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1. Introduction

An explicit construction of representations of symmetric groups which essen-
tially differ from Specht modules was presented by A. Young in 1931 in one of
the last papers of his renowned series. It is generally known as Young’s
orthogonal form (see [2]). Mathematicians almost did not pay attention to this
construction in their further investigations and did not consider it to be
essential for the representation theory of symmetric groups.

In very recent years new relationships of representation theory of Coxeter
groups with mathematical physics (Young-Baxter equation) and topology
(knot theory) have been discovered. This raised interest in explicit construc-
tions of representations. On the other hand, models needed in applications
should, to great extent, utilize the fact that the symmetric group is a Coxeter
group and in particular, Coxeter generators and inductive structure of the
group. Finally, it was an old problem of fundamental importance to clarify why
Young diagrams play such a role in the general theory of the symmetric group
S, and to explain their a priori appearance in a description of representations
(see the appendix to the Russian translation of [1]).

In this paper we describe a new method of construction of modules over
the group algebras of Coxeter groups, and in particular, symmetric groups.
Our method can also be applied to so-called local algebras which include
Hecke algebras, braid algebras etc. The essential feature is a systematic
application of inductive approach based on Coxeter generators and lattice
theory. The method permits to derive Young's orthogonal form as a special
case of a general construction which reveals the structure of representations of
local algebras (local modules). The modules can be also considered as a discrete
analogue of function spaces on flag manifolds in which one constructs
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representations of reductive groups. The reader can notice a relationship with
the theory of Gelfand- Zeithin bases, evolutionary models of quantum statistical
physics and the theory of infinite symmetric group. More detailed presentation
will appear elsewhere.

2. Local aigebras

An algebra A, (over a field k) with generators 6, ..., ¢, i1s called local if
G;0;+x = 0,,,0; for all k such that |k| > k, for a fixed k.. In the sequel we
always assume k, = 2. The same definition can also be introduced in the
category of Lie algebras, groups etc. The word “local” is used here in
a “physical” sense: distant generators commute, i.e., do not affect each other,
whereas close (local) affect each other. An algebra is called stationary (almost
stationary) 1f all relations among its generators o, ..., g,, . do not depend on
i (do not depend on i starting with a fixed i,).

Classical series of Coxeter groups A, B,, C
almost stationary aigebras; A_ is stationary.

D, E, are examples of local.

n?

n

A, o—o-—o0—9—o

B,,C, e—e—e—e—e

D, ¢ e——8—0—®
*

E

909 -0—9

Other examples include braid groups and Hecke algebras. Relations for
Coxeter generators of S, (series 4,) are as follows:

(1) ol=1, i=1,...,n—1,

2) 0;0irx = 0,140, k22,

(3) (6,0,,,)°=1, i=1,...,a-2.

The following are relations for Hecke algebra:

(1) (e,—q)(o;+1)=0, i=1,,,,,n—1.
(2) 0;0;1=0;440;, k=2,

(3) 0,6,,10,=0,,,0,06,,,, i=1,...,n=2.

For ¢ = 1 we get k(S,}). The relations (2), (3) define braid group. Passage to
other generators gives another presentation of Hecke algebras:

(1) =1, i=1,...,n-1,
(2) TiTivk = Tian Tn k22,
(3) (1,70, talt1,, )V —alyt, )—1 =0,

where a = ((g—q Vg+gq ). i=1,...,n-2.
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In this presentation it is a special case of so-called algebras generated by
reflections.
From new examples we mention the following generalization of PSL (2):

(1) (O-fa'.w]}}:l, F=1.....n—1.
(2) G0 =040 k=l
(3) 0i0;,,0,=0;4,,0:0;.,,, i=1....,n1—1.

For n =2 we get PSL(2, Z).

