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In the middle of Wronski's papers [8], [9], [10], [11] one can come across solutions of important
problems such as finding, for any polynomial with complex coefficients, the factor which
corresponds to roots of modulus less than 1.

1. Background

Jozef Maria Hoene-Wronski (1778-1853) was a universal philosopher and
scientist. He also knew all languages of culture, Polish, French, Latin, Greek,
Hebraic, Arabic, Aramaic, though not English.

His aim was a complete “Réforme du savoir Humain” including both the
theory of spontaneous locomotion and the art of governing.

However, his industrial speculations were not bought by the government,
nor was his mathematical work accepted by the Academy.

He was therefore compelled to extract (painfully, having even to go to
court) money from a banker to publish his philosophical theories. Unfor-
tunately, the finiteness of the banker’s fortune and the malevolence of the
banker’s wife led to a delay of more than 30 years in the publication of his
work, apart from a small “Canon des Logarithmes™.

Wronski summarizes his object in his “Prolégomenes du Messianisme”:

“L'objet de cet ouvrage est de fonder péremptoirement la vérité sur la terre, de
réaliser ainsi la philosophie absolue, d’accomplir la religion, de réformer les
sciences, d'expliquer I'histoire, de découvrir le but supréme des Etats, de fixer
les fins absolues de 'homme et de dévoiler les destinées des nations” [10,

p. 10].

In fact, according to his own terms,
It was with much grief that Hoene-Wronski was forced to leave his grave
philosophical tasks to indulge in the Réforme des Mathématiques ... Math-
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ematical questions, however difficult, are only a secondary ohject, a sort of
hobby in the middle of his high philosophical thoughts. [10, p. 25].

He was forced to offer his mathematical laws as a proof of the absolute
truth of his philosophical and religious Messianic doctrine (that he borrowed
from Towianski), the¢ main weakness of philosophy being that Popper’s
criterion of falsification cannot be applied to its statements, leaving place for
much illusions which Wronski proposes to dispel.

Though restricting his field of research, he was nevertheless able to
attain the Supreme Law of mathematics. which contains all known mathematics
as a very special case and extends indefinitely beyond what is known. Moreo-
ver, his law would also comprise all formulas and all methods whick can be
obtained in the future of Science [10, p. 32].

Wronski almost instantly met with the outright hostility of the “savants
sur brevét” belonging to this “born enemy of truth”, that is to say, to the
Académie des Sciences de Paris. No doubt Wronski's clear-cut opinion
would nowadays be totally reversed, now that algorithmics and combinato-
rics are so well recetved in this noble assembly [5]; he would no more write
that the only aim of this corporation is exploitation of Man, consequently
exploitation of Heads of State, using the imposing authority of Science [10,
p. 4].

Thus, instead of devoting his full attention to solving the following
rigorous system of equations [l1, p. 6]:

“Let o be the anarchy degree, d the degree of despotism. Then one has the
following precise relations:

(L.1) o= {in__-’_n-m_-'__'_l}pmrx(?l)p“,
m n n

(1.2) 5 = {'”J“”-m*"}'_px(f)w,
o m n m

where m represents the numerical influence of the national party, p the standard
deviation of the philosophy of this party from true religion, n the influence of
the moral party and r the deviation of religion from true philosophy”.

Wronski had to write such trivial things as the Résolution Générale des
Equations (de tout degré) which we shall examine in detail in Section 2. For
a survey of his mathematical work, we refer to [1].

“We do not need to emphasize how painful such a pedestrian task must be
to a man who, in the innermost recesses of his retreat, has spent his life
scrutinizing and discovering creation laws, as well as the final destiny of
rational beings” [10, p. 14].
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2. Universal resolution of equations

From 1810 on, Wronski made great use of determinants, this at a time where the
theory of these objects was not much developed. Moreover, in the work of
classics such as Cramer, Bézout, Vandermonde, ..., theory of determinants
stewmns from elimination of variables in systems of linear equations, and involves
only determinants of “quantities™, i.e. (real) numbers (see the first volume of [ 7]).

Weighing the respective merits of these pionecrs, the scale is turning
towards Wronski who used “sommes combinatoires” which he denoted by the
Hebrew letter “sin™ or “shin”, more general even than those determinants
which have been called “Wronskians”. Indeed. Wronski considers determinants
of linear functionals, not restricting himself and the reader to the case of
consecutive derivatives. Moreover, he obtains relations between “compound”
determinants which were later and independently developed by such people as
Sylvester, Bazin, ...

