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§ 0. Introduction

I. Schur in his classic paper [16] developed a full theory on the projective
characters of symmetric groups. Although the construction of some of the basic
projective representations in that paper can now be seen to be essentially those
for Clifford algebras, the projective representation theory of symmetric groups
from the point of view of Clifford algebras was considered for the first time in
1962 in [8]; it was for this reason that they were called spin representations.
The main purpose of this paper is to exploit Clifford algebra techniques as far
as possible to construct irreducible projective (spin) representations of refllec-
tion groups.

§ 1. Projective representations of finite groups

Let G be a finite group. A mapping T: G - GL(n, C) is called a projective
representation of G of degree n with factor set o if

T(9) T(h) = «(g, h) T(gh)
for all g, heG, where a(g, h)e C™. Then it is easily verified that
(1.1) a(g, h)a(gh, k) = alg, hk)a(h, k)
for all g, h, keG. Let
Z?(G,C*) = {a: GxG —C™|a satisfies (1.1)};

then Z2(G, C*) is a multiplicative abelian group (with the obvious com-
position). If we put

B*(G,C*)={6eZ*(G, C*)|6(x, y)
= p(x)u(Y) p(xy)”" for some p: G- C*},
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then H3(G, C*) = Z*(G, C*)/B*(G, C*) is a finite abelian group called the
Schur multiplier of G. A group G with normal subgroups N such that

(1) GIN=Gand Q) N Z(G)n G

is called a stem extension of G (where Z(G) and G’ denote the centre and
derived group of G respectively). If, in addition, N = H*(G, C*), then G is
called a representation group of G.

Projective representations T and T’ of G of the same degree and with
factor sets « and a respectively, are projectively equivalent if

T' (9 =ur@P 'T@P

for all ge G where u: G- C* and PeGL (n, C), that is « = « in H2(G, C*).
Schur (see Jozefiak [6] and Karpilovsky [7]) showed that, given a projective
representation with fixed factor set o then it can be “linearised” to an ordinary
representation of a stem extension G of G and vice versa. Furthermore, Schur
showed that there exists a finite representation group G of G such that all
projective representation of G for any factor set a can be linearised to an
ordinary representation of G. Thus, the problem of determining all the
projective representations of a finite group G is reduced to determining the
ordinary representations of a representation group, or, if we wish to concent-
rate on a certain fixed factor set, to determining the ordinary representations of
an appropriate stem extension.

§ 2. Reflection groups and Coxeter groups

Let U be an /-dimensional real euclidean space with positive definite bilinear

form (,) and orthonormal basis {u,, ..., u,}. Let W be the reflection group
generated by the reflections 7, =1, (i=1,...,[), where

Tu=u 20, u)

e iu."z "

Then W is a Coxeter group, that is, W is the group generated by the
t;(i=1,..., ) subject to the relations

()™ =1, m,-je{n]neZ, nz2lu{on}.

The group W 1s completely determined by its Coxeter diagram D, which has
vertex set {1, 2, ..., [} and edge set {{i, j}|m;; > 3} and where the edge {i, j} is
given the weight m;; if m; > 4.

Every reflection group corresponds to a root system @ whose simple system
we denote by 7; the corresponding reflection group will be denoted by W(®). For
example, if @ is of type B,, then the corresponding Coxeter diagram is

o—-o—o....o—oio
1 2 3 I—11
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and
WB) =Lty ...zt =1(i=1,.., 0, (.0 =1 =1,...,[=2),

(t-, 1)t =1, (Ti'fj)z =1|—i=2).

§ 3. Schur multipliers of Coxeter groups

The Schur multipliers of finite reflection groups were determined by Ihara and
Yokonuma {5] and certain infinite discrete reflection groups by Yokonuma
[19]. The methods depended on ad-hoc arguments and essentially followed the
pattern laid by Schur [16] who determined the Schur muitiplier of the special
case W(A,), namely the symmetric groups §,., of degree [+ 1. More recently,
Howlett [4] has given a unified treatment, which shows how the Schur
multiplier-can be expressed in terms of the Coxeter diagram. In order to
describe his result we need the following definition.

