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A new class of continued fraction expansions
by
Cor KraAAIKAMP (Amsterdam)

1. Introduction. Let x be an irrational real number. It is well known that
x can be written as an infinite fraction

1

ag+ , Wwhere ayeZ, aq,eN=2;,,
a,+
az“" I
-+
a,+ ...

the regular continued fraction expansion of x. Truncation yields the sequence
of regular convergents (P,/Q,),> -1, Which converges to x. Here ged (P,, Q,) = 1,
0.>21forall n>0.

Each regular convergent is always a best approximation to x, that is, there
do not exist better approximations with smaller denominators:

Vr,seZ,0<s<Q,

(The converse does not hold, see [Per], §16.)

In this paper we are mainly interested in semi-regular continued fractions
which improve the approximation properties of the regular continued fraction.
In view of the above-mentioned best approximation property we are in
particular interested in semi-regular continued fraction expansions of x whose
sequences of convergents form subsequences of the sequence of regular
convergents of x. A crucial role in obtaining these continued fractions is played
by an operation on the numbers a,, n > 1, the so-called partial quotients of x.
This operation, the singularization of a partial quotient a, equal to 1, is studied
in detail in Section 2. ;

Using singularizations we then define in Section 4 a new class of
semi-regular continued fraction expansions, the so-called S-expansions. This
class contains the classical nearest integer continued fraction, Hurwitz’ singular
continued fraction, Minkowski’s diagonal continued fraction and the import-
ant a-expansions, introduced by Hitoshi Nakada in [N].
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A metrical theory for these S-expansions is developed in Section 5. This
general theory contains the metrical results of Rieger [R1] for the nearest
integer continued fraction and those of Nakada [N] for his a-expansions as
special cases, see also Section 6. Our general theory also yields the analogues of
theorems by Legendre, Vahlen, Lévy and Adams, and lead recently to hitherto
unknown properties of Minkowski’s diagonal expansion [Kr2]. Our proofs are
in general considerably shorter than those in the literature for the correspond-
ing case.

We start by giving some definitions and basic resuits on continued
fractions, which we will need for further reference.

(1.1) DeFiNITION. In this paper a continued fraction is understood to be a pair
of two finite or infinite sequences (,),>1, With &,€{+1}, n > 1, and (a)n>o0,
with a,e Z, n > 0, where in the finite case both sequences end with the same
index. In the finite case we denote the continued fraction by

ag+&y [ ay+... 48 [ an,

in the infinite case we write
ag+e, [ ay+...+&, [ a,+...

The integers a,, n > 0, are called the partial quotients of the continugd fraction.

(1.2) DerINITION. A finite or infinite continued fraction is called semi-regular
when a,€Z; a,eN, n21; gy +a, 2 1, n> 1, and, in the infinite case,
&y+1+a, = 2 infinitely often.

(1.3) SoOME EXAMPLES.

(i) In case ¢, = +1, a,e€ N, n > 1 we have the so-called regular or simple
continued fraction, see also Section 3. In the sequel we denote the regular
continued fraction a,+1 / a,+... by [ao;.ay,...).

(i) In case a,€Z, a,>2, n>1and g4,+a, 22, n 2 1 we have the

so-called nearest integer continued fraction, introduced by Minnigerode in
[Minn] and studied by Hurwitz in [H]. See also [Per], §43, and [R1].

(iii) In case &, = +1, ag€Z, a,€N, a, = 1 (mod 2), &y4 1+, > 2,n21,
we have the continued fraction with odd partial quotients, introduced by G. J.
Rieger in [R2]. For more details, see [Sch] and [Bar].

(iv) Other examples of semi-regular continued fractions are Minkowski’s
diagonal continued fraction, see [Min], [Per], §45, and [Kr2], Wieb Bosma’s
optimal continued fraction, see [Bos], and Hitoshi Nakada’s a-expansions, see
[N]. These x-expansions will be discussed in Section 6 of this paper.

