THE CONNECTEDNESS OF SYMMETRIC DEGENERACY LOCI: ODD RANKS

Appendix to "The connectedness of degeneracy loci" by Loring W. Tu

JOE HARRIS

Department of Mathematics, Harvard University, Cambridge, U.S.A.

LORING W. TU

Department of Mathematics, Tufts University, Medford, U.S.A.

This appendix is in a sense a continuation of [13], in which we proved a conjecture of Fulton and Lazarsfeld ([11, Remark 2, p. 50]) on the connectedness of symmetric and skew-symmetric degeneracy loci, when the rank is even. We now deal with the remaining case of odd-rank symmetric degeneracy loci. We are able to prove the following.

Theorem. Let E be a vector bundle of rank e and L a line bundle over an irreducible variety X. Suppose $u: E \otimes E \to L$ is a symmetric bundle map and r a positive odd integer $\leq e$. If $(\text{Sym}^2 E^*) \otimes L$ is ample and \(\dim \mathbb{C} X - (e-r^+ 1) \geq e-r \), then the degeneracy locus $D_r(u)$ is connected.

This is not quite the result that we would like, for in the conjecture the dimension hypothesis is that $\dim \mathbb{C} X - (e-r^+ 1) \geq 1$.

The key observation in our proof is the linear-algebra fact that just as the set of symmetric bilinear maps of rank at most an even integer can be characterized by the existence of an isotropic subspace of a suitable dimension, so the symmetric bilinear maps of rank at most an odd integer can be characterized by the existence of a pair of subspaces $V_1 \subset V_2$ of suitable dimensions such that the bilinear map vanishes on $V_1 \times V_2$. Section 7 is devoted to a proof of this characterization. For the proof of the main theorem, we found it useful to introduce for two subspaces A, B of a vector space E the concept of symmetric bilinear maps on $A \times B$ and dually that of the symmetric product $\text{Sym}(A, B)$ of A and B. This is done in Section 8. Using the linear algebra developed in Sections 7 and 8, it is then possible to represent an odd-rank symmetric degeneracy locus as the image of a zero locus on a flag bundle.
To prove the connectedness of this zero locus, we proceed more or less as in [13], replacing the Grassmann bundle there by the flag bundle. The cohomology comparison lemma ([[13, Lemma 3.6]]) again applies, but curiously the numbers yield only the result above, instead of the full conjecture.

§ 7. Symmetric maps of rank at most an odd integer

Let E be a vector space of dimension e and $\phi: E \times E \to \mathbb{C}$ a symmetric bilinear form. An isotropic subspace of ϕ is a subspace V such that ϕ vanishes on $V \times V$. Proposition 1.4 says that $\text{rk } \phi \leq 2p$ if and only if E contains such a subspace of dimension $e - p$.

Proposition 7.1. The symmetric bilinear form $\phi: E \times E \to \mathbb{C}$ has rank $\leq 2p + 1$ if and only if E contains a pair of subspaces $V_1 \subset V_2$ of dimensions $e - p - 1$ and $e - p$ respectively such that ϕ vanishes on $V_1 \times V_2$.

Proof. (\Rightarrow) If $\text{rk } \phi \leq 2p$, choose V_2 to be an isotropic subspace of dimension $e - p$ and V_1 to be any subspace of V_2 of codimension one. If $\text{rk } \phi = 2p + 1$, then relative to some basis $\{v_1, \ldots, v_e\}$, ϕ is represented by the matrix

$$
\begin{bmatrix}
1 & 0_p & I_p \\
0_p & I_p & 0_p \\
I_p & 0_p & 0_{e-2p-1}
\end{bmatrix},
$$

where 0_p denotes the $p \times p$ zero matrix, and I_p the $p \times p$ identity matrix. Choose V_1 to be the subspace with basis $\{v_{p+1}, \ldots, v_e\}$ and V_2 the subspace with basis $\{v_1, v_{p+2}, \ldots, v_e\}$. The matrix of $\phi|_{V_1 \times V_2}$ relative to this basis is

$$
\begin{bmatrix}
1 & 0 \\
0 & 0_{e-p-1}
\end{bmatrix},
$$

which shows that ϕ vanishes on $V_1 \times V_2$.

