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The Auslander-Reiten quiver [or posets of finite growth is described. The [ull description of its
structure and the main points of the prool (including explanation of the functors used) are
presented.

The Auslander-Reiten quiver for one-parameter posets was described by
Biinermann [B] and for determinative (tubular) posets by Ringel [Ri]. The aim
of this article is to describe the Auslander—Reiten quiver for arbitrary posets of
finite growth. We describe the regular components completely, and the
nonregular ones up to a finite number of points and arrows.

Our main tool is differentiation with respect to a pair of points [Z1], for
which we suggest here a new name: stratification. The stratification functor
(together with a simpler functor, replenishment) permits us to carry out
induction on the dimension in the proofs, reducing a given problem to that for
the poset (1,1, 1, 1) or even for trivial posets.

The full exposition of the stratification technique for posets of finite
growth (with all combinatorial aspects} is presented in the preprint [Z2]. The
present paper gives an account of certain parts of [Z2] devoted to a description
of the Auslander-Reiten quiver.

In Section 1 we recall the basic definitions and facts which are necessary
for a better understanding of the material, in Section 2 we describe without
proof the combinatorial structure of the Auslander-Reiten quiver, and in
Section 3 we present the main ideas of the proof including the explanation of
the functors used. The main theorem is formulated at the end of Section 2.

Any nontrivial fact or statement given below without proof and reference
means automatically that its proof is contained in [Z2].

The detailed proofs of the results of this paper will appear elsewhere.

[569]
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1. Preliminaries

Let N={1,2,3,...}, N" ={—-1,-2,-3,..},Z={0, +1, +2, +3, ...}

Functions will usually be written to the right of variables (except the
dimension function, vector functions and quadratic forms).

For a given poset IM denote by max I (min M) the set of all maximal
(minimal) points of M. For ae MW set a® = {xeMIx = a}, a* = {xeW|x < a}.
If Ac M, then A% = | Jseqa® AY = | Jpeaa" '

We write M = A, +...+4,if 4, u...uA4, =Mand 4,nA; =D fori#]
(note that the points from different A; can be comparable).

Set M = My {0}, where 0¢ M is a formal symbol. Any function «: M- Z
will be called a vector (indexed by ). We write a < f if a(x) < f(x) for any
xeM. A vector a is said to be nonnegative (positive) if > 0 (x > 0, ie. a =0
and a # 0). Let Suppa = {xeM|a(x) > 0} for « = 0. A positive vector « is
called sincere if a(x) > 0 for any xR, and trivial if |a(x)| < 1 for any xe M.

Let (,), <,> QW xQ®™_Q denote the usual nonsymmetric and
symmetric bilinear form respectively and let y(x) = (x, x) denote the Tits
quadratic form (corresponding to ).

A vector a is said to be a root (an imaginary root) of M if y(x) =1
(x(a) =0). Let e, be the trivial root with e (x) =1 and e (y) =0 for y # x.

As usual the posets K, =(1,1,1,1), K,=1(2,2,2), K;=(1,3,3),
K, = (N, 4) and K, = (1, 2, 5) are called critical. For a critical subset K < M
denote by p, the only simplified (i.e. with coordinates having no common
divisor # 1) positive imaginary root of M with support K.

The posets ¥, ..., ¥,, listed in [Z2] (and the antiisomorphic ones) are
called determinative.

Assume I is a poset of finite growth [ZN], i.e. it does not contain the
subsets (1, 1,1,1,1), (1,1,1,2),(2,2,3), (1, 3,4), (N, 5), (1, 2, 6) and the
poset of Fig. 1. A root r >0 of I is called regular if there exists an

o O

Fig. 1

imaginary root n > 0 (which is unique up to a multiplicative factor) such that
(r, n) = (n, r) = 0; otherwise r is called nonregular. A regular root r is said to be
subordinate to the above-mentioned #.

Let N = {a,, ..., a,} be a subset of M and suppose a; < a, implies i < j.
Then the Coxeter transformations &y = Py = 6,0,,...0,, and Py =g, ...
...0,,0, are defined, where o, is the usual reflection: ao, = a—2{e,, a)e,.

Let n > 0 be an imaginary root, N = Suppn and let W be the set of all
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regular roots r subordinate to # with Suppr = N. A root re W is said to be
ageneofnifr #o+o®y+...+ 0Py for any m > 1 and any g€ W. The set of all
genes of 7 is finite and splits up into three @,-orbits of well-known orders (see
[Ri], [Z2] or Table 1 below).