In the sequel we are mainly interested in infinite semi-regular continued

fractions. In particular we will introduce and study a class of semi-regular
continued fractions obtained from the regular continued fraction via a so-

called singularization process, see Sections 2 and 4.
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(1.4) DermniTION. Let a,+é¢, /[ a,+... be a (finite or infinite) continued

fraction. The matrices A, = A, (¢, a,), M, = M, (ay+¢, / a
n n\“n? s | TR n +‘”+£u a),
n = (, are defined by ot+er_/ ay _/_ ).

1 a 0
Ao:=[0 1“]; A,;:[l Z], n>1,

M,:=AyA,...4,, n=0,

with the obvious restriction on n in the finite case.
Moreover, the numbers 6,€ {+1}, n > 0, are defined by

8,:=detM,.
(1.5) Remarks. Notice that
0, =(—1)e &,...6, n
since det 4, = —¢g,, n > 1. Putting

W

1
p-1:=1, poi=ay, ¢-1:=0, go:=1,

Mo=¢,:p_l po]’ and 'M,,=:[r" P"], n>1
9-1 4o Sn 4n ’

we have, due to

ie.

(1.6) Mg=Ag, M,=M, 14, n>1,
that

Mﬂ=[Pl"1 anpn—1+£npn~2 L n;l.
dn-1 anQn—l'!'anIl—Z

Hence we find

(1.7) THEOREI\:{. Let ay+¢&, [ a,+... be a(finite or infinite) continued fraction.
Then there exists a (finite or infinite) sequence (p,, qunz -1 in Z* such that

M" = [pu—l pu:,, n> 0.
dn-1 4y
The sequences (p,),> -1 and (g,).> -, satisfy the recurrence relations:

(1.8) {P—t =1, po:=ay, P,=auPa-1+EnPn-2,
g-1:=0, go:=1, Gy = QnGn-1+Enqn—12.
One has

gc’d(pu!qn)=ls ng(q” q..+1)=l. nz -1,
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(19) COROLLARY. Let ag+&, |/ a,+... be a (finite or infinite) semi-regular

continued fraction. Then the sequence (q,)n> 1 is monotonically increasing if and
only if e,+a,>1, n 22

(1.10) COROLLARY. Let a,+¢&, [ a,+... be a (finite or infinite) continued
Sraction. Then

det [P"“ p"] =5, n=0,

n—1 qll

see also Definition (1.4),

det [p-_l p”+l] = 0Ap+1 51" n ? 05
dn-1 9n+1

det [pn—l pﬂ+z] = (al+l an+2+£il+1) 6::; n ? 0;
dn-1 9n+2

with the obvious restrictions on n in the finite case.
Hence

det I:Pu -1 DPn+ 1]
n-1 Gdn+1

and, in case of a semi-regular continued fraction, with moreover &,+a, > 1,

n=1:
Idet [pn—l pn+2]
Gn-1 4Gn+2

(1.11) Remark. Let

=1 if and only if |a,+4| =1, where n >0

>1, n=20.

C=[u g] witha, f,y,0€Z, ad—fy = 1.
Y

Associated with C we define the Mobius transformation C: Ru{co} = Ru {0}
by

Bl o
yx+0’
Due to Theorem (1.7) we have
P4 = M, (0), n=0.
From (1.6) it follows that
M,0 =M, A,0)=M, ;A,-1(/a) = ...

C(x):=

2 =2 o and c(‘T‘j)=oo; C(o) =
Y

- | R

£ £
=Mo(_l__)=ao+—‘—, n=1.
82 al+lo.
a,+———— i S
Gt g a,
3
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This leads in a natural way to the following definition.

(1.12) DerINITION. Let ag+¢, [/ a,+... be a (finite or infinite) continued

fraction and let p,, g, n >0, be as in Theorem (1.7). Then we put
ag+e; [ay+...+¢, [a,:=pJq,, n=0,

that is, ap+¢, / a,+...+¢, [ a, equals by definition the value of the finite
fraction

1 1 -
ag+———, where —:= o0 and —:=0.
0 (s'o]

An infinite continued fraction a,+¢, [/ a,+...+¢, [/ a,+...1s said to be
convergent if and only if

(1.13) lim p,/q, exists and is finite.