(\Leftarrow) Suppose E contains such a pair of subspaces $V_1 \subset V_2$. Then V_1 is an isotropic subspace of dimension $e - p - 1$, and $\text{rk } (\phi|_{V_1 \times V_2}) \leq 1$. By [12, Prop. 4], whenever the dimension of a subspace drops by 1, the rank of the restriction of a quadratic form to the subspace drops by at most 2, so that $\text{rk } (\phi|_{V_2 \times V_2}) \geq \text{rk } \phi - 2p$. Hence, $\text{rk } \phi \leq 2p + 1$. ■

§ 8. The symmetric product of two subspaces

Given a vector space E and two subspaces A and B, we say that a linear map $\phi: A \otimes B \to \mathbb{C}$ is symmetric if it is the restriction of a symmetric linear map: $E \otimes E \to \mathbb{C}$. The space of all symmetric linear maps on $A \otimes B$ is denoted
Hom⁴(\(A \otimes B, C\)). In other words,

\[\text{Hom}^4(A \otimes B, C) := \text{image}(\text{Sym}^2 E^* \subseteq (E \otimes E)^* \to (A \otimes B)^*). \]

We also define the symmetric product Sym\((A, B)\), a subspace of Sym² \(E\), to be

\[\text{Sym}(A, B) := \text{image}(A \otimes B \subseteq E \otimes E \xrightarrow{j} \text{Sym}^2 E), \]

where \(j: E \otimes E \to \text{Sym}^2 E\) is the natural projection.

Proposition 8.1. The dual of Sym\((A, B)\) is canonically isomorphic to the space of all symmetric linear maps on \(A \otimes B\):

\[\text{Sym}(A, B)^* \cong \text{Hom}^4(A \otimes B, C). \]

Proof. The definition of Sym\((A, B)\) may be rephrased in terms of the following exact commutative diagram:

\[
\begin{array}{ccc}
0 & \to & A \otimes B \to E \otimes E \\
& \downarrow & \downarrow j \\
0 & \to & \text{Sym}(A, B) \to \text{Sym}^2 E \\
& \downarrow & \downarrow \\
& & 0 \\
\end{array}
\]

Dualizing gives

\[
\begin{array}{ccc}
0 & \leftarrow & (A \otimes B)^* \leftarrow (E \otimes E)^* \\
& \uparrow & \uparrow f \\
0 & \leftarrow & \text{Sym}(A, B)^* \leftarrow \text{Sym}^2 E^* \\
& \uparrow & \uparrow \\
& & 0 \\
\end{array}
\]

which shows that

\[\text{Sym}(A, B)^* = \text{image}(\text{Sym}^2 E^* \subseteq (E \otimes E)^* \to (A \otimes B)^*) \]

\[= \text{Hom}^4(A \otimes B, C). \]

In general the dimension of \(\text{Sym}(A, B)\) depends on the dimension of \(A \cap B\); in the special case when \(A \subset B\), we have the following formula.

Lemma. If \(A \subset B\), then

\[\dim \text{Sym}(A, B) = (a + 1)a/2 + a(b - a), \]

where \(a = \dim A\) and \(b = \dim B\).

Proof. Choose a basis \(v_1, \ldots, v_a\) for \(A\), and extend it to a basis \(v_1, \ldots, v_a, v_{a+1}, \ldots, v_b\) for \(B\). Then a basis for \(A \otimes B\) is

\[v_i \otimes v_j, \quad 1 \leq i \leq a, 1 \leq j \leq b. \]

The images of these vectors in \(\text{Sym}^2 B\) are

\[(*) \quad v_i v_j := v_i \otimes v_j + v_j \otimes v_i, \quad 1 \leq i \leq a, 1 \leq j \leq b. \]
Because of redundancies, for example \(v_1 v_2 = v_2 v_1 \), the vectors (*) are obviously not linearly independent in \(\text{Sym}^2 B \), but at least they span \(\text{Sym}(A, B) \). Deleting redundant vectors from (*), we are left with
\[
v_i v_j, \quad 1 \leq i \leq j \leq a,
\]
and
\[
v_i v_j, \quad 1 \leq i \leq a, \quad a + 1 \leq j \leq b,
\]
which are linearly independent in \(\text{Sym}^2 B \). So they form a basis of \(\text{Sym}(A, B) \). Consequently,
\[
\dim \text{Sym}(A, B) = (a + 1)a/2 + a(b - a). \quad \blacksquare
\]