If r is a gene of n denote by 7 (F) the set of all regular roots which are
subordinate to 5, have the form e, +e, (e,) and satisfy the condition
(r,e.+eq)=11(e,.r)=1). Note that F = F = @ if N is a determinative poset.

Write £ =rFulrl, 7 =Fulr}. For two genes r, s we write r — — —s iff
s®, =r. A finite sequence .¥ = {p, r,, ..., Fn—1, q} is called an n-chain if it
satisfies the following three conditions:

()r,——-r,———...———>r, are genes of n;
(2) peF,, qef, if n>1, and p=gqeFf,UF, if n=1;
(3) £ #{e,+ep e, if x <y.

The sum p+r,+...+r,-, +4q is called the Z-vector (it can be either a regular
root, or an imaginary root, or a specific vector defined in [Z2]). Any regular
root is the #-vector for a unique n-chain #.

Recall some definitions concerning representations. Let k be an arbitrary
field. The category of representations Z(M) of a finite poset M over k (in the
sense of Roiter [NR, Ro]} is defined as follows. Its objects are collections
U= (erﬁ—” U, Uy where Ug, U, U, (xe M) are finite-dimensional k-spaces,
8, is a k-linear transformation and Uy = @, U, is a graded space. Set
U= @,aU, for Ac.

A morphism ¢: U -V is a pair ¢ = (@,, @), where ¢,: Uy -V, and ¢
U, — V,, ate k-linear transformations, such that: 1) U, ¢, < V.v for any xeM;
2) Sy = @gzdy. The composition of morphisms is defined naturally:
oY = (@o¥o, PV )

The dimension of U 1s a vector « =dim U such that a(x) =dim,U,.
Denote by [«] the indecomposable representation of dimension « (in case it
exists and is unique up to isomorphism).

We use the natural constructions of extensions. Suppose A4, B are objects
of the category #(M). A representation U is called an (A4, B)-representation if

6, 0
U~V where V, = A,@B,, V= A4,®B,, V,=A4,@B, and $, = |: EA 5B:|
with an arbitrary e: B, > 4,. By induction U is an (4,, ..., 4,)-representation
if U is a (U', A,)-representation, where U’ is an (A,, ..., A,-)-representation.

For any indecomposable representation U of a poset of finite growth one
and only one of the following three conditions holds [Z2]:

(1) U is a nonregular representation (i.e. dim U is a nonregular root) in
general position;

(2) U is a regular nonhomogeneous representation, ie. it is a ([p],
[r,], ..., [rn-1], [q])-representation for a unique n-chain £ =(p,r,,...
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.+» -1, q); 1n this case we call it the ¥-representation and write U = [ Z]
= [P, Faseris ¥n—1, q]a

(3) U is a regular homogeneous representation which can be reduced to
a representation of the poset K, and has a system of invariants (1, 1), where
n = dim U is an imaginary root and 4 is an irreducible polynomial over k (with
leading coefficient 1) different from X and X — 1, and having degree dividing all
coordinates of 7.

The notions of the Auslander—Reiten quiver, Auslander—Reiten sequence,
irreducible morphism, mesh, translation are supposed to be well known (see
[AR, Ri]).

By C(U, V) we denote the set of all morphisms from U to V in
a category C.

2. The structure of the Auslander—Reiten quiver

Let MM be a poset of finite growth. The set of all nonregular roots of M is
naturally divided into several parts (corresponding to the components of the
Auslander—Reiten quiver) as follows.

Let (M) be the collection of all critical subsets of YR. Define an order
< on X (M) by

K<N <« Kc NY (or equivalently, N = K%

for K, Ne.# (M). It is not difficult to show that # (M) is a chain with respect
to this order. Denote by K, (Kma,) the minimal (maximal) element of this
chain. Its neighbouring elements K, N will be called strongly coupled if K U N is
a determinative poset. and weakly coupled otherwise.

Let R be the set of all positive roots of ¥i. Set

[_ . Km;u] = :I'E R|(r, lll\'m_l‘) > 0:' [Kmin- _] = :re Rl(“l\'mi“~ r) > 0} .
By definition, [ —, K.x] = [Kmin. —] = R if #(9) = . Set also
[N.K]=!reR|(uy, r) >0 and (r, ;) > 0},

where N > K are neighbouring weakly coupled critical sets (the set [N, K] is
not defined if N > K are strongly coupled).

ProrosITION 1. The set of all nonregular roots of WM is the union
[—, Kmax]UIN, K]u...U[N', K'JU{Knin, —] taken over all pairs N > K of
neighbouring weakly coupled critical sets. Different sets from the union do not
intersect (except when X' (M) = ). If Suppr=E then Ec N'nK* if
re[N,K], Ec K&, if re[—, Kpax] and E < KV if re[Kpin, —1-

As any nonregular indecomposable representation U is in general posi-
tion, we shall identify U with the dimension vector dim U.