Lind- ]

Let xeR be. the limit from (1.13). Then x is called the value of the
continued fraction and we write

x=ayte, [a+...+¢,_[a,+...
The sequence (p,/q.)n> -1 is called the sequence of convergents of the continued
fraction a,+¢, [ a,+...

(1.14) Remark. Let a,+¢, [/ a,+... be a (finite or infinite) semi-regular
continued fraction and let (p,/q,).> -1 be its sequence of convergents. A simple
induction argument shows that

(1.15) 1 [a,+...+¢, [a,e[lfa;+1),1], n>1,

with the obvious restriction on n in the finite case.

Each infinite semi-regular continued fraction converges to an irrational
number, see [T], [Per], Ch.V. We will give a proof of this for infinite
semi-regular continued fractions a,+¢, / a,+...+¢, / a,+... which satisfy

(1.16) e,+a,>1, n>1.
From Corollary (1.9) and

Pn-1 Pn_ _ On

, n=1,
dn-1 4y Gn-19,

it at once follows that (p,/q,).> -, is a Cauchy sequence, that is, a,+¢, / a,+
w48, [ @,+... is convergent, with limit, say, xeR. Hence the infinite
semi-regular continued fraction
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tat1_f Gus1teoFoasm [ Guemt-..

is convergent, with limit, say, t,€ R. In view of (1.15) we have
ens1t€[1/(@ne1+1), 1], n2=0.

It follows from Definition (1.12) that

En+1
1.1 t, =—, nz0,
@1 S S S A
and from Definition (1.2) and (1.15):
{118] En+1 tnE [ll(an+l+l)v 1)! n ? 0

Moreover, we have

x=M,,_,[° En ](0), 3L,

1 a,+t
hence
(1.19) = (an‘l'[n) Pn-118,Pa-2 _ PpttaPn-1 n>0
' (@, +t) Gn-1+8,4n-2 Gpt+tnGn-1
o,t
(1.20) x—Pn ntn ns0.

4n B Qu(qn-l'tnqll—l),
From (1.18) and (1.19) it follows that
|gs x—pal < lqll—'l X—pp-1ls n21L

From this one can see that x is irrational.

(1.21) Remark. Since every infinite semi-regular continued fraction conver-
ges to an irrational number one finds that (1.17), (1.18), (1.19) and (1.20) hold for
every infinite semi-regular continued fraction.

(1.22). LeEmMA. Let ay+¢, / a, +... be a (finite or infinite) continued fraction.
Then :

‘h—l/qu=0+l_/_an+3n_/_au—l+"'+52_/_al’ n;I’
with the obvious restriction on n in the finite case.

Proof. This lemma follows directly from the second recurrence relation in
(1.8) or from the observation that

a1 LS 20 L
a3 | S A [ [
SRR

A new class of continued fraction expansions 7

Hence

MI(0) =g.-1/q,=0+1 [a,+¢, [Gy_y+...+& [a,, n=>1

since
€ 0 -
[ao l](0) =0. =

(1.23) DerFINITION. Let x € R, p/q € Q where we assume that ¢ > 0, ged (p, g) = 1.
Then we define
0 (x, p/q):= qlgx—pl.
A direct consequence of this definition, (1.8) and the formulas (1.17), (1.18)
and (1.20) is:

(1.24) Lemma. Let ag+ée, [ a;+... be an infinite semi-regular continued
Jraction, with value x. Then

0(x, p/g,) = &ns1t/(1+1,0,), n20,
B(X, Pn—l/‘h—l) = U,J(l +tn ”u): n 3 l,

where
D"1= qn—- 1!‘"],., n 2 (}-

(1.25) Remarks.

(1) Instead of @ (x, p,/q,) we often write 6, (x), or shortly 6,. For the regular
continued fraction we moreover write @, instead of 8,. Notice that we always
have: 0 < ©,< 1, n=>0.