Proposition 8.2. Suppose \(A \subset B \). Then there is an exact sequence
\[
0 \to \text{Sym}(A, B) \to \text{Sym}^2 B \to \text{Sym}^2 (B/A) \to 0.
\]

Proof. Tensoring the exact sequence
\[
0 \to A \to B \to B/A \to 0
\]
by \(B \) yields the exact sequence
\[
0 \to A \otimes B \to B \otimes B \to (B/A) \otimes B \to 0,
\]
which fits into the commutative diagram
\[
\begin{array}{cccccc}
0 & \to & A \otimes B & \to & B \otimes B & \to & (B/A) \otimes B & \to & 0, \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \text{Sym}(A, B) & \to & \text{Sym}^2 B & \to & \text{Sym}^2 (B/A) & \to & 0.
\end{array}
\]
A little diagram-chasing shows that \(\text{Sym}(A, B) \) is contained in the kernel of the natural surjection \(\alpha : \text{Sym}^2 B \to \text{Sym}^2 (B/A) \). Since
\[
\dim \ker \alpha = \frac{1}{2} (b + 1)b - \frac{1}{2} (b - a + 1)(b - a)
= \frac{1}{2} (a + 1)a + a(b - a) = \dim \text{Sym}(A, B),
\]
the two spaces \(\text{Sym}(A, B) \) and \(\ker \alpha \) are actually equal. This proves the exactness of the sequence in the proposition. \(\blacksquare \)

Proposition 8.3. Suppose \(A \subset B \) and \(\phi \in \text{Sym}^2 B \). Let \(\tilde{\phi} : B^* \otimes B^* \to C \) be the symmetric linear map associated to \(\phi \). Then \(\phi \) lies in \(\text{Sym}(A, B) \) if and only if \((B/A)^* \) is an isotropic subspace of \(\tilde{\phi} \).

Proof. By the exact sequence of Proposition 8.2, an element \(\phi \) of \(\text{Sym}^2 B \) lies in \(\text{Sym}(A, B) \) if and only if its image in \(\text{Sym}^2 (B/A) \) is zero if and only if it is zero as a symmetric map: \((B/A)^* \times (B/A)^* \to C \) if and only if \((B/A)^* \) is an isotropic subspace of \(\phi \). \(\blacksquare \)

If \(E \) is a vector space of dimension \(e \) and \(\psi : E \times E \to C \) is a symmetric bilinear map, we define the isotropic Grassmannian \(G_\psi(k, E) \), sometimes written \(G_\psi(k, e) \), to be
\[
G_\psi(k, E) := \{ V \subset G(k, E) | V \text{ is an isotropic subspace of } \psi \}.
\]
Note that for $\dim \mathbb{C} E \geq 2$, $G_{\psi}(1, E)$ is precisely the quadric defined by ψ in the projective space $\mathbb{P}(E)$.

Proposition 8.4. Let B be a vector space of dimension b, $\phi \in \text{Sym}^2 B$, and $\tilde{\phi}: B^* \otimes B^* \to \mathbb{C}$ the symmetric linear map associated to ϕ. Then the variety W of all a-dimensional subspaces A of B such that $\phi \in \text{Sym}(A, B)$ is isomorphic to the isotropic Grassmannian $G_\mathbb{A}(b-a, B^*)$.

Proof. First observe that every subspace of B^* is of the form $(B/A)^*$ for some subspace A of B. By Proposition 8.3, the map: $W \to G_\mathbb{A}(b-a, B^*)$ defined by $A \mapsto (B/A)^*$ is an isomorphism.

§ 9. A flag bundle construction

We now begin the proof of the main theorem, assuming r to be an odd integer, say $2p + 1$. By the argument of [13, Section 5], we may take X to be a smooth irreducible projective variety and L to be the trivial line bundle over X.

Using the characterization in Proposition 7.1 of symmetric maps of rank at most an odd integer, one can represent an odd-rank symmetric degeneracy locus as the image of a zero locus on a flag bundle, as follows. If V is a vector space of dimension e, let $F(a_1, a_2, V)$ be the flag manifold