POSETS OF FINITF GROWTH 573

It turns out that each of the sets
[—~ Krnux]’ [N~ K]’ vets UVI’ K’]’ [Kmin* _]

coincides with the set of all vertices of some component of the Auslan-
der-Reiten quiver I'(I) of the poset M. We call these components nonregular
and denote them by

PO = P[—. K)o QPIN.K]. .... QPIN, K], Q) = Q[Kpyin, —1].

The components P(JR) and Q(IM) are nothing else but the preprojective and
preinjective components which were described for any tame poset by Bi-
nermann [B]. Their shape is well known. For any M, the component P(IN)
coincides up to a finite number of points and arrows with one of the standard
translation quivers of type ND, (I = 4), NE, NE, or NE; defined e.g. in [Ri].

In fact, any component QP[N, K] can be E)btained by “glueing” the
components Q(f\7) and P(Ié) for some subsets ]\7, K = NY~ K®. These subsets
are defined for any critical set K <9 by K= {xe K4 <y, e,» = 0],
K= {xe KY| <. e,> = 0}. “Glueing” means that up to a finite number of
points and arrows QP[N, K] coincides with the formal union Q(N")UP(IE).

Among sincere posets of finite growth (listed in [Z2]) only the
two-parameter posets D,, ..., D), (and their duals) have a component of type
QP[N, K] in T'(9). Let M be any of these posets, let r > 0 be its unique
sincere root and p = e, +¢,, ¢ = e,, where ae K (be N) is the only point for
which (uy, e,> # 0 ({ug, €,> # 0). Then QP[N, K] has one of the forms in
Figs. 2 5.

Fig. 3. The cases Mt = D,, D,
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Fig. 5. The cases M = Dg, Dy, D,

The type of the components Q(ﬁ), P(IC’) in each case can be determined
from Table 1 below (the type of P(N) is NX where X denotes the Dynkin
diagram indicated in the table).

Now we turn to the description of the regular components.

The nonhomogeneocus indecomposables split into components U,(y),
where i = 1, 2,3 and n > 0 is a simplified imaginary root. Each U,(») bears on
a certain orbit O; of genes of n. More precisely, the set of vertices of U,(n)
is the set of all nonhomogeneous indecomposables [p, r,, ..., r,—1, g] with
ris..., r,€0,. We describe U.(n) in terms of n-chains {p,r,,..., 7y, q}.

Let r be a gene of 7. The set 7 will be considered as a poset which is a chain
with minimal element r where r < ¢, for any e, €7 and e, < e, whenever x < y.
Dually, F will be a chain (where e, +e, <r for any e, +e,€F and e +e,
<e,+e, whenever x < y).

If r— — — s then we also compare the elements of # and § as follows: the
gene r is incomparable with points of §, the gene s is incomparable with points
of F, and for e, +eye7 and e, € § we have e, + ¢, < ¢, if x < y. So, the poset FU§
is as shown in Fig. 6.

If a, BeFUS then B is said to cover a if & < # and there is no yefu§ such
that @ < y < B. The following statement completely describes the components

U;(n).

PROPOSITION 2. The arrows of the nonhomogeneous components of the
- quiver I'(M) are exhausted by the arrows of the following types (below n denotes
the length of an n-chain; r — — —s are arbitrary genes; p, p'e¥; q, ¢ €3):
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D [...,p1=[....p,q], where n > 1 and q is the greatest element of the
chain § incomparable with p;
1*) [p,q,...]1—1q, ...], where n = 2 and p is the least element of the chain
F incomparable with q;
20[...,p.qg]~[....p, q], where n>2 and q' covers q;
2%) [p,q,...1—[pP. q,...], where n =2 and p covers p’;
3) [p, ql—[p], where p, q cover p’;

3*) [¢]—[p, q), where q' covers p, gq;
4) [p]1—1[p'], where p and only p covers p’;
4*) [q'1—-[q], where q' covers q and only q.

For a given orbit O, of genes of the imaginary root n consider the posets

6,=U#% 6,=U?% o0f=0,00,

reQ; re0;

with: the order induced by the orders on all subsets Fu$§ where r— — —s
are genes from O,. Denote by U,(n) = U(O7) the nonhomogeneous com-
ponent consisting (according to Proposition 2) exactly of the vertices
[p.7ss s Fn-1,q] with p,7,, ..., ra_y, geOF. One can easily construct the
component U(0/) directly from the poset OF. It is a tube in the sense of [Ri]
and consists of the meshes listed in Fig. 7 (numbers denote the types of arrows
according to Proposition 2). Here «, o’ are arrows of types 1) or 2) and f, ' —of
types 1*) or 2*) (automatically L, M are chains of length > 2).