(ii) The numbers 6,, n > 0, connected with the (finite or infinite) semi-
regular continued fraction ay+e&, [/ a,+... are called the approximation
coefficients of ay+¢&, [ a,+... For more results on the regular approximation
coefficients, see Section 3.

2. The singularization process. The theory which we develop in this paper is
based upon a process by which a continued fraction can sometimes be
transformed into another one, with better approximation properties. Fun-
damental are the following matrix identities, which are easily checked:

O P | | A e [ |
R N | O | Y O et

with arbitrary a, b, &€ and p.

—
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(2.3) DEeFINITION. Let
(24) ap+e, [ aj+...
be a (finite or infinite) continued fraction with for some n > 0:
Qi1 =1, &4a=1, ie
ao+al_/_a,+...=ao+s,_/_a1+...+£,,_fa,,+a,,+,fl+1fa,+z+...

The transformation o, which changes this continued fraction into the con-
tinued fraction

(25)  agte, [ayt...48& [ @utens)t(—8asr) [ (+an2)+...
is called a singularization. We say that we have singularized the pair 4,4+, = 1,

8" = 1. - - -
" We will now study the effect of this singularization o, upon the sequence

of vectors
( k) = '
Ae/kz-1

connected with (2.4). Let (M,);> o be the sequence of matrices as def_mecl in (1.4),
connected with (2.:4) and let (M#);> o be the sequence connected with (2.5). We

will write
(qf) =M (l)’ -

M¢=M, k=0,1,...,n—1,

Clearly
and, in view of the identities (2.1) and (2.2)

Mt=Mk+]_, k=n+l, n+2,...

The two matrices M, and M,,, are replaced by M7, where

0 €, 0 &y |0 &l [0 &, ]
M:=Mn‘1[l Ay t+Epsy = M1 1 1 1 a, 1 a,+&ns1

From this we see that
—8y41 0
* —
M: Mn+l[' En+1 1]

(302

and hence that
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T Cn+1 0 0 . 0
g+ 1J\1) 1)
*
(2.6) Thus the sequence (p,;) is obtained from (p,‘) by removing
k> -1 k> -1

dk 9
the term (p,) from the latter.

n.

since

(27) Remark. Suppose that a,., = 1, €,42 = 1 and @psy = 1, sz = 1 for
two integers n and m which are not consecutive. Then clearly one may
singularize both pairs independently of the order, or what comes down to the
same, at the same time. Similarly for more than two, or even infinitely many
non-consecutive blocks a;.; =1, g,, = 1.

On the other hand, one can singularize a block of consecutive pairs
Gni1 =1, 842 =1;...; @41 = 1, 44441 = 1,1 > O step by step, but then the
order in which we singularize subsequent pairs definitely determines the
outcome, as is shown by the following example.

(28) Exampre. Consider the continued fraction 1_/2+(—1) /141 /1
+1_/14+1_/0+... Singularizing the pair a; = 1,¢, = 1 we get 1 [2+(-1)
/2+(=1)_/2+1_[/0+..., while successively singularizing a, = 1, &, = 1
anda, = L,gs=1lyields1 [1+1 /241 /141 [O+...and1 [ 141 [3
+(—1)_/ 1+...,orinreversed order 1 /2+(—1) /[ 1+1_/24(=1) [ 1+...
and 1_/1+41 [34(—1) [14...

(29) DEFINITION. A singularization process consists of a set of continued
fractions and a law which determines in an unambiguous way the pairs
@y4y =1, 8,4, = 1 from each continued fraction of the given set that will be
singularized. '

(210) Remark. The sequence of convergents of the »final« continued
fraction is a subsequence of the sequence of convergents of the original one.

. Hence, if the original continued fraction converges to x, so does the new one.

The new continued fraction converges faster than the original one, see also
Section 4.

In Section 4 we give more precise definitions, but to illustrate here already
the idea we give some examples.

