r-) € AF for every r > 0, with
constants A and a in (1.11) not depending on r. Moreover, since M¢y is
dominated by M.y, AF C AL, These observations show that, if w € AF,

then w(r-) € AR, “uniformly” for every r < 0. In fact, also the converse
holds:

THEOREM 2.2. Let w be a weight on R®. Then w € A if and only
if w(r-) € A, uniformly for every r > 0, i.e. if and only if (i) and (ii)
in Theorem 1.5 hold for w(r:) for every r > 0, with constants B and (3
independent of r.

Remark 2.3. Observe that My is comparable to the Hardy-Littlewood
maximal operator H L as follows:

L
N

This clearly implies that AR is contained in the classical Muckenhoupt
class A;. Correspondingly, Muckenhoupt’s A2-condition is equivalent to the
condition that condition (i) in Th. 1.5 holds uniformly for all weights w(r-),
r> 0.

(2.1) HL(f) < Mn(f) < N HL(S).

Proof of Theorem 2.2. Let w be a weight, and assume that

(2:2) J (Mcnfiu(r)da < Alog2N)* [ 1S w(r-) ds
R? R?

for every f € L?(w(r-)dz), N > 1 and r > 0. We shall prove that this
implies w € AL. The remaining statements in the theorem will then follow
from the preceding discussion and Th. 1.5. So we have to prove that

(2.3) J (M f)wde < B(log2NY* [ |fwdz,
R? R?

for some constants B, > 0. To this end, we adopt some ideas from [Co 1].
First, as in [Co 1], we need only consider rectangles R with direction in the
set {2xrk/N :k =1,...,N }, and with é of the form 2", n € Z, in order to
form M. We can also assume that N is of the form N = 2M, with M € N.
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Then
MN f ~ sup Maa om f
nel

M-1

~ sup  (sup Marnm+;i om f) < z T;f,
7=0,....M-1 keZ j=0

where T; f = sup,ecz Marm+; om f. This shows that it suffices to prove that

(2.4) f (T;f)*wdz < B(log2N)? f | f|?w dz,

R? R2
for j =0,...,M — 1. We shall do this for T, the proof for the other T}’s
being identical.

To is the maximal function associated to the family of rectangles B =
Urez Bx, where B, denotes the set of all rectangles of dimension N k x
N*+1_ This family has the following property: If R € B; and R' € By, and
if RNR'# 0 and k < j, then R’ C R.

Now, given A > 0, let

Eyx:={z:Tof(z) > 41 }.

By the standard covering lemma and the sieve technique described in [Co 1],
one can devise a sequence C of rectangles in ‘B with the following properties:
(1°) |R|™? fR |f(y)| dy > A for every R € C;
(2°) Ex C Upec Bs
(3°) R'N R = @ whenever R' € CN By and R € ;,,(C N B;).

Notice that CNB = P for k sufficiently large. This is due to the fact that
My is bounded by a multiple of the Hardy-Littlewood maximal function,
and that w is in the classical Muckenhoupt A,-class (see Remark 2.3).

Set
E; := U R, Ey := U R.
RECNB, RECNB,

Then we know by (2°) that E) C |J, E\. Moreover, by (3°) and the property
of B described before, E;NEx =0 if j # k.
Lft fr := f|E,. Then,if z € Ey, there exists some R € C N ‘B, such that
z € R, and so
Mo nfu(@) 2 = [ 1)l dy> == [ 1f@)ldy> .
' |R| 16| R| 2 16
Moreover, from (2.2) one obtains by scaling

I Myne N filltaqwaz) < A0 2N)%|| fillZ2(w dz) -
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These estimates imply
w(Ex) < w({z: Myn» nfi 2 A/16})
< CA(1og 2N )°|| fill} 2w az) /A
But then

n a 1 2
w(E») < ; w(Ey) < CA(log2N)* 5 }:k) 1 fellEacw az)

< CA(10g 2N )| flI32(w az)/ A2

This shows that Tj is of weak type (2, 2) on L?(wdz), with norm bounded
by C A(log2N)“.
Finally, by an application of the interpolation theorems of Marcinkiewicz

and Riesz—Thorin, one concludes that 7T} is even of strong type on L?(w dz),
with norm bounded by C’'A(log2N )2+, u

3. A comparison between 2§ and “A; on lines”. In this section, we
shall discuss the geometric conditions (i) and (ii) in Th. 1.5, which we shall
refer to as the Af-condition (the corresponding scale-invariant condition
will be called the A$-condition).

