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On the solvability of singular BVPs
for second-order ordinary differential equations

by B. PrzeraDzk1 (Lodz)

Abstract. In the paper, the existence of solutions of the equation @(t)x” = f(t, x, x') satisfying
x(0) = a, x(00) = 0 is established by means of the degree theory and compactness argument. The
function ¢ vanishes only at 0.

Introduction. The general aim of the present work is to get the solvabi-
lity of the boundary value problem BVP, ¢@(t)x” =f{(t, x, x), x(0) = «,
lim x(t) = 0, where ¢ is a nonnegative continuous function on {0, )
t—> o
vanishing only at 0 (in particular oo is not a singular point). When ¢ is, in
addition, bounded, the existence of solutions can be established by using the
method from [4]. We shall consider the case of unbounded ¢; then it is
necessary to assume a some kind of the asymptotic regularity of ¢.

First, we shall examine the nonsingular case, ¢ = 1. It has already been
studied in [4] for f independent of the first derivative x’. Here, we shall
generalize it assuming that f satisfies a growth condition of Bernstein type (cf.
(11, [3D.

Next, we shall study the fundamental system u,, u, of solutions of the
linear equation ¢(t)x” = u® x. The behaviour of these functions is similar to
exput, exp(—ut) being the fundamental system for nonsingular equations. We
shall be interested in asymptotic behaviour of these solutions and the functions
v,, v, forming the fundamental system for ¢(t) x”" = v2x, where v < u. The exact
formulas, we shall obtain, enable us to consider the singular case similarly as
the nonsingular one.

The method, we use in the paper, is different from the one of {4]. It has
proved that the theory of DC-mappings is not necessary to solve the problem.
Here, we find solutions of the sequence of BVPs on finite intervals <0, n) by
using the Leray-Schauder theory and then we show that the sequence of these
solutions is relatively compact in a certain topology. Passing to a convergent
subsequence, we obtain a solution of our problem on the half-line. The main
result not only generalizes that of [4] but weakens the assumptions of [4] as
well.
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In the last section, we shall show some applications of the results to the
equations of: Boltzmann—Poisson, Thomas-Fermi and Emden-Fowler.
1. The nonsingular boundary value problem. Let us consider the BVP:

(.Y x"=f(t,x,x), x(0)=aecR, limx()=0.

[+

We shall assume that f satisfies the following conditions:
(1.2) f: €0, 0)xR* >R is continuous,

(1.3) x[f(t, x, —ux)—p*x] >0 for |x| = K exp(—put),
where y and K are positive constants,

(1.4) If (&, x, p)l < alt, x) p>+b(t, x),

where a and b are such functions that, for any M > 0,

(1.5) sup sup a(t, x)exp(—ut) =:a, < 0,
t20 |x| < Mexp(—ut)

(1.6) sup sup b(t, x)exput =:by, < 0.

120 |x| € Mexp(—put)

THEOREM 1. Under the above assumptions, the BVP (1.1) has a solution
x€ C?*(0, c0)) such that

lim x(t)expvt = 0 = lim x'(t) expvt

t— t— o

for any ve(0, u).
Proof. Let us consider the sequence of BVPs
(1.7) Xn =f(t, Xp, Xn), X, (0)=0, x,(n)=0,

for ne N. Each of them has a solution, as we shall show below by using the
Leray—Schauder degree.
Fix neN and consider the homotopical family of BVPs

(18)  xi—p2x, = Af(t, % X)—12%,),  x,0) =0, x,(n)=0,
where A€ {0, 1). This i1s equivalent to the equation
(1.9) Xal8) = Wolt)+ 2G(f €, Xy %)~ 12 X,)(0),
where w, i1s the unique solution of the problem
wi—ptw, =0, w0 =a, w,n=0,
and G is the Green operator of the problem

Xy—utx, =y, x,(0)=0=x,n).
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The Green operator is linear and completely continuous on the space of
C*-functions defined on <0, n). It suffices to find a common a priori bound for
solutions of (1.9). We shall use the equivalent norm in C'(¢0, n)):

(1.10) x|l = max {sup|x(¢)|e”, sup|x'(t)|e*}.