(2.11) EXAMPLES OF SINGULARIZATION PROCESSES. (i) The class of continued
fractions to be singularized is that of the regular continued fractions. The law
is:

From every block of m consecutive pairs a,+q = 1, 42 = 15 ...; Guam = 1,
Entm+1 =1, where me NU {0}, apem+1 # 1 and a, # 1 in case n > 0, we

Singularize the first, third, fifth etc. pair.
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Applying this law yields a semi-regular continued fraction a,+¢, [ a,
+...+¢, [ a,+... which satisfies:

g,e{tll,n=1; ageZ; a,=>2,nz>1, and Epritan=2,n2 1.

Thus we see that this singularization process yields the nearest integer
continued fraction, see (1.3) (ii) and [Per], Satz 5.17, p. 160.

(i) Again the class of continued fractions to be singularized is the class of
regular continued fractions. Now the law is:

From every block of m consecutive pairs @, = 1, Bpsg =15 vua} Gpam =1
tnemey = 1, where me NU{o0}, @pims1 # 1 and a, # 1 in case n >0, we
singularize the first, third, etc. pair in case m is odd and we singularize the second,
fourth etc. in case m is even.

Applying this law yields a semi-regular continued fraction a,+¢, [ a, '

+...+¢, / a,+... which satisfies:
e,ef{+l1},n=>1; apeZ;a,22,n2>1, and ¢, +a,=>2,n>1.

Hence this law gives Hurwitz’ singular continued fraction, see [Per], §44.

(iii) The class of continued fractions to be singularized consists of the
continued fractions with odd partial quotients. The law is now:

Singularize each pair @,sy =1, &pe2 =1, 12 0 for which e,+y = —1.

Each irrational number x has a unique continued fraction expansion with
odd partial quotients, see e.g. [R2] and [Sch]. In [Bar] it is shown that
applying this law one obtains a semi-regular continued fraction whose
sequence of convergents is contained in the sequence of regular convergents of
x and which contains the sequence of nearest integer continued fraction
convergents of x.
(212) Remark. Let ao+¢, [a,+... be a (finite or infinite) semi-regular
continued fraction with value x € R, such that the sequence of its convergents
forms a subsequence of the sequence of regular convergents of x. As in [Bos]
we denote this by

SRCF(x) € RCF(x).

From the fact that we always can invert a singularization, cf. [Per], §40, it
follows that we have:

(2.13) THEOREM. Let ag+¢, / ay+...+&, [ a,+... be an infinite semi-regu-
lar continued fraction, with value x, which satisfies (1.16). Then

SRCF(x) = RCF(x) if and only if & t+&ns1 > 2—-2a,, n2zl.

3. The regular continued fraction. In this section we will describe briefly

some properties of the regular continued fraction which we shall need in
subsequent sections. Recall that in case of the regular continued fraction we

have by definition: &, = +1, a,€N, n > 1, see (1.3) (i).
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(3.1) DerFINITION. The regular or simpl ] i
. ple continued fraction operat :
[0,1)—[0,1) is defined by ’ perator T

Tx:= 1/x—[1/x], x#0; T0:=0,

where [ - ] denotes the entier (or floor) function. Th i .
is: defined by ) function. The function B: [0, 1)—» Nu {0}

B(x):=[1/x], x#0; B(0):= 0.

Let weR, B,:= [w] and x:=w—B, Put Tj:=x, T.:=T"x, n>= 1, and
B,:= B(T,-,), n > 1. Notice that when T; # 0, 0 <i < n—1, we have

+

B,+T,

In case weQ it follows from the Euclidean algorithm that there exists

a non-negative integer n such that T, = 0. Then w equals the fini
P s eq inite regular

with B, > 2, ie.

w =[By; B,, ..., B,], see also Definition (1.12).