3. Local modules over local algebras

Let L be a graded poset (partially ordered set) with ¢ = infL and let Y = Y(L)
be the space of all paths of maximal length in L; for A€ Y(L) we have
A=(p=Ag, Ay, ..., A) AjeL. A; <A, (D i=0.1.....n—1. Let k be
a fixed field (k = Q. R or ©) and let V' = k¥ be the vector space with basis
{€4) aer-

Let A, be a local algebra. The space V is called a local module over A, if
the action of the generator g,€4,, i =1.....n, has the form

ne

(*) g, &, = X"fl’en‘
a

where the summation ranges over all paths A’ for which A} = A, for j # i and
¢i' depends on A;_,, A;, A;,, and A; only. In other terms o, sends the ith
vertex of the path into a linear combination of paths which difler from A only
in the ith place and with coefficients depending on the 2-interval of the path
between A,_, and A,,, ().

We say that an A, -module V has a local form if there exists a poset L such
that V is isomorphic to k¥™ as an A4,-module.

Remark. 1f (%) 1s satisfied then automatically o,0,,, =0,,,0, on V.
Consequently, in order to define the structure of a local module we must check
the relation between o; and o,,,, i=1.....n—1, only.

THeOREM 1. Every finite-dimensional module over a local alyebra A, has
a local form.

The proof is based on a special construction of the Gelfand  Zeitlin basis.
The problem consists in describing a class of posets for which a local module
over given local algebras A, can be delined. We shall restrict ourselves to
A, = k(S,) in this paper.

(') x <y means that x <z < v implies z=x or z=y.
(?) An interval [a. b] ol the posct is the set {z:a <z < b):a l-fnterval is a pair (v, b) where
< b, a 2-interval is detined analogously.
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4. Local modules for symmetric groups and flags of ideals in a poset

If A, = k(S,) then any o, is an involution (¢Z = 1) and we must check the relation
(6,0,.,)° = 1 only.

We shall consider a special class of posets, namely distributive lattices. If L is
a distributive lattice then by Birkhoff's theorem there exists a poset J such that
Lis the lattice of its ideals (°). We write L = L(J) in such a case. A path A in L(J)is
aflag ofidealsanditisanelement of Y(L(J))if Aq = ¢, A, = I, 1, = I,_, v {x;}, 1

anidealin J,i=0,1, ..., n, I, = J. Roughly speaking every element A of Y is
determined by a sequence {x;} in J such that Vidj <i x,<x,.

LEMMA 1. Any 2-interval in a distributive lattice has one of the two forms:
1) U Jsd={nJdads), Jo=J,0lx), Jy=J,0{y), x<y.
2 i, Jd={J1. 05 Iy, Jo), Jo=J 0{x}, Jy=J,0{y},

Jo=J,ulx,y}, x and y are not comparable.

P
*—o—o -
hooJ J1’<>J4
J3

It is enough to define an action of generators ¢; on 1 and 2-dimensional
subspaces which correspond to pairs of ideals of the first or second type
mentioned in Lemma 1. An involution in k! is defined by ¢ = + 1 and in k? by

( )
1

_QZ — g
where gek is such that /1 — 0% e k. Therefore a representation of S, in k¥ is
determined if for every i = 1, ..., n—1, and every pair of ideals (I, I') such that

# (I'\I) = 2, numbers ¢ = ¢, ;,and ¢ = gy, ;) are given where (I,. I') is a pair
of the first type and (/,, I3) of the second type.

LemMA 2. Any 3-interval in a distributive lattice has one of the 5 forms:

1) 2) 3)

PP —— (2)

4} S)
(3

(*) A set I = J is an ideal in a poset J if xel and y < x imply yel.
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In brackets we indicated the number of paths or the dimensions of the
corresponding vector spaces.
The intervals listed in Lemma 2 correspond to the following posets:

” B
——————» o

L)

Now let us assume that the involution o, acts on the vector space
corresponding to the initial 2-intervals of a 3-interval (listed in Lemma 2) and
0;,, acts on the vector space corresponding to the final 2-intervals of the same
3-interval.

THEOREM 2. We have (0,0;,,)® = 1 for the action defined above if and only if
the following conditions (up to isomorphism) are satisfied in each of the cases

(1)(5) of Lemma 2:
(1) 6;=a;,,= *Id

+1 0 (12 S o
2) o ( 0 _])’ 0i+1—(\/§/2 _1/2) or o, =0,,, = tld,

G) o= (\}/52/2 \—[ZI;Z)’ Gi+1 =(+(I) _?) or 0;=0;,, = tld,
d-? 1-d 2 0
4 o,=|J1-d? —d ' 0],
0 0 >
€ 0 0
6,.= |0 (d+e)~ ! 1+(d+e)~?