t t

Let x, be a solution of (1.9), hence also of (1.8), and let y,(t) = x,(t) exput. If |y,|
takes values greater than max {|«|, K}, then there exists ¢, such that either y,
has a maximum at ¢t,, y,(t,) > K or y, has a minimum at ¢,, y,(t,) < —K. In
the first case, y,(t,) =0 and

0 = yi(to) = [xn(to) +2u xp(to) + 12 x,(to)] €
= 2'[f(tO’ xn(to)’ _ﬂxn(to»_ﬂz xn(tO)] et >0

for 2 > 0. The case of minimum leads to the contradiction in the same way.
When 4 =0, y,(t) = w,(t)exput and the estimate can be obtained explicitly
1ya(0)l < lotl. Thus

ly,(6)] < max{la|, K} =: M.
Now, we shall estimate y,,
Yo = (e 2ux+ X)) e = (= u2 x,) €+ 2,
= ALS(t, X,y x0)— 1* x,] € +2py,,
lynl < Aalt, x,) x> € +Ab(t, x,) e + Ap*|y,| + 2|yl
< Aap(x, ") + Aby + Ap* M+ 2uly|
< aplynl> +2pu(1 + May) lyil + by + u> M(1 + Ma,).
Consider ¥(z) = ap 2> +2u(1 + May)z + b, +u* M(1+ Ma,,). Then

[c o]

(1.11) fzy(z)"tdz = .
0

Let us divide (0, n) into intervals where y, has a constant sign. We should
examine cases: (i) y,(t) > 0 on (t,, t,), (i1) y»(t) > 0 on (0, ¢t,), (ii1) y,(t) > 0 on
(¢5, n), (iv) yu(t) > 0 on (0, n), and the same for the negative derivative. Let us

study (i). Since y,(t,) =0 then
A0 _
N T )

v(y,) "

Integrating both sides over (t,,t), we get

y;,(l)

| 29(2)7 " dz < p,()—ya(t,) <2M

0
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and, by (1.11), y,(¢t) < M’ for some M'. Similar calculations give a priori bounds
in the remaining cases (cf. [3]). Thus |y,(¢)] < M’ for te<0, n) and hence

|xp(t) e < M| =:M'+uM.

Therefore, we have obtained a priori estimates for solutions of (1.9) in the space
C'(€0, n)) with the norm given by (1.10). It follows that the Leray-Schauder
degrees of I — G and I on the ball centered at 0 with radius R = max(M, M,)+1
are the same. .

Hence, each of the BVPs (1.7) has a solution x,, ne N, and their norms
(1.10) are uniformly bounded (however, functions x, belong to different spaces).
We extend x, to the whole half-line, by putting x,(t) = 0 for ¢t > n. Let ve (0, y).
Consider the space of all continuous functions x: {0, oo)— R such that the
norm

x|l = sup |x(®)| "
{
is finite. The sequence x,, ne N, is relatively compact in this space. In fact, it
suffices to notice that this sequence satisfies the assumptions of the As-
coli-Arzela Theorem on an arbitrary interval {0, a) and that the limit

lim x,(t})e” =0

| ke o}

is uniform with respect to neNN.
Take a subsequence x, , ke N, such that

x, () e — x(t) e

uniformly on the half-line, and fix an interval (0, a). The sequences x,,_ and
X, ke N, are uniformly bounded on <0, a) so, by the Ascoli-Arzela Theorem,
there exists a uniformly convergent subsequence, x’ is its limit. Applying the
diagonal procedure of subsequence choice, we get x; — x’ uniformly on
compact subsets of {0, o) (we do not change the symbol of the subsequence
for the simplicity). At last x, = f(t, x,,, x,,)—x" uniformly on compact
subsets and, therefore, x is a C*-function satisfying the differential equation and
the boundary conditions.

It can be easily shown that the function t— x(t)exput and its derivative
are bounded (use the method of getting a priori bounds for y,, y,). It follows
that, for ve(0, u), x and x’ tend to O faster than expvt.