LEMMA 3.1. Assume w is a weight on R? such that

. <
(3-1) z}: w; < A}Iélll: w;
for every rectangle R € Uls,.suv Bi1,r, where I ={i:Q;NR#0}. Then
(3.2) Y wi Y wi' <CA N%log2N
] JeLNI;

Jor every collection of rectangles R; € By Ny with R; N Q; # @ and every k.

Proof. Fix Ry. For simplicity, we shall assume that R, = [0, N]x[0,1],
the proof for general R; being essentially the same. Let us introduce a more
specific notation here, and denote by @;; the unit cube with lower left vertex
(¢,7) € Z%. Correspondingly, set w;; = wq,;. Moreover, since I;; (the index
set corresponding to the rectangle R;; in our collection associated to Q;;)
meets I only if (¢, j) lies in the region 2 = {-N-1<i<2N+1,-N-1<
J £ N + 2}, all pairs (,7) in the arguments which follow will be meant to
lie in this region.

Then I = Uf’:;l Qio. If there is some ¢’ with w9 = 0, then (3.1) implies
that w;; = 0 for all (¢, 7) € §2, and (3.2) is trivial. Therefore, we may assume
without restriction that

min w;o = 1.
t
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Let u; = min; w;; be the minimum over the jth row in the region 2. Then,
by (3.1),

Z Wiy S 4ANHJ',
i

and so
N
33) Y wi; Y wil< Zw._,ll,, NIl < C’E s
i (i%5')€L;; N1k J
<CAN*—i-,
1+ 5l
since elementary geometric considerations show that
N
L;nI| <C = .
NI < Oy
(3.3) implies
Nt2
3.4 1 < CAN? .
OO R g O X T
1Ny Jj=—-N-1

Choose iy such that w;,0 = ug = 1. Then, by (3.1), forevery0 < r < N +2,

r r
Z u; < Ewioj <A+ l)wioo = A(r + 1)1
3=0 j=0

and we obtain
N+2 N+2

i

ij=0

N+2
=0 j'=

“’) (1+1 2+l) 1v+42“J
N+42

1
<A§(l+1)(l+1 H_2)+Auo

N+2 1
Agl——+A<2Alog(N+2)

We can estimate 2;-- ~N-1 /(1 + |j|) similarly, and therefore obtain
from (3.4)

Ewl Z w;! <CA’N%(log2N). m

menni,
COROLLARY 3.2. Let w be a weight on R?.

(i) If there are constants A,a > 0 such that
(3.5.a) wo(w™l)g <A  for all cubes Q € B,
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and

(3.5.b) wr < A(log2N)* min w;
i€l

for every N > 1 and every rectangle R € By n, then w € Af.

(ii) If (3.5.a) and (3.5.b) hold uniformly for every weight w(r-), r > 0,
then w € AR. This is in particular true if wp < Aessinfrw for every
rectangle R in R2.

Proof. By Th. 1.5 and Lemma 3.1 we only have to show that (3.1)
holds, with A = A(N) < C(log2N)“. But, by (3.5.b), if R € B, n,

II | Z w; < 4wy < 10A(log2N )™ 1 mm w, < 10A(log2N)*1 mm w;. ®
R i€lg

Remark 3.3. The condition wg < Aessinfpw for all rectangles R
in R? is equivalent to the following condition (“A; on lines”):

(3.6) For every rotation o € SO;, the weight wZ(y) := w(o(z,y)) is in
the Muckenhoupt class Ay(R), uniformly for a.e. z € R and every o.

In fact, if this condition holds, then a two-fold application of Fubini’s the-
orem shows that there is a constant A > 0 such that wgp < Awg for every
rectangle R and every cube  C R with sides parallel to the sides of R.
But, for instance by Lebesgue’s differentiation theorem,

essinfw = inf wq ,
R QCR

where the infimum is taken over all cubes () described before. So we get
wr < Aessinfrw. The proof of the converse follows by similar arguments
and is left to the reader.