$$\{V_1 \subset V_2 \subset V | \dim \mathbb{C} V_i = a_i\}.$$

The dimension of this flag manifold is easily shown to be

$$(9.1) \quad a_1(a_2 - a_1) + a_2(e - a_2).$$

Now let $E \to X$ be a vector bundle of rank e, and let $\pi: F(e-p-1, e-p, E) \to X$ be its associated flag bundle. Over $F := F(e-p-1, e-p, E)$ there are two universal subbundles S_1 and S_2 of ranks $e-p-1$ and $e-p$ respectively. By the construction of Section 8, $\text{Sym}(S_1, S_2)$ is a subbundle of $\pi^* \text{Sym}^2 E$ and therefore, $\text{Sym}(S_1, S_2)^*$ is a quotient bundle of $\pi^* \text{Sym}^2 E^*$. The section u of $\text{Sym}^2 E^*$ pulls back under π to a section $\pi^* u$ of $\pi^* \text{Sym}^2 E^*$ over f, which in turn projects to a section t of $\text{Sym}(S_1, S_2)^*$:

$$t(x, V_1 \subset V_2 \subset E_x) = u(x)_{V_1 \times V_2}.$$

By Proposition 7.1, π maps the zero locus $Z(t)$ in F surjectively onto the degeneracy locus $D_{2p+1}(u)$ in X. Hence, it suffices to prove the connectedness of $Z(t)$. This we do by following the same strategy as in Section 5.

Let $P = \mathbb{P}(\text{Sym}(S_1, S_2))$ and $P' = \mathbb{P}(\text{Sym}^2 E)$. There is a natural map $h: P \to P'$ defined by

$$h(x, V_1 \subset V_2 \subset E_x, \phi \in \text{Sym}(V_1, V_2)) = (x, \phi \in \text{Sym}^2 E_x).$$
We then have the diagram

\[(9.2)\]

\[
\begin{array}{ccc}
P-Z(t^*) \subset P = P(\text{Sym}(S_1, S_2)) & \xrightarrow{h} & F(\text{Sym}^2 E) \\
\downarrow & & \downarrow \\
\text{some} & \text{cohomology} & \text{cohomology} \\
\end{array}
\]

\[
\begin{array}{ccc}
P-Z(t^*) \subset P = P(\text{Sym}^2 E) & \xrightarrow{\pi^*} & \text{Sym}(S_1, S_2)^* \\
\downarrow & & \downarrow \\
\pi^* & \text{cohomology} & \pi^* \\
\end{array}
\]

\[
\begin{array}{ccc}
P-Z(t^*) \subset P = P(\text{Sym}^2 E) & \xrightarrow{\pi^*} & \text{Sym}(S_1, S_2)^* \\
\downarrow & & \downarrow \\
\pi^* & \text{cohomology} & \pi^* \\
\end{array}
\]

Proposition 9.3. The natural map \(h: P \rightarrow P'\) sends \(P-Z(t^*)\) to \(P'-Z(u^*)\).

Proof. Since

\[
t^*(x, V_1 \subset V_2 \subset E_x, \phi \in \text{Sym}(V_1, V_2)) = t(x, V_1 \subset V_2 \subset E_x)^*(\phi) = (u(x)|_{V_1 \times V_2})^*(\phi) = u(x)^*(\phi) = u^*(x, \phi) = u^*(h(x, V_1 \subset V_2, \phi)),
\]

\(t^*(\cdot) \neq 0\) iff \(u^*(h(\cdot)) \neq 0\). Hence \(h\) sends \(P-Z(t^*)\) to \(P'-Z(u^*)\). \(\blacksquare\)

To apply the cohomology lemma (Lemma 5.4) it is now necessary to compute the fiber dimension of \(h\).

§ 10. The fibers of \(h\)

The map \(h: P(\text{Sym}(S_1, S_2)) \rightarrow P(\text{Sym}^2 E)\) can be factored into a composition of two natural maps \(h_1\) and \(h_2:\)

\[
\begin{array}{ccc}
P(\text{Sym}(S_1, S_2)) & \xrightarrow{h_1} & P(\text{Sym}^2 S) \\
\downarrow & & \downarrow \\
F(e-p-1, e-p, E) & \xrightarrow{h_2} & X,
\end{array}
\]

where \(S\) is the universal subbundle over the Grassmann bundle \(G(e-p, E)\),

\[
h_1(x, V_1 \subset V_2 \subset E_x, \phi \in \text{Sym}(V_1, V_2)) = (x, V_2 \subset E_x, \phi \in \text{Sym}^2 V_2),
\]

and

\[
h_2(x, V_2 \subset E_x, \phi \in \text{Sym}^2 V_2) = (x, \phi \in \text{Sym}^2 E).
\]