ExampLE. If 9 is the poset of Fig. 8§ and
O={a——->b———>c——->d———>a

with a = eg+e,te,, b =e;+e,+ey, c=eg+e,+e,, d=es+e,0+¢,, then
O% is as shown in Fig. 9. Hence the component U(0*) is as in Fig. 10, where
the vertical dotted lines have to be identified and where we write simply
i instead of e; or e;+e, in chains.

The pair ﬁ, where m, = léil, n; = Ié,-l, will be called the type of the
n

i
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(a) 1 1*

[p] lp,ql [q]

(b) b R 4 R
/ \[p.ql 1p,q’ 1/ \[ql
\[p q]/ \[P q]/

(c) [p']

- / (d) /“,{Xl\ﬁfk

[p.q'] > [p,ql 2" [p', q] {L1 [M]
\ / \P"[H%

Fig. 7

Fig. 9

component U(O[). Starting from any point and making m, steps in one
direction and n; in the other, one will arrive at the same point. The tube
considered above has type €.

As the imaginary root n has three orbits of genes, it is natural to attach to
it the triple (m,, m,, m,), where m, = |0, and call this triple the upper type of n.
Analogously we define the lower type (n,, n,, n,) (the orbits are considered to
be lixed). Note that 0 = O = 0, if N = Suppy is 2 determinative poset, and in
this case the upper (lower) type gives the usual orders of orbits of genes.
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da2

cdab

Table 1 enumerates all possible upper types (see also [Ri]). Here the A4,,
i=1,..., 11, are sincere one-parameter posets, and L(m,n) (m, n > 0) is
shown in Fig. 11.

Table 1

N Upper type Diagram
K, 2,2,2 D,
L(m, n) (m+n+2,2,2) D, in
K,, A4, 3.3,2 Eg
K,, Ay, Ay, A, 4,3,2) E,
K, K, As, Aq, Ag, ..., A, (5,3,2) E,
l/JI’ lﬂg (3’ 3i 3) ‘EG
Voo Yas ¥s, Yo, ¥y, 4,4,2) E,
Ver oo Vo Wio Yazs oo Ung ®,3,2) E,

Combining any of these posets with the antiisomorphic one, ie. con-
sidering different unions N uUN (with due regard for possible permutations of

orbits) one can obtain posets having components U {(n) of all possible types %

37 — Banach Center t. 26. ¢z 1
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Finally, consider homogeneous components. In contrast to the nonregular
and nonhomogeneous cases, the homogeneous components are not changed by
stratification and replenishment and can be reduced to some components of the
poset K,. But homogeneous components of this poset are well known (see
[Ri]). Any of them has the form shown in Fig. 12. where the translation acts

Fig. 12

identically, and their number is equal to the number of irreducible polynomials
over k (with leading coefficient 1) different from X and X —1.
So, we can formulate

THE MAIN THEOREM. Let M be a poset of finite growth (and of infinite type).
Then its Auslander—Reiten quiver I'(MR) is a sum (i.e. disjoint union) of the
following components:

3
FE) =2 Hn, H+ 3, Uiln)

+ Y QP[N, K]+P(M)+Q (M), where:
[N.K]

— n runs over the set of all positive simplified imaginary roots of the poset I;

— A independently runs over the set of all irreducible polynomials over k (with
leading coefficient 1) different from X and X —1,

— N > K are all possible pairs of neighbouring weakly coupled critical subsets
of M,

— H(n, A) are homogeneous regular components of type (H);

— U;(n), i =1, 2, 3, are nonhomogeneous regular components defined according
to Proposition 2;

— PO (Q(M)) is the preprojective (preinjective) nonregular component with
the set of vertices [ —, Knpax] ([Kmin» —1);

— QP[N, K] are nonregular components with the set of vertices [N, K]
obtained by “glueing” the preinjective component of the poset N with the
preprujective component of K.

For the proof, see the next section.

The general scheme of I'(9M) is shown in Fig. 13, where every pictured
“tube” corresponds to some imaginary root and in fact is an infinite collection
of tubes

T(m) =2 H(n, A+ >, Ui
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Reg B Reg 8'
Fig. 13

The blocks of “tubes” Reg B, Reg B', ... are determined by the “largest strongly
coupled subsets” of the poset 9, ie. by the subsets of the type
B=K+(N"nK%+N, where K=X,<...<X,=N (n>=1)is a chain of
maximal length in which any two neighbouring critical sets are strongly
coupled (T (n)eRegB iff Suppne N¥nK?).

