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1. Definitions

The generalized symmetric groups are the wreath products C,e2S,, where C,
denotes a cyclic group of order m and S, is the symmetric group on {1, ..., n}.
The case m = 2 is of special interest since the groups arising in that case are the
finite reflection groups of type B,.

A (complex) projective representation of degree d of a group G i1s a map
P: G - GL(d, C) such that

(1) P(15) =1, and

(ii) for all x, y in G, there is an element «(x, y) in C\{0} such that

P(x)P(y) = a(x, y) P(xy).

If a(x, y) =1 for all x, y, we say that P is a linear representation of G.

The map a: G x G — C\{0} satisfies the conditions

(1) «(1,g)=1=uwa(g, 1) for all g in G, and

(1) a(x, yzyaly, z2) = a(x, y)a(xy, z)} for all x, y, z in G, so that « is
a 2-cocycle. There is an equivalence relation on 2-cocycles: « ~ f if and only if
there exists a map é: G —» C\{0} such that for all x, y in G

x(x, y)=08(x)d(y)o(xy)~* B(x, y).

The equivalence classes of 2-cocycles form a group M (G) under multiplication
of values. This group is the Schur multiplier and is finite if G is finite.

In 1904, Schur [4] established the existence of a representation group
H for any finite group G. This is a group with the properties:

(i) H has a subgroup 4 with 4 < Z(H)n[H, H];

(n) H/A = G; and

(ii1) |A] = |M (G)I.
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Schur also showed that any projective representation of G can be lifted to -
a linear representation of H.

The Schur multiplier of C,_ 2S, has been calculated by Davies and Morris
[2]. Tt 1s an elementary abelian 2-group of rank k{m, n) where

3 if mis even and n > 4,
k(m, n) = n—1 if mis even and n < 3,
’ L if mis odd and n > 4,

0 if mis oddand n < 3.

Thus the projective representations of C, 2§, are determined by the linear
representations of various “double covers” G of C,z8S,

1 5C,—»G—C,eS, —1.

In an irreducible representation of degree d of such a group G, by Schur’s
lemma, the generator of C, is represented either as I, or —I,. In the latter case,
the representation is said to be negative. The irreducible nonlinear projective
representations of C, 2 S, therefore correspond to irreducible negative represen-
tations of various double covers of C,e2S,.

2. A general construction for double covers

Let % be the category whose objects are triples (G, z, o) where G is a finite
group, z is a central involution in G and ¢: G - Z/2 is a homomorphism with
o(z) =0. A morphism between (G, z,,0,) and (G,, z,,0,) is a group
homomorphism 0: G, — G, such that 0(z,) = z, and with ¢,(0(g,)) = 6, (g,)
for all g, in G,. Thus G is a double cover for G = G/{1, z}.

Given N, H in % and a homomorphism 0: H — Auty N, such that 0(z2) 1s
the identity. Let N x ,H be the Cartesian product N x H with multiplication

(n, kY (ny, hy) = (nO(h){(n,), 22" hh)).

[t may be checked that N x oH 1s then a group with {(1, 1), (1, z2), (z, 1), (z, 2)}
a central subgroup. Let Z be the central subgroup {(!, 1), (z, z)} and put

NY,H = Nx ,H/Z.
This is given the structure of an object in ¥ by setting z = (1, z) Z and
ag(n, h)=o(n)+a(h).

If 0 is the homomorphism A — Aut(N) produced in the obvious way from 0,
then NY,H is a double cover of the semi-direct product N xH.
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3. An application of the construction

From now on we take m to be even. Let A be the direct product C,, x {1, z}.
Regard A as an object in 4 by choosing a homomorphism o: 4 —» Z/2 with
o(z) = 0. Now iterate the construction of Section 2 on A n times to produce
a group N which is a double cover of C;,. (The maps 0 are all taken to be the
trival map h —1d,).

Next let H be the group S (¢) generated by z,t,, ..., t,_, subject to the
relations

z2 =1, zt, =1z, I<ign-1,
tF=1, 1<i<n—1,
(titis,)® =1, 1<ign-2,
t,.tj=z"tjt,., li—jl =22 and 1<i,jgn—1

Thus S,(0) is the direct product S,x{1,z} while S (1) is one of the
representation groups of S, constructed by Schur if n = 4. In either case, H is
regarded as an object in ¢ by taking o(z) to be 0 and o(s;) = ¢

One further homomorphism o: 4 —> Z/2 is used to specify the map
0: H — Auty(N). Thus 0 maps ¢, to 1; where

TGys o 9n) =27 (Gys s Gie s Giv 1> Gis o oos )
with
n=o0(g)olg;+,)+ Z a(g,)-

k#i,i+1

The construction of Section 2 is then applied to yield a group Y, («, @, &). There
are therefore eight groups arising from the possible choices of o, ¢ and ¢ and
these are precisely the eight double covers of C,eS,.

When o =0, we have the important “Young” property that
Y, 0, 0,6 Y,_; Y,(0, g, ¢) is a subgroup of Y,.,(0, g, ¢).

4. Representation theory

For G in 4, let T!(G) be the Grothendieck group generated by the finite
dimensional negative representations. We also consider Z/2-graded negative
representations of G. These are pairs {V,, V,} of finite-dimensional vector
spaces such that V, @ V, is a negative representation of G and also that
gV € Vs yg- Let T*(G) be the Z/2-graded group T°(G)® T (G).

Now define L to be the ring Z [A]/(A>—24). A Z/2-grading is determined
on L by requiring that Ae L'. As abelian groups, L! has basis 4 and L° has basis
(1, ¢} where ¢ = 2> —1. In fact T*(G) is a Z/2-graded L-module. The following
result was proved in [3].
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THEOREM. Given A, B in %, there is an isomorphism
T*(A)®, T*(B) » T*(AYB).

As a consequence of this, the graded ring @, T*(Y,(0, o, ¢)) has
a multiplication (induction product). It also has a comultiplication (arising
from restrictions) together with a positivity property (elements corresponding
to irreducible representations) and a self-adjointness property (from inner
products). We therefore have the following resulit.

THEOREM. The algebra @, , T*(Y,(0, 6, ¢)) is an L-PSH algebra.

[The notion of an L-PSH algebra was introduced in [1]. It is a natural
generalization of the concept of Z-PSH algebra as introduced by Zelevinsky
[5]. The standard example of a Z-PSH algebra is the graded algebra of
Grothendieck groups of linear representations of S,].

In [1], Bean and Hoffman have given a classification of L-PSH algebras
analogous to Zelevinsky’s classification of Z-PSH algebras. In the case of
L-PSH algebras, each is a tensor product of “atoms”. There are four types of
atom, each of which is realized in one of our four algebras. Two of our four
algebras are atomic PSH-algebras, and the other two are both tensor products
of two atoms. In each case the algebra structure is known and information such
as the rank of each algebra in dimension n may easily be calculated.

References

[1] M. Bean and P. N. Hoffman, Zelevinsky algebras related to projective representations, Trans.
Amer. Math. Soc. 309 (1988), 99-111.

[2] J. W. Davies and A. O. Morris, The Schur multiplier of the generalized symmetric group, J.
London Math. Soc. 8 (1974), 615-620.

[3] P.N. Hoffman and J. F. Humphreys, Hopf algebras and projective representations of Ga§S,
and GeA,, Canad. J. Math. 38 (1986), 1380-1458.

[4] I Schur, Uber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen,
J. Reine Angew. Math. 127 (1904), 20-50.

[5] A V. Zelevinsky, Representations of finite classical groups — a Hopf algebra approach,
Lecture Notes in Math. 869, Springer, Berlin 1981.