In [13, Section 3] we analyzed the fibers of \(h_2\), and found that if \((x, \phi \in \text{Sym}^2 E_x) \in P(\text{Sym}^2 E)\), then
\[h_2^{-1}(x, \phi) \simeq \{ V_2 \in G(e-p, E_x) | \text{im} \phi \subset V_2 \subset E_x \} \]
\[\simeq G(e-p-rk \phi, e-rk \phi). \]

We now analyze the fibers of \(h_1 \). Let \((x, V_2 \subset E_x, \phi \in \text{Sym}^2 V_2)\) be an element of \(P(\text{Sym}^2 S) \). Denote by \(\tilde{\phi} : V_2^* \otimes V_2^* \to C \) the symmetric linear map associated to \(\phi \). Then
\[
h_1^{-1}(x, V_2, \phi) = \{ V_1 \in G(e-p-1, V_2) | \phi \in \text{Sym}(V_1, V_2) \} \]
\[\simeq G_{\tilde{\phi}}(1, V_2^*) \quad \text{(by Prop. 8.4)} \]
\[\simeq \text{a quadric in } P^{e-p-1}. \]

Therefore, for \((x, \phi) \in P(\text{Sym}^2 E)\),
\[
\dim_c h_1^{-1}(x, \phi) = \dim_c G_{\tilde{\phi}}(1, e-p) + \dim_c G(e-p-rk \phi, e-rk \phi)
\]
\[= e-p-2 + (e-p-rk \phi) p \]
\[= (e-p-rk \phi)(p+1) + rk \phi - 2. \]

§ 11. Completing the proof

Returning to Diagram 9.2, our goal now is to compute the cohomology of \(P - Z(t^*) \) by applying Lemma 5.4. Stratifying \(U = P' - Z(u^*) \) by rank, we let \(Y_k = U_{e-p-k} = P(D_{e-p-k}(\text{Sym}^2 E)) - Z(u^*) \) be the locus of rank \(\leq e-p-k \) in \(U \) as in Section 3. Since \(\text{Sym}^2 E^* \) is ample, \(U \) is affine, and each \(Y_k \), being a closed subvariety of \(U \), is also affine. Then
\[\ldots \subset Y_{k+1} \subset Y_k \subset \ldots \subset Y_0 \]
and if \((x, \phi) \in Y_k - Y_{k+1}\),
\[\dim_c h_1^{-1}(x, \phi) = k(p+1) + e-p-k-2 = (k-1)p + e - 2 \]
by (10.1). In the cohomology comparison lemma (5.4) set \(d(k) = (k-1)p + e - 2. \) Then
\[
R = \max_{k \geq 0} \{ \dim_c Y_k + 2(k-1)p + 2e - 4 \}
\]
\[= \max_{k \geq 0} \left\{ \dim_c P' - \frac{p+k+1}{2} + 2(k-1)p + 2e - 4 \right\} \]
\[= \max_{k \geq 0} \left\{ \dim_c P' - \frac{p-k}{2} + 2e - 3p - 4 \right\} \]
\[= \dim_c P' + 2e - 3p - 4 \]
\[= \dim_c X + \frac{e+1}{2} + 2e - 3p - 5 \]
\[= \dim_c X + \frac{e^2 + 5e}{2} - 3p - 5. \]
By Lemma 5.4,

\[H^q(P - Z(t^*); Z) = 0 \quad \text{for} \quad q \geq \dim_c X + \frac{e^2 + 5e}{2} - 3p - 4. \]

By (9.1) the dimension of the flag bundle \(F = F(e - p - 1, e - p, E) \) is

\[
\dim_c F = \dim_c X + (e - p - 1)1 + (e - p)p \\
= \dim_c X + (e - p)(p + 1) - 1.
\]

A straightforward computation shows that

\[
\dim_c X \geq \binom{e - 2p}{2} + e - 2p - 1 \iff 2 \dim_c F - 1 \geq \dim_c X + \frac{e^2 + 5e}{2} - 3p - 4.
\]

By hypothesis, \(\dim_c X \geq (e - (2p + 1)^2 + 1) + e - (2p + 1) \). Hence,

\[H^q(F - Z(t); Z) = H^q(P - Z(t^*); Z) = 0 \]

for \(q = 2 \dim_c F, 2 \dim_c F - 1 \). As in Section 5 this implies that \(Z(t) \) and hence \(D_{2p+1}(u) \) is connected.

References