Let A, = {{i, j}|m; =2}. Write {i, j} = {i, j} if {i, ]}, {i.j}eA, and m};
is odd. Let ~ be the equivalence relation on A4, induced by =, that is,
{i, j} ~ {1, '} if and only if there is a sequence {iy, jo}, {i1sJi}s - +» {is i} I
Ay with {ig, jo} ={i,j}, {iit={0j} and {i_\,j_,} = {i.j} for
r=1,..., k. Then, Howlett proved the following theorem.

TueoreM 1. If W is a Coxeter group with Coxeter diagram D, then
H?*(W, C™) is an elementary abelian 2-group of rank n,(D)+n,(D)+n, (D)
—n, (D) where

1y (D) = number of vertices of D,

n, (D) = number of edges of D of finite weight,

ny (D) = number of equivalence classes of ~ on A,,

n, (D) = number of connected compornents of D', the graph obtained from
D by deleting all edges of even weight and all edges of infinite
weight.

For example, for Weyl groups of type B,, we have
nB)=1, n,B)y=1!-1, n,B)=2 and
0 ifl=2,
na(B)=<1 if I=3,
2 if 1l =4
Thus, it follows that

Z, ifl=2,
H*(W(B), C*) =< 23 if [=3,
3 if >4

‘However, Thara and Yokonuma are more explicit and give generators and
relations for a representation group which are required, as will be seen later,
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when projective representations are constructed. For example, the group

RB)=Lr, .. rpa, ay,a3rf=10=1,.., 0, (rr. ) =10(=1,..,1=2),
)y =a (j=1,.. 1=, i—i§=22,rr)i=a,(=1,...,1-2),
(royr)f=og, al=af=ai =1, qa;=o;a; (i,j=1,2,3),

i=1,2,3,j=1,....D

ar;=r;o,

is the representation group of W(B) for [ > 4. The group {(«;, o, a3)>
~ H*(W(B), C*), and we shall denote the corresponding factor sets as
(a11 az: a3) = (i_la i 17 i l)

§ 4. Clifford algebras, Pin groups and their representations

The basic references for the material in this section are Atiyah, Bott and
Shapiro [1] and Morris [11].

Let f be a symmetric, nondegenerate, bilinear form on ¥V = R" and let
{g,, -.., &, be the standard R-basis for V. Let C(V, f) be the Clifford algebra of
V and f, that is, C(V,f) may be regarded as the real polynomial algebra
generated by 1, ¢ (i=1, ..., n) subject to the relations

ef =f(e, e)1, .gg;+e,=0 (i #j).
Then (C(V,f): R)=2" and {;,...¢; |1 <i, <i, <...<i < n} is an R-basis
for C(V, f). Furthermore
CH.N=CV, N C (V. f)
is a Z,-graded algebra, where C,(V, f) and C,(V, f) contain the elements of
odd and even degrees respectively. Now, let a: C(V,f)—- C(V,f) be the
automorphism of C(V, f) defined by
alc)=(=1e; (i=1,2), ceC(V.f)
and t: C(V, f) - C(V,f) be the antiautomorphism of C(V, f) defined by

(&, ...6) =&, ...&,.

Then, the so-called Pinorial group is the group
Pin(V, f) = {xe C(V, f)la(x)vx" eV for all veV, («(x)x)* = 1}.
Furthermore, define g: Pin(V, f) - AutV by

e(x)v =a(x)vx!

for all xePin(V, f), veV.

We now consider two special cases where f corresponds to the positive
definite quadratic form x?+ ... +x2 and the negative definite quadratic
form —x?— ... —x2. The corresponding Clifford algebras, Pinorial groups,
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etc. will be denoted by C* (n), Pin* (n), etc. The following basic theorem can be
proved.