As for symmetric functions, he repeatedly claimed that the complete
symmetric functions (which he denotes by “aleph”: X) are more fundamental
than the elementary ones. To get the “universal factorization of polynomials”,
he furthermore generalized the aleph functions into a family which includes the
Schur functions indexed by partitions of the type 1...1g...q. He defined his
new functions by simple recursions, here placing more emphasis on algorithms
than on determinants, having in mind to provide anybody non prévenu ni
areuglé with an efficient tool to attack all problems of mathematics (and
physics). This is perhaps why he missed general Schur functions, which had to
wait thirty more years to come into existence at the hands of Cauchy and
Jacobi, and many more years to be christened “Schur functions” (by Littlewood
and Richardson, in 1934).

From different places in the voluminous work [10], suplemented by [8]
and [9], one can extract the mathematical properties that we are going to
rewrite in the following.

Given a finite set A of indeterminates, the associated aleph functions
(which we shall, departing from Wronski’s philosophy, denote by §;(A)) are
defined through the generating function (using an extra formal variable z):

'S

(2.1) /][] (1 —~za) =) 2/S,(A).

ach 4]

One can asociate with such a formal series the infinite matrix
S = [Sy-r(A)], 4>  Products and inversions of series correspond to products
and inversions of matrices. The advantage of matrices, apart from figuring in
Bourbaki’s treatise on linear algebra, contrary to the scanty appearance of
symmetric functions and the almost total absence of aleph functions, is that
anybody can now think of considering minors of these matrices — that is to
say, precisely Schur functions.
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More precisely, given any J in N?, one defines the Schur Function of index
J to be

(2.2) Sy(A) =S k- n (A chr<p

Elimination theory, as well as rational (Padé) approximation, make great
use of the Schur Functions associated with a rational function with poles and
Zeroes:

O

(2.3) [T—zx)/[](1—za) =3 2/ S;(A-X)

xeX acA 0
instead of a function having only poles: 1/][,.. (1 —za). They are defined as in
2.2, using the aleph functions §;(A—X) instead of S;(A), and denoted by
S;(A —X). The fundamental property, in that case, is that for J “large” enough,
S,(A—X) factorizes into a product S;.(A):S;. (X)[]searex (4—x); thus one
can express, up to the factor [ [,ca xex (a— x) which is called the “Résultante” of
A and X, any Schur function of A or B as a determinant in the coefficients of
the series []yex (1 —2x)/] Joea (1 —2a) (see [3]).

In short, though slightly incorrectly, one can say that from the knowledge
of A—X one can recover separately both A and X.

The problem considered by Wronski was exactly of the same type. Given
the union of two finite sets (with multiplicity) of complex numbers A, B, such
that |a| > 1 for every ae A and |b| < 1 for every be B, Wronski wanted to
recover A and B separately. More precisely, given the polynomial
[1oea (x—a) ] [y (x —b), Wroniski claimed to be able to get its “universal”
factorization, ie. to produce separately both polynomials [],.,(x—a) and
[ Jsen (x — b). He took care to emphasize that his solution was transcendental
and not algebraic, in other words that he had to go to infinity to attain an
exact factorization, but could nevertheless provide an approximate factoriza-
tion before proceeding to the limit.

In fact his methods extended that of Bernoulli, which dealt only with the
case where the cardinal of A was 1. Any symmetric function having a “leading
term” furnished in that case a solution: take for example the power sum
W, = a"+Zb" which, of course, can be expressed in terms of the coefficients of
the polynomial (x —a) [ ],.s (x— b). Even the most severe rapporteur will admit
that x—a is the limit, as k —» oo, of (xy, — ¥, . ,)/tV,. The same benevolence
should apply to Wronski’s work, at least posthumously.

We write A + B for the (disjoint) union of A and B, and define accordingly
the associated aleph and Schur functions through the formal series
1/ Toea (1 =20) [ Joes (1 —2b) = 3.2/ S;(A+ B). The following proposition (with
some restrictions on J and J) is due to Wronski.

ProPosITION 2.4. Let A and B be (multi) sets of complex numbers: la| > 1,
|b| < 1, card(A) =m, card(B) = n. Let IeN", JeN"™, k an integer; denote
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(Jy+k, ..., J,+k) by J(k), (I,,.... L, J, +k,...,J_ +k) by I1J(k). Then the
quotient of Schur functions S,;,,,(A+B)/S,,,(A+B) tends to S;(B) as k tends to
infinity.