3. The main points of the proof

First we give a description of the functors used: stratilication (formerly called
differentiation with respect to a pair of points) and replenishment (a simple
operation which was formerly considered as a special case of differentiation).
Although we work in the category #(I), the description of these functors is
very simple and clear when using the category IM-sp of P-spaces in the sense of
Gabriel [G]. That is why we prove properties of our functors in the category
IM-sp and then formulate them in the category Z('MN).

Recall that an object of the category YM-sp is a finite-dimensional k-space
U together with a collection of its subspaces {U,}, ., such that U, c U, if
x £y. A morphism from U to V is a k-linear map ¢: U—V such that
U.p <V, for any xeIN.

A pair of points (a, b} is called suitable (for a stratification) if
M=a*+b"+{c,, ..., c,}, where ¢, <... <c, is a chain, n > 1 and the points
a,b and ¢, are mutually incomparable. The stratified (or, more exactly,
(a, b)-stratified) poset M, , has a nice lattice definition:

My = ON{c,,....,c,})+{a+c,, ..., a+c,}+{c,b, ..., c,b},

being considered as a subposet of the free lattice generated by M. The order is
obvious and is illustrated in Fig. 14.

Now define the stratification functor ': M-sp — M, ,)-sp by setting U’ = U,
U, = U, whenever xea®+b" and U,,, =U,+U,, U.,=U.nU, for an
M-space U, and ¢’ = ¢ for a morphism ¢: U — V. Obviously, this is indeed
a functor.

- For convenience denote our categories briefly by S =9it-sp and

S" = I, 5-sp. According to the definttion S(U, V)< S'(U', V’).

If a;,...,a, (r=1)is a set of mutually incomparable points of some
poset I, introduce a one-dimensional M-space P(a,,...,a,) by setting
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!

a+ ¢,

Fig. 14

Py, ...,a)=U,where U =U_,=kil xela,,..., q}* and U, = 0 otherwise
(let P(QD) = k with P(x), = 0 for any x&YR). The following fact is rather trivial:

(1) A morphism ¢: U—-V in the category 9i-sp can be factored
through a direct sum (P(a,, ..., a))" iff Up < ()i=,V, and U,p =0 for
xeR\{ay, ..., a,}*

Now consider the following ideals of the categories S and §':

Q = {IP(a), lP(a.cl)v ey 1P(a.c,,)}Sa QI = {IP(a)}S'-

Clearly, (P(a, ¢;)) ~ P(a), therefore Q(U, V) = (U, V') for all U, V. So we
have the following diagram in which dashes denote the usual inclusions:

/ (UM\
\ /

W,V

NURY! 1 v

Lemma 1. S(U, V)+Q(U', V)= S(U, V').

Proof. Assume ¢, €S (U’, V’). Then ¢, eS(U, V)iff U_o, =V, for any i.
First consider the space U,, and represent it in the form U, = L, ®M,, where
L =U,n(V., ¢7") and M, is some complement. Note that U, nU, c L,
hence (U,+L,)nM, =0 and we have U = (U,+L,)®M,®X, for some X,.
Let o, be the composition U — M, — U of the natural projection and injection
(as usual linear maps).

Let V,+V, =A@V, for some A, cV,and V= A4,®V, @Y, for some
Y,. Let B, be the composition V— A4, —V of the natural projection and
injection.

Set w, = &, ¢, f,. Clearly U,w, = 0 and according to (1), w, e Q'(U’, V")
(Imw, = V).

Consider now a new morphism ¢, = ¢, —w, €S (U’, V') for which ob-
viously U,, ¢, < V,,. Substituting everywhere the index 2 for 1 and making the
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same procedure (note that U_ < L,) we obtain a third morphism ¢; = ¢,—o,
such that U, ¢, = ¥, and U, ¢, < V,,. Finally, we get @+, = ¢, — (0w, +...
...+w,), where U, ¢,y cV, for any i and w,+...+w,eQ(U, V'), 1e.
e, eSWU, M)+QU, V).

Lemma 2. S(U, V)nQ(U', V'Y= Q(U, V).

Proof. Suppose ¢,eS(U, V)nQ'(U', V). Set L, = U, nKer ¢, (clearly
U,nU,=L,) and let U, =L ,®M, for some M, and U=(U,+L))
@AM, ®X, for some X, . Let a, be the composition U - M, - U of the natural
projection and injection (as linear maps).