THEOREM 2. The sequences
1>Z,>Pint(m%S 0 > 1
are exact and Pin™ (n) and Pin~ (n) are nonisomorphic stem extensions of O{(n).

From now on, unless there is a good reason for doing otherwise, we shall
state our results in terms of Pin* (n) only (which will be denoted by Pin(n));
a corresponding result can always be stated for Pin~ (n). For later purposes, it
will be useful to give the elements of Pin (1) which are mapped by ¢ onto certain
elements of O (n). If ve V with f (v, v) # 0 and 7, is the corresponding reflection
in O(n), then if x, = (f(v, v)) 1o

0(x,) = 1,

0. sin0, 1
Ei=( o087y S ) (i=1,...,m) and E0=( 0),

—sin0; cosb, 0 —1

Put

then

-

0 Y, +...+E,)

{ =0 '(4+E+...+E,)= 1+ ]](cos$0;,—¢,;_, &,;5in30),

(4.1) m !

0 "(Eo+E,+... +E,) = t¢, l_[ (00512‘9,'_82,'—132;'““%9,-),
j=2

0 ' (—1+E +...+E,) = *ey3nsy [] (cost0,—¢,;_, &,;8in10),
j=1
that is, we have the preimages of the toral elements of O (n), where n = 2m or
2m+1.
If ny, ..., n are positive integers such that n=n,+n,+ ... +#i, and if
O@ny,...,n)=0(n)x...x0(n), then put

Pin(n,,...,n) =0 " (0(n,, ..., n));

then Pin(n,, ..., n,) is a stem extension of the subgroup O(n,, ..., n,) of O (n).
(Incidentally, Pin(n,, ..., n) is isomorphic to the graded tensor product
Pin(n,) ® ... ® Pin(n,) (see [11]), but this fact need not be used in the
subsequent representation theory). _

We now consider the representations of C(n) and Pin(n).

If n=2m is even, then C(n) has one irreducible representation P, of
degree 2™ and if n = 2m+1 is odd, then C(n) has two inequivalent represen-
tations P,, of degree 2™. These representations can be given explicitly as
follows:

-



392 A. O. MORRIS

otk elio} ool ol ]

be the Pauli matrices and let

M2r—1 = T®(’—” ® 0 ® £®(m—r), M2r = T@(r— 1) ® o ® £®(m—r)

Let

r=1,2,....,m
and
Mypiy = 1%
If
0 if n 1s even,
_{il if n is odd,
put

Pse)=M, (i=1,...,n),

then P; is an irreducible representation of C(n). (If n is odd, the second
irreducible representation is given by P_,(¢) = —P,(e) (i=1, ..., n)) In fact,
P, slpinmy and P lpinea,.....n, are also irreducible representations, and are often
referred to as spin representations of O(n) or O(n,, ..., n,), which will be
denoted by P,,. In particular,

(Py(E,+ ... +E,)

_ m etﬂ /2 0
=P,(14+E +...+E) =] ®[ _,-9,,2],
r=1

(42) ﬁ B Ol m elﬂ,/Z 0
Ps(Eq+E,+ ... +E,) =(—i )®H® —iﬂr/2:|’

B m elerfz 0
(Py(—14+E ... +E,) = H®[ —a«m]-

- 0 —e
r=1
and if {; is the character of P;, then

(C(E,+ ... +E,)

={;(14+E,4+... +E,) =[] (2cos}8,),
@3 < r=1
((Eq+E,+...+E,)=0,

(((—1+E +...+E)=i"[] (25in}6).

r=1

In addition, if ue V =R", then u =) 7-, o€, o,€R and thus

(4.9 Py(z) = P;(u) = |17|—i o, M,.
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§ 5. Projective representations of reflection groups

We now show that projective representations of reflection groups may be
obtained by considering suitable embeddings of reflection groups in the
appropriate orthogonal groups.