Proof. We have here to use the fact that Schur functions can also be
expressed as the quotient of a determinant of powers of the variables (when
these variables are all different; it is not difficult to pass from this generic case
to any special one) by the Vandermonde determinant (Jacobi—Trudi relation,
see [3, ch. I, 3]), 1e. that

Siju(A+B) 4(A+B) =

I, In+n—-1 aj|+n+k Jm+n+k+m—1

e ¢ laeA
.b" b'"+"_1 .b-’l’”'”‘ .me+n+k+m~1 }beB
the special case of this determinant for I =(0,...,0) being equal to

S, (A+B)- 4(A+B), the even more special case I = (0,...,0), J =(0, ..., 0),
k = 0, being the Vandermonde determinant of the set A+ B (i.e. the product of
differences, two by two). When k is large enough, this determinant is not very
far from

al; Intn—1 Jmtnt+k+tm—1

. a Ji+n+k .

a . a

faeA
lbeB

Bl bt g .0

which factorizes, and thus S§;;,,(A+B)/S,,,(B) i1s not very far from
BT b /B0 L b Y, which in turn is equal to S;(B) as wanted. m

Proposition 2.4 allows us to exhibit any Schur function of B as a limit of the
quotient of two Schur functions of A + B. Recall now that the coefficients of the
polynomial | ],.5(x—b) are special Schur functions (case I =0...01...1,
denoted by 0"°717, 0 < p < n).

COROLLARY 2.5. Under the hypothesis of 2.4, the polynomial [ |yp (x—b) is
the limit of

(0 Y (—1PX"PS o (A+B))/S 4 (A +B).
€p<€n

One can give a little more compact expression by making use of 2.3, in the
case that the set X = {x} has only one element, A+B replacing A. Let us
denote by S,.,(A+B—x, A + B) the determinant obtained from S,., (A + B) by
replacing each aleph function §, (A + B) by S, (A +B—x) in the first n columns.
Using the fact that S, (A+B—x) = S, (A+B)—xS,_, (A +B), one thus obtains
the equivalent form of 2.5:

CoRoLLARY 2.5". Under the hypothesis of 2.4, the polynomial nbell (x—>b) is
the limit of

(=1"S;ny0y(A+B—x, A+B)/S,,(A+B).
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Jacobi’s approach [2] to the same problemn is rather different. As above,
denote by ¢, and ¢,, for any integer k, the kth power sums:

' =_2;“EA @*+3 b, and @, = 3, a" Writing [[(x—a) = x"—x""' 5, (A)

+x™"%8,,(A)—..., we have for any k the system of equations
X" —x"15 (A) +x""%S,,(A) —..=0

(2.6) Py —®-15,(A)  +@-25,(4 —-..=0
(ﬁ;k+m—1 ~Pram-251(A) + Q1 m-35;(A) —... =0,

We deduce from this system, by eliminating the “unknowns” $,(A),
S,,(A), ..., a determinant which is a polynomial of degree m in x vanishing for
x = any a in A. Thus, this polynomial, whose coefficients are determinants in
the ¢,, is, up to a factor, the polynomial [](x—a).

Now, if k is large enough, y, provides a good approximation to ¢, and
thus, [J(x—a) can be approximated by a determinant whose coefficients are
determinants in the power sums V. In fact, up to a factor, these determinants
are equal to the same Schur functions as in 2.5 (for J =0,...,0) and the
method of Jacobi is not very different from the first step in the method of
Wronski.

We have defined the Schur functions S; (A +B) as determinants in the
aleph functions; they can also be expressed as determinants in the elementary
functions, i.e. the coefficients of the polynomial [ [, (x—a) " [ [5es (x—b) [6, ch.
I, 3]. As was already noticed by Wronski, this is not at all suited to the use of
computers; Wronski rightly did not stop at this point, but produced an
algorithm, which we shall examine in the next section, to generate the required
functions through elementary steps.

3. Wronski’s algorithm

Recall that the normalized difference of two polynomials P = p,x"
+p,x" " '+...and Q = go x"+4q,x" "' + ... is the difference ¢, P—p,Q and is
denoted by *P—*Q in accordance with the requirements of modern computer
science.

Given a polynomial P of degree N, Wronski first takes the successive
remainder %, , of the powers of x:

R, =x""*mod P.
His next steps are now only normalized differences:

gek,z = *ggm - *-QH 1,1°
31
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We assume here that no irregular drop in degrees happens (otherwise, one
has to take more care of the definition of normalized differences).