In the sequel we assume that we R\Q. Then T,
; 2€[0,1 fi
therefore B,e N for all neN. RV e
From Remark (1.14) it follows that [B,; B,, ..., B,,...], the regular

continued fraction obtained in this way fi i
y from we R\Q, is convergent. D
(1.20) and (3.2) we moreover have ) . neto

63 WP -IPT,

0, 0@ +T,0.-

\;here (P,,/Q,,),,;,_3 denotes the sequence of (regular) convergents of [B,;
1> -+=» By, ... Since (Q,)»> -1 is a monotonically increasing sequence in

N and T,e[0,1)\Q, for all neN, we at once have
=[By; B,,....,B,, ...

» Ep»

nz0,

Moreover

T;: = [0’ Bn+h reey Bn+|m '°°]9 . nz 0|
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V,:= Qn—l/Qu=[0; By, B]]; nzl,
see also Lemma (1.22). A simple but useful consequence of Definition (3.1) is

(3.4) Lemma. Let & =[By; By, ..., B,,...] and n=[By; By,..., B, ...,
where B, # B¥, n> 0. If n is even, then

B,<BY < {<n,
if n is odd, then
B, < Bf < £>1.

Three classical results in the theory of the regular continued fraction are
the theorems of Legendre, Vahlen and Borel which we will state now for further
reference.

(3.5) TueoreM ([Leg]). Let xe R\Q, p/g e Q with ged(p,q) = 1, g > 0, such
that
0(x, p/g) < 1/2.

Then there exists a non-negative integer n such that

(0)-()
a) \Q/)
or in words: p/q is a regular convergent of x. The constant 1 /2 is best possible.

(3.6) Remark. By “the constant 1/2 is best possible” we mean that for every

e> 0 there exist an irrational number x and a rational number p/g,

ged(p, @) = 1, ¢ > 0, such that p/q is not a regular convergent of x and
8(x, p/g) < 1/2+¢.

(3.7) TueoreM ([V]). Let x€ R\Q and let &, n > 0, be defined as in (1.25) (i).
Then for every n > 0 one has

min(8,, On+1) < 1/2,
and the constant 12 is best possible.
(3.8) TueoreM ([Bor]). For every n>1 one has
min (O,—1, Oy Onst) < 13/5,

and the constant ljﬁ is best possible.
A basic result in the metrical theory of continued fractions is:

(3.9) TueoReM. Let Q:= [0,1) and let & be the collection of Borel subsets of Q.

Define the Gauss-measure p on (2, %) by

1 dx

MO g2 Taw
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Then (2, B, u, T) forms an ergodic system; with T the operator from Definition
(3.1).

For a proof of this, see e.g. [Bil].

(3.10) Remark. It was discovered by Doeblin and Ryll-Nardzewski that
many classical probabilistic theorems from the theory of the regular continued
fraction can be proved by using Theorem (3.9). See [D], [R-N] and also [Bil].
To mention some of them:

For almost all x we have:

2

o1 m p
:Lrg ;Iog 4% =13 fog 2 (Lévy, 1929),
“1 —n?
lim —log x—Q—“ e §log2 (Lévy, 1929),
@« I lognflog2
lim %/ Bl o B, = I:[l (1 +m) =2.685452... (Khintchine, 1934).

In 1983 the application of ergodic theory in this part of number theory got
a new impetus by a paper of W. Bosma, H. Jager and F. Wiedijk, see [BJW].
Essential in this paper is the use of the natural extension of the ergodic system
(Q, #, p, T) from Theorem (3.9), see also [NIT] and [N].
(3.11) THEOREM. Let Q:= Qx[0,1], @ the collection of Borel subsets of
Q. Define the two-dimensional Gauss-measure pu on (2, #) by

dxdy

1
KO joga e ¥
Define the operator T: Q—-Q by
1
T(x, y):= (Th:, m), (x, e,

where B is the function defined in (3.1). Then (2, B, u, T) forms an ergodic
system.

(3.12) Remark. Theorem (3.11) constitutes a fundamental ingredient of the
theory to be developed hereafter. A proof of Theorem (3.11) can be found in
[NIT] and in [N], but can also be obtained by applying [CFS], Th. 1, p. 241 to
Theorem (3.9).