Further, set 4, = ¥,nV,, and consider the direct sum V = A4,@Y, for
some complement Y;. Let 8, be the composition V- 4, —» V of the canonical
projection and injection.

Now define w, = a,¢,f,. Obviously w,€{lp,.,}s (see (1)) and ¢,
= ¢, —w, satisfies U, + U, < Ker ¢,. Substituting then everywhere the index
2 for 1 and repeating the process we obtain ¢, = ¢, —w,, where @, € {1pucp}s
and U,+ U, c Kerg,. After n steps we have ¢,,; = ¢, —(w, +...+w,),
where 0, € {1pgents, Unt+U., © Kerg,,, and Im@,,, = V,, ie. @ 4 € {1pmls
andé ¢, eQ(U, V).

LemMmaA 3. If We Ob S’ then there exists Ue Ob S such that U' =~ W@®(P(a))"
for some m.

Proof. Let Wy, W, = W, @F, for some F; and W, = W, ,®F,®H,
for some H,. Let f{,...,f; be a basis of F,. Assuming that the symbols
g (1 <i<n;1<j< p)form a basis of some new k-space G, define U = WOG
and € = f}+g% Denote by E; the k-space generated by e, ..., ¢\, and define
U, =W, for xeb’, U =W@G for xea® and U, =U,_  +E+H,
(U..=E;+H,). It is obvious that U’ ~ W®(P(a))" where m = dim,G.

From Lemmas 1-3 we immediately obtain

THEOREM 1. The stratification ': S — §" induces an equivalence of the factor
categories S/Q58'/Q'.

CoROLLARY 1. If I’ and I'' are the Auslander—Reiten quivers of the
categories S and S', then

\{P(a), P(a, ¢,), ..., P(a, ¢,)} ~ I"\{P(a)}.

For the replenishment, the situation is simpler. A pair of incomparable
points (a, b) of a poset M is called specific if M = a®+ b”. By definition the
replenished poset M, ;, is obtained from M by adding the only relation a < b.
The lattice explanation can be given in one of the two ways (dual to each
other), clearly iliustrated in Fig. 15.

This prompts us to define the replenishment functor ~: S-—+§ (where
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Mia,0

m
b b atb
/I or
a ab a

I 1
Fig. 15

, U, =U, for x #a, b and

(I) qa = Uaﬁ Ub, l7b = Ub’ or
) 0,=U, U,=U,+U,.

One can easily verify the following

S = M, »-sp) attaching to an object Ue Ob S the object Ue Ob S such that
U=U

THEOREM 2. The replenishment functor ~: S — § induces an equivalence of
factor categories:

S/{1pwy lpam} =S/{Ipa} in case II,
S/{1pw@» 1y} = S/{14} in case I,

M = P(min(a*\{a})) in M.

COROLLARY 2. I'\{P(a)} ~ T, where I' and T are the Auslander—Reiten
quivers of the categories S and S.

Note that differentiation with respect to a maximal point b in the sense of
[NR] is in fact a composition of several stratifications and replenishments-I.
Namely making (in any order) (x, b)-stratifications and (y, b)-replenishments-I
as many times as possible, we obtain the ordinal sum of the derivative poset
M, in the sense of [NR] and of the one-point poset {b}.

Now we return to the categories # = #(M) and &' = #(M,,) and
explain the functors acting there.

Let P(a,, ..., a) =[e,, +...+e, +e,] for mutually incomparable points
a.,...,a,, and let Q(b) = [e,].

Let A be the set of all morphisms P(a, ¢;)—> P(y), where 1 <i < n and
yea’n¢}; and, dually, let B be the set of all morphisms Q(z) - P(b, c,), where
1<i<nand zeb®*nct

Note that A, B < rad’4, because any morphism P(a, c)— P(y) (Q(z)
— P(b, c;)) i1s a composition P(a, ¢;)—[e,+e¢,+e.,+e,]1— P(y) (Q(z) - [e,+e,
+e.,+2e,]— P(b, c). Set

O = {lp(,,,, 1Q(b)’ A, SB}Q, O = {lp(,,), IQ(b)}gr"

and define the stratification functor : Z— % as follows. For an object
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UeOb# with 6, = f let B= B, =1Im f,v. For any subspace X c Uy, set
X =Xn(Bf Y.
Let U'eObZ’ be any object having the same Uy = Uy, Uy = Ug and
dy- = 0y but new U, (xe ') defined (nonuniquely) by the conditions
U,=U, for xeM\{c, ..., ¢},
..... ci) = U{Ch...,ci;;]@U'c.'b’

Ulcn.---,ti} = Ulc- Ci—l)®U:l’b@U;+ci'

......