2. Asymptotic behaviour of solutions of linear equations. In this section, we
shall deal with the linear equation

(2.1) o()x" = p? x.
We shall assume that ¢: <0, o©)— {0, o0) is continuous,
(2.2) 0(0)=0, @@t)>0 fort>0,



Second-order ordinary differential equations 283

(2.3) o()~' is integrable at 0,
(2.4 T(p(t)'ldt =
)
(2.5) ¢ 1is increasing for t >t, and lim ¢(t) = ©
(2.6) lo(t)—ol < Lit'—t| for t', t>t,.

Condition (2.3) gives that all solutions of (2.1) belong to
C*(<0, w0))n C*((0, w0)). After [5], we can find the fundamental system of
solutions u,, u, such that u,(0) = u,(0) = 1, u, is strictly increasing,

lim u, () = him ¥ (t) = ©

[ andl: o} | S o}

uy(t) = u, (0)[ 1 —(af u,(s) " 2ds)™! j.u,(s)‘zds],
0 0

u, is strictly decreasing,

lim u,(t) = lim u3(f) = 0

= t—aoc

((2.4) is needed for the last {formulas).

PrROPOSITION 1. Under the above assumptions,

t
lim—“&= 1.

1~ /@)Uy (1)

Proof We omit subindex 1. Let us notice that

W (1~ (t)* = 20 [ @(s) " u(s)u (s)ds = i [ ()" du(s)’

= 1 [@ () ' u(t)* —@(te) " ulty)® — fu(s) do(s)~ ']

(the integrals in the sense of Riemann-Stieltjes). Dividing by u'(t)* and taking
into account that u'(t)— o0 and the last integral is negative (p(s)™' is
decreasing), we get the boundedness of

P u(r)?
o@u (e 7

But the above calculations show that

- [ Pu@? P
b {co(r)u'(r)z u(z)zj ) dols)” }

t—= o
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We shall prove that the second summand tends to O,
2 t
2 -1

f 1 u(sy?
u(t)z @(s)u'(s)

Take a division T: t, <t, < ... <t,=1t of the interval {t,, t) such that
L-diam T< ¢(t;). Then we have an estimate for Riemann sums:

u'(s)?dlne(s) < ,( )2 j u'(s)? dino(s).

Z u'(t) (Inep(t)—Inet-,)) < Z Wty In[1+Lo(t-1)"" (ty—ti-1)]

k=1 k=1

<2L Z u’(tk)z @(t) ™ (e —ti-1).

k=1
Hence

- 2L
furano < L {20

s)2

(t)2

Applying the 'Hospital Theorem to the right-hand snde, we get the limit of
u'(t)/u(t). But

A e s
(: o) ()ds-+o(0)
and
lim u() ™" [ @(5)" w(5)ds = lim p(0)* =0
Thus o ’ o
2.7) 'lir: dOu@®)" =0

and the proof is complete. o

PROPOSITION 2.

hm I’luZ(t)

1w/ @) us(t)

= —1.
Proof Let

W=(fuls) >ds)™".
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Then
u, (1) = Wy (1) [ u,(s)” % ds,

U (0) = Wl (0) § 1y (5)2 ds— Wi, ().

By Proposition 1,

L VeOw0 e

o) i 1 @)

= 1—[limu’l(t)ul(t)}Dul(s)‘zds]'l
= 1-limuy ()72 [\ (0 + 1> @)™ u, (%]
=1-2=—-1.¢

Now, it is easy to get

. 2pu,(2) uz(t)
2.8 lim
9 v Wi/o(

where W is from the last proof. The Wronskian of u,, u, equals —W.

=1,

Remark. Condition (2.6) can be weakened by
lo() =@ < LI’ —t|  for ' —1] <9,
where L(t)/./¢@(t)—0. The proof is quite similar.

Now, let ve(0, x) and let v,, v, be the fundamental system of solutions of
the equation ¢(1)v” = vv.

PROPOSITION 3.

lim v, () u, ()" = lim u,(H)v,(t)" ' = 0.