ProPOsSITION 3.2 (Wronski). Let A and B be (multi) sets of complex numbers:
laj > 1, |b| <1, card(A)=m, card(B)=n, and let P be the polynomial
[](x—a)-[](x—b). Then, denoting by € the coefficient of the leading term, the
normalized polynomial R, /€ tends to [[(x—Db) for k tending to infinity.

Proof. We are saved if we can recognize in %, ,, one of the Schur functions
considered in 2.5". In fact, the abbé Fontaine des Bertins (see [7, t. I, p. 11])
comes to the rescue with what has been named much later Pliicker’s Relations:
given any matrix, denote by [ij...k] the minor formed by its first rows and
columns i, j, ..., k; then one has the following three-term relations, for each
choice of 1,...,p; i,j, h, k:

(33) [1...pij1-[1... phk1+[1...pik]1-[1...pkj1+[1...pik]-[1... pjk] = O,

i.e. we have to take a fixed set {1, ..., p} of columns and another set of four
columns {i, j, h, k} that we decompose in all possible manners into two pairs
to get the three terms of the relation.

Let us now take the following matrix of aleph functions of A+B—x for
the first columns, and aleph functions of A + B for the last ones (for any positive
integers k, p, q):

So(A+B—x) S,(A+B—x) ... S,(A+B—x) S,.,(A+B) ... Ss,.,(A+B)
0 So(A+B—x) ... S,_,(A+B—x) S,,,_,(A+B) ... 5. ,.,_,(A+B)

Then the relation
O=[1...pk+1+p...k+p+4q]-[0...p—1 k+1+p...k+p+q]
~[1...pk+p...k+p+q—13-{0...p—1 k+1+p...k+p+q]
+[1...p—1k+p...k+p+4]-[0...pk+1+p...k+p+q—1]

produced by the choice of the set -of fixed columns: {1,...,p—1,
k+1+p,...,k+p+q—1} and of the set that we cut in two: {0,p,
k+p, k+p+q} is nothing else but

Sira+1)(A+B—x, A+B) Sy, (A+B—x, A+B)
_SlrtG(A-'-B—xs A+B)‘Sop(t+l)¢(A+B—x, A+B)
+S8ip-1x+1y0+1(A+B—x, A+B) Sopi140-1(A+B—x, A+B) = 0.

Notice that S,,.(A+B—x, A+B) = S,,(A+B) is a scalar independent of x.
Thus, the Schur functions S,,, (A +B—x, A+B) satisfy Wroniski’s relations;
checking the starting point, i¢. that the remainder of x™*"** modulo
[1(x—a)[](x—b) is equal to S;m+n-14+,,(A+B—x, A+B) up to a factor, we
can conclude the proof. m

25 ~ Banach Center t. 26, cz 2
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Remark. The coefficients of the successive remainders in the euclidian
division of two polynomials are also Schur functions indexed by partitions of the
type 1...1 k...k (see [4]).

That division is related to factorization is rather clear in the case
where card(A) = 1, i.e. when the polynomial has only one root of modulus
greater than 1. Indeed, from the definition, x" "' ** = 2, | (x); thus, for all b in B,
the polynomial £, ,(x) almost vanishes: £, ,(b)=5b"""1"*~0; since
card(B) = n = degree of %, ,(x), this polynomial 1s not “far” from being
[](x—b) up to a scalar.

ExampLE. Let P be the polynomial (x—1/10)?(x+5)(x—6). Then
x*=R,, = 1.2x>—3021x2+6.01x—0.3
x*=%R,, = —28.77x>—30.242x* +6.912x—0.36
x0=AR,, = —64.766x> +876.056x> —173.2677x + 8.631.

Therefore, R, , = *Ro ; —*R, , = *(x*—0.198688x +0.010009), %, , = *#, ,
—*#&, ; = *(x*—0.2000006x +0.0099991) are already from the start good
approximations of the factor x*>—0.2x+0.01.

On the other hand, Bernoulli’s method would not allow an easy extraction
of the root 6, then of the root — 5, to get the required factor. Indeed, the power
sums take the wvalues: ... ¥, =1921.0002, ;=4641.00002, ..., ¥4
= 2070241, Yo = 8124571 and neither Y /¥, (= 2.416), nor even Wo/frg
(= 3.92) can be considered as a sufficiently good approximation of the greatest
root (= 6) to permit proceeding to the research of —S5.
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