Obviously, the object U’ does not depend (up to isomorphism) on the choice of
the complements U,, and U, ... We emphasize that the object U’ contains the
trivial objects P(a) and Q(b) as direct summands. We define f' = f for any
morphism f.

EXAMPLES.
(P(x)) ~ P(x), (Q(x) ~Q(x) if xeM\{c,, ..., Cp}s
(Pla, ¢)) = P(@®Q(a+c), (P(b, c)) = Plc;b)@Q(b),
[e,+e,+e. +ey) = P(a, c;D)®QO(b), [e,+e,+e.,+2e,]) ~ P(b, a+c)®P(a),
[e,+e,+e., +e.,+2e,) ~ Pla+c,, c,b)®P(a)@Q(b).

Considering the diagram of inclusions

/m"w\
~_

81U, v)

RV e\ v

and proving statements analogous to Lemmas 1-3, one can obtain the
following

THEOREM 3. The stratification functor ': # — R’ induces an equivalence of
the factor categories R/@ S R'|O'.

CoroOLLARY 3. I'\{P(a), Q(b)} ~ I'"\{P(a), Q(b)}, where I" and I" are the
Auslander—Reiten quivers of the categories & and X'

An object of the category £ or #' will be called reduced (or (a, b)-reduced)
if it does not contain direct summands P(a) and Q(b). For a given U e Ob # let
UleOb# be a reduced object such that U’ ~ U'@(P(a))"®(Q (b))

One can also attach (see [Z2]) to any W e Ob £’ an object W' e Ob Z such
that W' ~ Wo(P(a))"®(Q(b))".

The correspondences | and T (nonfunctorial) are widely used in our proof
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since they determine an “almost” bijection between indecomposables. More
exactly:

(@) W ~W iff W is a reduced object;

(b) U ~ U iff U is a reduced object;

(c) W is indecomposable iff W' is indecomposable;

(d) if U is a reduced object, then U is indecomposable iff U' is
indecomposable (the correspondence | is also called stratification).

INow let us add a few words about replenishment in the cotegory £. Let
9 be a poset with a specific pair of points (a, b) and Z = Z(M,.,). Suppose
Ob# = ObZ and Mor #Z = Mor Z (i.e. Z is not a full subcategory of ). Then
the replenishment functor is nothing else but the natural inclusion functor ~
R—A. Set

S = {Ip(,,), IQ(b)’ Ip(a,,,)}g, J = {IP(,,,, IQ(b)}Q'

THEOREM 4. The replenishment functor ~: R — R induces an equivalence
between factor categories R|F > R/.F.

CoroLLARY 4. I'\{P(a), Q(b), P(a, b)} ~ I'\{P(a), Q(b)}, where I' and
I' are the Auslander-Reiten quivers of the categories # and A.

It follows from Corollaries 3 and 4 that the Auslander-Reiten quiver is
changed insignificantly by the action of stratifications and replenishments.
These changes can be easily described (see [Z2], § 5), in particular an arrow
U — V survives a stratification or replenishment if U, V # P(a), @(b), P(a, b).
So, in order to describe some component one has to decrease dimensions of its
indecomposables by applying the introduced functors-and reducing the task to
trivial objects (or to some standard poset, for example (1, 1, 1, 1)) for which the
corresponding arrows are calculated trivially (or are known). At the same time
one has to deal with singularities connected with the objects P(a), Q(b), P(a, b).

The full description of nonhomogeneous components (Proposition 2) is
rather bulky and includes many singularities; that is why we do not touch it
here.

For the description of homogeneous components note that the operation
| can be defined for positive vectors (stratification for vectors) in a natural way
(see [Z22], § 3), and the transformation rule for positive imaginary roots (by the
action of |) coincides with that for dimensions of homogeneous indecompo-
sables. It is not necessary to formulate this rule now; we only note that the
dimension 5 decreases if a, be Suppn. And the replenishment acts on imagina-
ry roots as the identity.

LEMMA 4. Let n > 0 be an imaginary root of a poset M of finite growth.
Then with the help of a finite number of stratifications and replenishments
(without restrictions to supports!) one can transform n to an imaginary root n,
with support (1,1, 1, 1).
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Proof. Set Suppn = N. Suppose N # K, and proceed by induction on
o) =Y in(x). As N # K there exists a suitable pair of points (a, b) of the
poset N. Let N = a®+b"+{c,, ..., ¢,}. We can assume (a, b) to be chosen in
such a way (see the lists of critical and determinative posets) that the poset
a®n N (b¥ N N) contains a chain {a, < a,} ({b, < b,}) which is not comparable
with the point ¢, (c;). Set

P=PW)={pcMip<a, pkb}, Q=0W)={geWM|g>b,q*a}.