[ Smdls o} | S o]

Proof. Due to Proposition 1,

V @B v (1) <V e ui(t) p
vo, () g () v
for sufficiently large t. It follows that v,-u; ' is decreasing for such t’s. On the

other hand, v, < u; by the Comparison Theorem (see [5]). Thus the limit of
v,-u; ' when t— o0 exists and

lim v, ()u, ()" = lim v{() ()" =v?u 2 limv, u;’,

I—*o 1= 1=+ o0

Therefore, this limit vanishes. The second part is proved similarly. o
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3. The singular boundary value problem. We shall examine the general
BVP:

(3.1) e)x" =f(t, x,x), x(0=a, limx()=0.

| Smdle o}
The assumptions on ¢ are from Section 2: (2.2)42.6) but we claim that the
Lipschitz condition is satisfied for all t. The assumptions on f are similar to
those from Section 1 with slight modifications:

(3.2) f: €0, 0)xR?—>R is continuous,
(3.3) x[f(t, x, xua(Ouy () Y)—p2x] >0 for |x| = Ku,(t),
where u, i1s the solution of the linear problem
(3.9 e(u’' = p*u, u0) =1, limu()=0,
[ Smdie o]
(3.5) |/ (¢, x, p)| < alt, x) p?+b(t, x),

where a and b are such functions that, for any M > 0,

(3.6) sup sup a(t, x)u,() o) ' =:a, < 0,

120 |x] < Mu(t)

(3.7 sup sup b(t, x)u,(t)” ! =:b, < 0,

120 |x| < Mua(r)

Moreover, for any M > 0, there exists 6 > 0 such that

(3.8) sup sup sup|f(z, x, p)| =:C,, < 0.
1e{0.,3) |x| <M peR

THEOREM 2. Under the above assumptions, the BVP (3.1) has a solution
X such that, for any v < u and v, being the unique solution of problem (3.4) with
v instead of pu,

lim x(t)v,(t)~! =0 = lim x'() v, ()" /(1)

Proof. Let us consider the BVPs
(3.9) e xy =f(t, X xu), X, 0 =02, x,(0)=0
for neN. Fix ne N and take a sequence of BVPs
(3.10) o) xm =f(t, Xpps Xp)y  Xp(1/my=0a, x,(n)=0

for me N. These problems have solutions belonging to C*({m~", n))(see[3]).
We shall establish the solvability of (3.9) within C*((0, n)) n C*(<0, n)) if we
find common bounds for sup-norms of solutions of (3.10) and its derivatives.

Put y, (t) = x,(t)u,(t)” ' and suppose that |y,_(¢)] > max(|«|, K) for a cer-
tain t. Then there exists t, such that y,(t;) > K, yu(ty) =0, ym(t,) <0
(or yu(to) < —K, yml(to) =0, ym(to) = 0). Hence xp,(to)u,(to) = x,,(to) 42 (to)
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and

= ymlto) = [o(ty) xinlty)— .“ X (to))/o(to)u,(ty) >0

by (3.3). It [ollows that the sup-norm |y, || < max(la}, K) independently of
me N and, therefore, |x,|| <M for a certain M.
Let 6 in (3.8) be chosen for this M. Due to the Mean Value Theorem

inf  |xn(1)| < 4M/o

te{m-1.4)

for sufficiently large m (m = 2/J). Thus, for ¢ < 9,

Ixm(0)] < fg—4+Cu§<p(S) tds.
For t > 4, we use the Bernstein method with (3.5) (see [3]). It is possible, since
{8, nyat—(t)" ! is bounded. Therefore, x,, are uniformly bounded and we
can apply the Ascoli-Arzela Theorem in any interval {d, n), d > 0, to get
a solution of (3.9).

Now, we apply the compactness arguments to the sequence x,, ne N, of
solutions of (3.9). Let y,(t) = x,(t)u,(t)” ' as previously. Repeating the above
consideration, we get |y,()) < M = max(|af, K). Similarly, one can obtain
a common bound for y, on {0, 6. This estimation is more difficult for ¢ > §.
By Proposition 1,

/—— ’
sup v o) |'ﬂﬂ
>4 “z(’)

Below, we omit the arguments ¢ > J and |x] < M in the following calculations:

=:C<w

ar 24+ b+ I\,,I \/_'lhl

S aytuy,+axgudui? +2alvl x| b by +uP M+ 2C\/;/; [yl

< Ayl @ 1yal) +2Cy + D @ v +ayy M2 CP by + > M
71V 2 N 1

€y (\/J) Iynl)- + CZ(\/ ¢ l.Vn“ + Cj.