0 J1—(d+e 2 —(d+e!

where ¢ = +1, deR\{0}.

(5) We denote k" =V, @V, @ V,=W,@W,®dW, dim}V,=dmW,=2,
j=1,2,3, where V, and W, correspond to 2-intervals [0, B;} and [a, 1],
respectively (see Lemma 2); then

1 —( 4’ Vl_df_z) i=1,2,3
i+ 11w W _dj_l ’ J y £

where d;e R\ {0}, d, +d,+d, =0.

Oly, =0

CoroLLARY. The parameters which define the action of o, depend on
JNI ={x,y}, x, yeJ, only (not on ideals J', J").
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Now we can rewrite the conditions of Theorem 2 in terms of parameters
¢ =¢(x, y) and d = d(x, y). These functions are defined on the set of pairs
{x, y} where x <y for the function ¢ and x, y are noncomparable for the
function 4.

Let [J,, J,] be a 2-interval in L(J), J, = J, < J. We shall denote by
0lis, s, the action of o on the 2 or 1-dimensional subspace which corresponds
to [J,,J,] (see the definition of local modules).

LemMa 3. The functions & and d satisfy the following conditions:

(1) If [x.2]={x.y,2}, then ¢(x.y)=¢(y, 2),
(2) dix,y)=diy, x), dlx;,x,)+d(x,, x3)+ ... +d(x,, x,) =0,
(3) If z<x, z<y and ¢(z, x) = —e&(z, )y then |d(x, y)| = 2.

Ij &= E(Z, X) = 8(2, y), lhen GI[J1.J1u|x.yl] =¢ld.
(4) If x <y and z is incomparable with x und y, then
d(z, y) =d(z, x)+e(x, y).

The lemma follows from Theorem 2.
A triple (J, d, €) where J 1s a finite poset and d, ¢ satisfy the conditions of
Lemma 3 will be called admissible.

THEOREM 3. Let (J, d, &) be an admissible triple, L(J) the distributive lattice
of ideals of J, # (J) = n, Y = Y(L(J)) the set of all maximal paths (flays) in L(J)
and V = k¥. There exists the canonical k(S,)-module structure on V which is
determined by the action of Coxeter involutions a;,i =1, ..., n—1, defined in the
following way. Let J' < J” be two ideals in J, J'\J = {x, y}, #(J)Y=1i-1,
A=(d, Ay, ..., A5, I, T O{x}, ", Ajrs, ..., )Y and e, the basis element
of V corresponding to A. Then

(@) for x <y we have o0,¢, = ¢e(x, y)e,,

(b) for x, y noncomparable, A" =(p, A, ..., A _,, J. July.J",
Ajyqr ., J) and W = ke +ke, we have

0 \/1492) _
oy = , 0= d , 1
Ciyw (\/1_—92 —0 ] ()C )’)

The theorem contains a rich information about &(S,)-modules and the
way of their construction.

ExaMmpLE 1. Let J be a finite ideal (so-called Young diagram)in Z, @ Z,
where Z, = {0, 1, ...}. Then L(J) is the set of all Young tableaux of shape J.
The functions ¢ and d are defined uniquely by Lemma 3 and conditions
£((0,0),(1,0) =1= —¢((0, 0), (0, 1)), d((1, 0), (0, 1)) = 2. By Theorem 3 we
obtain the irreducible representation of S, corresponding to the diagram J in
Young’s orthogonal form.
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ExampLE 2. Let J be a poset with k pairwise noncoimparable points
%y, %y, ..., %; then L(J) is the Boolean algebra with k atoms. It is enough to
define real numbers d(x;, %;,,), i =1, ..., k—1. The corresponding represen-
tation is the regular representation of §,.

ExampLE 3. If J = J\J? where J! o J? are ideals in Z, @ Z, ., then J is
a skew diagram and we obtain the obvious construction of the corresponding
representation.

The same construction can be applied to representations of Hecke
algebras, Coxeter groups etc.

The author wishes to express his gratitude to Professor T. Jézefiak for his
help in preparing the manuscript.
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