If : W(@® —0(n 1s an embedding of W(®) in O(n), let X' (P)
= o7 ' (v(W(®)). Then we need to determine whether X*(®) is indeed a stem
extension of W(®).

Let n be the natural embedding of W(®) in O(l) and put x; = ¢3' (1)),
v;=e0Z'(tr) (=1,...,]). Then we have the following theorem [11]:

THEOREM 3.
X P) = <X,- Gg=1,....D, C|(X,-xj)’"” =cmil xe=ex, ¢t = 1),
X ") =<y; (=1....0, dlilyy)™ =d, yd =dy, d>=1).
The groups X *"(®) are stem extensions if and only if m;; is even for some i, j€ ®.

This means, in particular, that we can determine easily from the Coxeter
diagram when these groups are stem extensions. We obtain the following
results.

CoroLLARY. If @ corresponds to the finite reflection group, the groups
X *7(®d) are stem extensions if and only if @ is of type A, (I = 3), B, (I = 2), D,
(l 2 4), E6$ E7v Esa F4a GZa H3, H4 or Iz(P) (p == 8, 10, 12, )

We note that if & = A, (I > 3), then X *"(A4,) are the two representation
groups of the symmetric groups given by Schur [16] (see also Jozefiak [6], who
gives a lucid and readable modern exposition of Schur’s classic but difficult
paper and Stembridge [17] who gives a new treatment and extends the results
considerably).

We now consider the restriction of the irreducible representation P; of
C(n) to X"(9). Unfortunately, the root systems @ are not always presented in
the most suitable form so as to give irreducible spin representations of X" (®)
(or W(®)). For example, if ¢ = A,, then the root system is embedded in R'*!
and if " is the natural permutation representation of S,,, = W(4,), then the
root system

A={u=¢—¢.,, r=1,...,0},
that is, ' may be regarded as an embedding of W(A4,) in O(!+1). Thus, by (4.4)
1
7

which gives a spin representation of W(A4)) of degree 21* 12 This represen-
tation is not however irreducible in general. However, what can be proved is
the following:

(5.1) Py(ty=Pi(r,r+1)= M, -M_,.) (r=1,...,D



394 A. 0. MORRIS

THEOREM 4. If P} = P;| X" (®), then P} is an irreducible spin representation
of W(®) if and only if ® is embedded in R'.

In fact, suitable root systems can be given for all the irreducible root
systems; for example,

A ={/r—De_,—/r+De, (r=1,..., 1), e =0}

and
E6 = {Er_8r+1 (r = 1: 2’ 3, 4)3 £, 1+ ¢€s, %(51"‘ +85—\/§86)}.

For most of the remaining cases, the root systems given in Bourbaki [2] are
already in a suitable form. (For the other exceptions see [9, 11].)

Again, in the particular case ¢ = A4,, applying (4.4) to the above root
system gives

(52) Pi(z)=Pi(r,r+1) = /T—z_r—lM,_l—\/r;IM, r=1,..., D

which 1s precisely the irreducible basic spin representation given by Schur [16]
(see also Jozefiak [6]).

We also note that formula (4.3) can be used to give the value of the basic
spin character on all the classes of conjugate elements of W(®), ali that is
required are the eigenvalues of the elements in each class — information which
is readily available from the usual way of parameterising the class in terms of
partitions. Detailed results are to be found in [10, 11]. These again generalize
the results obtained by Schur for symmetric groups.

In addition we note Nazarov’s [14] recent results which have now
generalized in a striking way Schur’s construction of the basic spin represen-
tation of the symmetric group to give a complete set of irreducible spin
representations. However, his construction also features the “nasty” coefficients
which appear in (5.2), in contrast to the simplicity of (5.1). In fact, the
representation PJ defined in (5.1) is the irreducible graded basic spin represen-
tation of S,. It would be interesting to see whether Nazarov’s construction can
be modified to give the remaining irreducible graded spin representations of S,.