It would be interesting to know whether the rather unhandy condition
(1.12) in Th. 1.5 is in fact equivalent to the much simpler condition (3.5.b).
Until now, we have not been able to prove this. However, as the next result
shows, it is at least true for radial, monotonous weights. Let |z| denote the
Euclidean norm on R2.

THEOREM 3.4. Assume that w = w(|z|) is a radial, monotonous weight.
Then

(i) w € A$ if and only if there are constants A,a > 0 such that

a+N

(3.7.a) 1—1/- ! w(t)dt < A(log2N)* 3s§-*1_%‘ w



KAKEYA MAXIMAL OPERATOR 471

for everya>1, N > 1, and
1 1 .
(3.7.b) Jw(ytdt [w(t)tdt < A
0 0
(i) w € AR if and only if
a+N

(3.8.2) % .,f w(t)dt < A(log(2 + N/a))* [ifgilllj] w
for everya >0, N > 0, and
r r
(3.8.b) Jw(t)dt [w(t)tde < Art
0 0

for every r > 0.

Remark 3.5. As one can easily see, condition (3.8.b) holds automati-
cally if one can choose a = 0 in (3.8.a).

With regard to Th. 2.2, it is easy to see that part (ii) in Th. 3.4 follows
from part (i) by scaling. And part (i) is a straightforward consequence of
Th. 1.5, Corollary 3.2 and the lemmas to follow.

LEMMA 3.6. Let w be as in Th. 3.4. Then condition (3.7.a) is equivalent
to condition (3.5.b).

Proof. One direction is clear. So, assume conversely that (3.7.a) holds,
and let us derive (3.5.b). We assume w non-increasing (the other case can
be handled analogously). .

Let R € B, n be without restriction of the form R = [a,a+1]x[b— N, b],
witha >0, 5> 0.

If b> N, we set £ = (a,b), & = |£]7'€. Then one checks that

€ -l <1€-(0,8)], O0<Li<N,
hence
w(a,b—t) < w(§ - tf') = w(|¢] - 2).
This implies
1 N N
wa < f w(a,b—t)dt < f w(|é] - t) dt

< A(log2N)* gs_s mlie' "w

Moreover, (3.7.a) also implies that w(t) ~ w(¢') if ¢t,¢' > 1 and |t - ¢'| < 10.
Then we obtain (3.5.b).
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If 0 < b < N, one can reduce matters to the previous case by splitting R
into two rectangles along the first coordinate axis and applying the above
estimate to both pieces. m

LEMMA 3.7. Assume that w is radial, monotonous, and satisfies
z: w; 2 w;! < Ar?(log2r)®
' JELNI,
Jor every 1 < r < 2N and every choice of rectangles R; € B,; with
RiNQ; #0. Then
wr < CA(log2N)* 'réulr‘: w;

Jor every rectangle R € B, n.

Proof. Choose R € B; n. An adaptation of the argument in the proof
of Lemma 3.6 shows that we may assume w.r. that the longer axis of R
points towards the origin. So, let us assume that R has the form

R =[a,a + N] x[0,1], a>0, aeN.

As in the proof of Lemma 3.1, we denote by Q;; the unit cube with lower
left vertex (¢, j).

(a) If w is non-increasing, choose a constellation of rectangles {R;;} C
%1'21\( with R;; N Q,’j # @ such that Ry = [a,a + 2N] X [0, 1] for + =
a,...,a+ 2N. Then

a+N-1 a+2N

-1 -

dYowii Y w2 Y owe ) wy
(4,9) (k)€ NIao i=a k=a+N+1

> (’_! Wd-'t)Nwa+N+1.o ,

since, by monotony, wip < wWatnN4+1,0 for £ > a+ N + 1. By our assumption,
this implies
wr < 4A(log 4N )*werN4+1,0 < 4A(log4N)* neuln w; .
t€lp
(b) If w is non-decreasing, choose {R;;} C B; 2~ such that R;; meets

Qe fora<i<a+ N and 0 < j < N, and such that R, DO R (see Fig. 3).
Then, by monotony,