Clearly PANN =0nN=0. If peP, qeQ then one can verify that (p, q) is
a specific pair of IR, and M can be (p, g)-replenished. Assume all such
replenishments have been done, ie. P=@ or Q = @.

Suppose P =Q = and consider the poset L =9\(a*+b"). If xeL
A(N*\N), then x > ¢, because otherwise M > {a, < a,,¢,, x, b} =(1, 1, 1, 2).
Analogously, y < ¢, whenever ye Ln(NY\N). If x, yeL is a pair of incom-
parable points and eg. x,y>c, then again Mo> {a, <a,, x,y, b} =
(1, 1, 1, 2). Hence L is a chain and (a, b) is a suitable pair of points of IR with
respect to which we can stratify, decreasing w(y).

Suppose Q # @. Let gemaxQ. Set L = M\(a*+4"). It follows from an
analogous reasoning that L is a chain and (a, q) is a suitable pair for M.
Applying the (a, g)-stratification and (a, q)-replenishment we get a poset I’
and its imaginary root n' with the same support N and the same sum
o) = w(n), but with a smaller set Q' = Q(I'). Continuing this process we
finally obtain the case P = Q = @ considered above. This finishes the proof.

It follows from Lemma 4 that any homogeneous component of a poset of
finite growth 1s isomorphic to a homogeneous component of K, and therefore
has the form (H). ,

Finally, the description of nonregular components QP[N, K] is based on
the following lemma, where @, (! > 0) is the poset of Fig. 16.

LEMMA 5. Let K < N be two neighbouring weakly coupled critical subsets
of a poset M of finite growth and suppose N' K2 # &,. Then there exists
a finite sequence of stratifications and replenishments which transforms I into an

Fig. 16
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ordinal sum M’ = A+ B, where a < b for any ac A, be B and, moreover, K' < A,
N’ c B where K', N' are the images of the subsets K, N in this sequence of
operations.

Remark. The image of a critical set K by a stratification or replenishment
is to be understood as the support of the image of the imaginary root u, (which
1S again a critical set).

Proof. Set N'nK2= W. According to Lemma 4 we can assume
N ~ K ~ K, (note that W # @, even if we have applied the operations as in
Lemma 4). Making all possible replenishments we obtain x <y for any
xe KY\K, ye KM\K and any xe N"\N, ye N\ N.

Let K={u,,...,uy}, N={v,,...,0,}. f KnN # O and eg. u, =v,,
then KN N = {u,}, because M does not contain the poset shown in Fig. 1, and
from the inequality W # @, one can conclude that there exists a suitable pair
(a, b) with a, be {u,, uy, u,}*n{v,, v5, v,}¥ such that the (a, b)-stratification
gives two critical subsets {u;b, u,, u,, u,} and {u; +a, v,, v3, v,}.

Assume now that KN N = . Set A = W\(K + N). After every operation
(i.e. stratification or replenishment) we obtain new posets K, N, W, 4, ...
which will be denoted by the same letters. Note that after any step W does not
contain critical subsets different from K and N.

Now, do the following in consecutive order:

1) Operating with respect to pairs (u;, v;), obtain u; <v; for all i, .

2) Operating with respect to pairs (x, v;), x€ 4, obtain a point a€ A with
N c ad®

3) Operating with respect to pairs (u;, x), xea®, obtain also K c a*. Let
B = A\(a*ud").

4) Operating with respect to pairs (x, b), xea®, be Bnu}, after a finite

number of steps obtain the case Bnuf = @ (in fact we operate with the poset
WN\(Nw{u,}) of finite type decreasing the number of its positive roots).
. 5) As Bnu$ = O and the width of B is < 2, one of u,, u,, u,, say u,,
satisfies min B < u3. Operating now with respect to pairs (x, b), xea®, beB,
after a finite number of steps obtain the case B = @ (in fact we operate with the
poset W\(N + {u,}) of finite type). But W is ordinally decomposable if B = .
This finishes the proof.

Applying this lemma we can always (except in the trivial case N¥nK*
= ¢,) transform every weak coupling into an ordinal sum and “glue” the
component QP[N, K] from the known components Q(ﬁ) and P(K).

Final remark. A detailed explanation of the functors used in the paper is
contained also in the paper of D. Simson where many related questions
are discussed.
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