We now consider the root system ¢ = B,, where

B, = {&,—€5, 65— €3, ..., §_1—&, 28}

In this case the basic spin representation, again denoted by P}, is given by
_ 1

PZ (Tr) ==

NG

This representation, in the notation of § 3, is the projective representation of
‘W(B,) corresponding to the factor set (—1, —1, —1). In fact, a complete set of

irreducible projective representations for this factor set can now be easily given
(see Read [15]).

M,~M,,,) (r=1,..1-1), Pir)=M,
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TueoreM 5. If T? denotes an irreducible ordinary representation of S,
corresponding to the partition A.of n (written A} n) then
{PL; ® T* A} n}
is a complete set of irreducible projective representations of W(B,) with factor set

(-1, -1, =1

We now show that further basic projective representations of W(B,) for
other factor sets can be obtained by taking other embeddings of W(B)) in
suitable orthogonal groups.

I. The first exploits the fact that W(B)) =~ Z4 X W(A4,_,). Via this isomor-
phism, we have an embedding

w(B)=>0(-1)

and the corresponding basic projective (spin) representation, denoted by P},
corresponds to the factor set (—1, 1, 1), is irreducible and is given by

/r— fr+
Pé(T 2y ,...,I‘—‘l),

Pi(t) =1 (the identity matrix).

In fact, the stem extension in this case is X" (@)= Z, X X"(4,-,).

IL. Let H be the normal subgroup of W(B,) which contains the elements in
which the number of sign changes and the number of transpositions are both
even. Then W(B))/H = V,, the four group. This isomorphism results in an
embedding W(B) 5 0(2) given by

1 : —-10

The corresponding basic projective (spin) representation, denoted by P%, is of
degree 2, corresponds to the factor set (1, 1, —1) and is given by

p 0 5 01
'5(1,)=|:_i i)} r=1,...,1-1), g(r,)=[1 0}

El-Sharabasy [3] and Munir [13] have determined the remaining irreducible
projective representations for this factor set.

III. Another orthogonal embedding is obtained by using the 1-dimen-
sional character 6 of W(B,) defined by

. 1 if ceW(D),
(o) = —1 if ceW(B)\W(D).

Then define n': W(B)—> O(l) by 1’ (g) = 6(c)n(o) for all ce W(B) (n is the
natural embedding). Thus, in particular we have

My =n) =t (i=1,..,1-1), 7@)=—-n@)= -1
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We therefore need to know ¢~ '(—1); this is given by taking the special case
0;=n(i=1,2,...,m) in (4.1); that is

0(6,65...8) = —1,,
which implies that
Q_l(—'l'l)z6152...8181281...62_1.
Thus, if we put

1
X =

, ﬁ(sr—erﬂ) r=1,..,1-1), x=¢..._,
then
X"B)=Lxy, .., e, xppc|xt=1@¢=1,..., D, =1,

x,x,. =10=1,..,1-2), (x,x) > =c(r,s=1,....,1=1) |s—r] = 2,

(x,x))=c(r=1,...,1=2), (x,, x)* =1, x,¢c =cx,)

is the stem extension corresponding to the factor set (—1, 1, —1) if I is even
and (=1, —1, —1) if [ is odd.

Furthermore, the corresponding irreducible projective representation for
this lactor set is given by

Fg’(xr): (Mr_Mr+1) (r= 17-:-71._1)5

X %|._

Pi(x)=M,...M,_,.

§ 6. Real projective representations of reflection groups

In [12], the author and M. Makhool have explicitly calculated the irreducible
real representations of Clifford algebras. (The position is more complicated in
that the periodicity is now 8 rather than 2 in the complex case.) These have
been exploited to obtain the irreducible basic real spin representations of all
reflection groups. In addition, they will be used to modify Nazarov’s work [14]
to give a complete set of irreducible real spin representations of symmetric
groups.
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