For n = n,, we have

It

. 2M
infly, (1)l < - 1y

0—0

Divide {d, n) into intervals on which y, has a constant sign. We shall find
a bound for \/—(,;y;, on the interval {t,,t,)> such that

) >0, te(ty, ). Dt <y
The remaining cases are examined similarly.

S — Annales Polonici Mathematici L.3
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Write
Yiz) =c 22 +cy 24 cy.

Then ¢(t) y; (1) < Y(J/o(0) y,(t)) and
‘w(!).\',.(r\

[ 2@ dz= [ JoyvJey td/oy)

¥

;'}:.w oy tas+3L [y u(Joy) " ds,
2
where we have applied the Riemann sums and the Lipschitz condition for ¢.
The function under the first integral is not greater than y,, so this integral is
bounded by 2M. In order to estimate the second summand, we choose t such
that ¢(f) = 1 for t > t and divide {t,, t) into {t,, ty and (¢, tD> i[t€(t,, ¢). The
function under the integral is not greater than c, ¢~ ' on {t,, t), where ¢, is
a bound of z2¥/(z)™'. On {1, t). we estimate the integrated function by ¢, ' y,.
Therelore, we have
Yoy {

| 2@ Ydz<2M+3Le, (@ Yds+Le; ' M.

0

"
But the function zy(z)”' is not integrable on unbounded intervals, thus
/(p ya < M.

Now, we know that functions y,, /@y, are bounded by constants
independent of ne N, where @(t) = ¢(t) for t > 4, @(t) = ¢(9) for te0, o).
Hence the sequence @y, , ne N, is also bounded. It follows that the same is true
for sequences x,u; !, Vﬁ‘i’ xouz ', oxiyu; ', ne N. Applying arguments similar
to those from Section 1 and Proposition 3, we get a subsequence x, , ke N,
uniformly convergent and such that x,_, ke N, and x, , ke N, are uniformly
convergent on compact subsets of {0, o) and (0, wc), respectively. Thus
x = lim x,,_1s twice differentiable on (0, o0) and once on <0, oc), and it satisfies
the differential equation and the first boundary condition x(0) = a.

The above a priori estimates technique can be applied to x and it gives

that xu; ' and /¢ x'u;' are bounded. Hence

lim x(t) v, ()" =0 = lim X' (N v, () ' /olt)

for any v<pu and v, being the decreasing solution of the problem
e =vie, v0)=1, v(x)=0. o

4. Applications and remarks. Theorems 1 and 2 can be applied to several
important equations.

I. X" =shx — the Boltzmann-Poisson equation from the theory of
electrolits,
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2. \,/; x" =/x’ — the Thomas—Fermi equation of the ionized atom. Here
x> (. It is easyv to see that a solution (if it exists) 1s a positive function. hence
we can apply Theorem 2, though f is defined only for x > 0.

3. ()x” = x* — the Emden-Fowler equation describing polytropic gas.
This equation generalizes 2. Assumptions on ¢ are [rom Section 3 and f# > 0.

If. in Theorem 2, the fuaction f'does noi depend on the first derivative x', it
Is not necessary to assume that ¢ satisfies the Lipschitz condition on the whole
domain.

The question of uniqueness can be solved by giving some classical
assumptions. The most important is the menotonicity of f with respect to the
variable x (cf. [3]).

One can consider different BVPs by using the described method:

ax(0)+px'(0)=-, limx(1) =0.
f=* 3.
The second boundary condition is. however. essential.

Recently, Furi and Pera [2] presented the general continuation method of
the solvability of BVPs on noncompact intervals. It seems that this method
works also in our case but the estimation of asymptotic behaviour of solutions
can be obtained rather in the above framework. On the other hand. the
calculations leading to a priori bounds are always necessary and similar.
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