-1 -1
Z""’J‘ Z Wy 2 2 WijWa_1.0

(i,4) (k)EeILijnI,o t=J;,0..'.',a'-{I-vN
2> Z wiow;_ll,o 2 N( f 'u-’dz) w;—ll.o ’
j=a,...,a+N R

j=0,....N
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Fig. 3

and our assumption implies

wr < 4A(log4N)%w,_1,0 = 4A(log4N)* xéuln w; ..
t€IR

Notice that our arguments have in fact made use of the assumption only
for r = 2N. We have nevertheless stated the lemma in this form, since, as
it stands, it might perhaps be true even without the assumption “w radial
and monotonous”.

4. Examples, remarks and open questions
4.1. The following results can easily be derived from Th. 3.4:

(a) w(z) = |z|* is in AL if and only if -1 < @ < 0.

(b) If @ > 1, then w(z) = log®(a + |z|) is in A for every a > 0.

(c) w(z) = log*(1 + |z]) (@ > 0)is in A if and only if @ < 2. In
fact, w satisfies (3.8.a) for every a > 0, but (3.8.b) only if a < 2, since
log*(1+t)~t*ast— 0.

4.2. ARX-theory. For 1 < p < oo, one can define weight spaces A}
respectively Ql§ by replacing the L?(wdz)-norm in Def. 1.4 respectively
Def. 2.1 by the LP(w dz)-norm.

Now, for p < 2, there will be no reasonable ﬂf-theory. For,if w = 1, then
M. N has an operator norm on LP(dz) which is at least of order N(2-P)/p
(see e.g. [Mii]), and the same is true for arbitrary w, if only w is comparable
to a constant weight on some open set.

On the other hand, in view of Th. 1.5 and the classical Ap-condition of
Muckenhoupt, one is tempted to conjecture that for p > 2, w € A: if and
only if there are constants B, > 0 such that:

(i) w(Q)(w~1/(P~1)(Q))P~! < B for all cubes Q € By ;
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(ii) for every N > 1 and any choice of rectangles R; € By y such that
R;NQ; # 0 one has

-1
(4.1) Suw( ¥ w;I/(P"))" < BN?(log2N)P.
i JELNI
In fact, the necessity of these two conditions follows by an easy modifi-
cation of the proof of Prop. 1.2.

4.3. Higher dimensions. There is no obvious reason to assume that
the Qlf-condition should depend on the dimension of the space. So, if the
conjecture in the previous subsection is true, then most likely the conditions
(i) and (ii), in particular (4.1), will also describe the AR-weights for the
Kakeya maximal operator in R®, n > 2.

Indeed, this would match very well with the conjecture that the Kakeya
maximal operator on R™ behaves “well” on L? if and only if p > n (see
e.g. [Mi)). For, if w = 1, then the left-hand side of (4.1) can always be
estimated by

N N
C dz Nd"~*(N/d)P~* ~ N? dz dr-r1,
=1 =1

which is of order NP(log2N)? for some 3 > 0 if and only if p > n.

4.4. Can one dispense with “w radial and monotonous” in Lemma 3.7,
so that A is in fact equivalent to an “A; on lines” condition?

4.5. An important fact in the “classical” A,-theory is that for every
positive Borel measure p s.t. HL(pu) < oo a.e. (HL = Hardy-Littlewood
maximal operator) HL(px)Y € A; C A, for every 0 < vy < 1 (see [Ga—Ru],
p. 158, Th. 3.4). Now, it is certainly not true that M n(p)” € AL in
general; for instance M (X {jz1<13)(¥) ~ |y|~2 for |y| > 2N and therefore

is not in AX. However, it could be true of ﬁ(u)", 0 < v £ 1, where
MSf := sup N>1 Mnf is the maximal function associated to the system
of all rectangies. But the example of a Kakeya set in [Co 1], p. 8 ff. can
be used to prove that M is unbounded on every LP-space, 1 < p < o©
(and the same holds true of ﬁqf = [ﬁ(fq)]l/q, g > 1), in contrast to
the Hardy-Littlewood maximal operator. Therefore such a result, if true,
would probably be of little importance. But there may be other, canonical
constructions of le'“-weights.
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