In the sequel we will use several times the following important conse-
quence of Theorem (3.11):

(3.13) TueoreM. For almost all irrational numbers x the two-dimensional

sequence
On-1
T;i
( Qll )n 20
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is distributed over R according to the density function d(x, y):= (log2)~!
x(14+xy)~ %

For a proof, see [J2]. A proof of its analogue for the nearest integer
continued fraction can be found in [Kril], p. 182.

4. S-expansions. In this section, which forms the main part of this paper,
we introduce a certain class € of singularization processes (see Definition (2.9)).
All these singularization processes work on the set of the regular continued
fractions. The semi-regular continued fractions obtained by a singularization
process from the class ¢ will be called singularization expansions, or simply
S-expansions.

Without giving here already the exact definition of the class ¢ we mention
that the two singularization processes described in (2.11) (i) and (ii) both belong
to %, hence the nearest integer continued fraction and Hurwitz’' singular
continued fraction are two examples of these S-expansions. Other examples of
S-expansions are Hitoshi Nakada’s a-expansions, see Section 6, Minkowski’s
diagonal expansion, [Kr2], and Wieb Bosma’s optimal continued fraction,
[Bos], [BK1]. A continued fraction which is not an S-expansion_is the
continued fraction with odd partial quotients, [R2], [Sch], [Bar].

(4.1) Remark. From now on we will apply singularizations to the regular
continued fraction, where all the ¢, are equal to + 1. Therefore we will speak of
“singularizing B, = 1" instead of “singularizing the pair B,+y = 1, £542 = 1",

In case of the nearest integer continued fraction it follows from the
definition of the operator T in Theorem (3.11) that the law in (2.11) (i):

wsingularize in each block of m consecutive partial quotients equal to 1,
where me Nu{oo}, the first, third,... etc. partial quotienty,

is equivalent to
»singularize B,.; if and only if (T, V)eS, n = 0«

where T, V, are as in Section 3, ie. T, = [0; By+y,...], V,=[0; B,, ..., B,]
"and where S; is the following subset of Q:

(4.2) S,:=[1/2, )% [0, g].
Here and in the sequel the numbers g and G are defined by:

g:= 5(\/5—1), G:=g+1.

In a similar way one can verify that the law from (2.11) (i), leading to Hurwitz'
singular continued fraction, is equivalent to '

wsingularize B, if and only if (T, V,)€ Sy, n 2 O«

where
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(4.3} S[|:= [g, I]X[O, l].

These two examples lead to the idea to prescribe by a subset S of © which
partial quotients are to be singularized in the regular continued fraction, in the
form of the condition (T,, V)€ S. Such a set § cannot be arbitrary but must
satisfy the condition

S = [1/2, 1)x[0, 1]

since otherwise B,,; would not be equal to 1, and must also satisfy the
condition

SnTS=0,

otherwise one would prescribe to singularize two consecutive partial quotients
equal to 1, which is impossible.

We are thus led in a natural way to the two central definitions of this
paper, which describe exactly the above mentioned class %:

(4.4) DeFINITION. Let (@, @, pu, T) be the ergodic system from Theorem (3.11).
A subset S of Q is called a singularization area if it satisfies the following
conditions:
(I) Se® and S is a p-continuity set;

1) s < [1/2, 1)x [0, 1];

(ITll) SNnTS =@.
(4.5) DerFiniTION. Let S be a singularization area and x an irrational number.
The S-expansion of x is that semi-regular continued fraction expansion
converging to x which is obtained from the regular expansion of x by
singularizing the partial quotients B,.; if and only if (T,, V,)€S.
(4.6) Remarks. (i) As is usual, by a y-continuity set we mean a set S with the
property that p(0S) = 0. We need this condition on S to be able to draw the
following conclusion:

Let x be an irrational number with regular continued fraction expansion

[Bo; B, ..., B,, ...]
and let A(S, N) be defined by

A(S, N):= # {j < N; (T}, V)eS§}.
Then for almost all x we have

. A(S,N)
lim —— =
Jm == p(S),
and as is well known, see [KN], p. 174, 175 and also [BP], the most general
condition in this respect is u-continuity. Here we need of course also Theorem

(3.13).
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(ii) The sets S; and Sy from (4.2) resp. (4.3) do not in fact satisfy condition
(I11). Indeed, SNT S consists in both cases of a line segment.
Taking
F:=[1/2, g1x[0, glulg, Vx[0,9), Sk:=[g, )x[0,g]ulg, D)x(g, 1]
instead of S; resp. S; we have
Notice that (g, g) is a fixed point of T, a very fundamental property of T, see
[JK]. Since for all xeR and n = 0,
(T, V) # (9, 9)s
because V,€Q, g€ R/Q, we will admit that instead of (III) we have
1y SnTs < {(g, 9)}
and still call § a singularization area.
- Since
p([3, 11x[0, 17) = (log2) "' log$ = 0.41503...,
a singularization area can, in view of condition (II) in its definition, never have
a p-measure greater than 0.41503... But condition (III) in the definition of

singularization area causes the maximal possible y-measure of a singularization
area to be essentially smaller, as is shown in the next theorem.

(4.7) THEOREM. Let S be a singularization area. Then
log G

= 0.30575...
log2

u(s) < 1-

This constant is best possible.

Proof. Define M,:= S} with S¥ as before and M,:= [0, g)x(g, 1]
ulg, 1)x[g, 1. One easily verifies that T(M,) = M, and that

_log G
log2’
Next we put S,:=SnM,, S,:=SnM,. Clearly
T(S,)uS, M,
and, in view of condition (4.4) (III),

T(S,)nS, =D,

u(My) = p(M,;) = 1

see also Figure 1.
Now one sees that

log G
log2’

1(S) = u(S))+u(Sy) = u(T5)+u(S,)) = p(TS,USy) S p(My) =1—
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That a singularization area actually can have this maximal measure
1—(log2)~*(log G) is shown by the two examples S¥ and S§. =

(4.8) DerINITION. A singularization area § is called maximal if

log G

u(s) = l—m-

0 2 g
Fig.1
Let S be a singularization area and let x = [0; B,, ..., B,, ...]. Suppose
that Bg is a subset of Q such that for all x we have:
The partial quotient B, . ; equals 1 and is unchanged by the S-singularization
< (T,, V) eBs.
Clearly such a subset always exists and has the properties
(1) Bg = [1/2, 1)x [0, 1] since B,+, = 1;
(2) BsnS = @ since B,,, is not singularized;
(3) T"'BgnS = @ since B, is not singularized;
(4) TBgnS = @ since B,,, is not singularized.

This subset Bg determines the occurrence of partial quotients equal to 1 in

the S-expansion of x. Its y-measure indicates e.g. the probability that a partial
quotient be equal to 1.

(4.9) DerINITION. Let S be a singularization area. Then the subset Bg of
£, defined by

Bg:=([1/2, 1)x [0, J\SuUT *SUTS)
is called the area of the preservation of 1’s.

(4100 Remark. In [Kr2] the area of the preservation of ones for Minkowski’s
diagonal continued fraction is explicitly given. Its p-measure equals

2 — Acta Arithmetica LVIL1
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1
@(103(\/5— 1)+./2—4) = 0.0473...

In (2.11) (i) & (i) we saw that the partial quotients in the nearest integer
continued fraction and Hurwitz' singular continued fraction are never equal to
1. Further we saw that the singularization areas which yield these particular
expansions are both maximal. Indeed, in both cases Bg =@. That for
S-expansions with a maximal S the partial quotients are with probability
1 always greater than 1 is shown by the next theorem.

(4.11) THEOREM. Let S be a singularization area and let Bg be as defined in (4.9).
Then

§ is maximal = p(Bg) = 0.
Proof. Let M,, M,, S, and S, be as in the proof of Theorem (4.7). Put

moreover

B,:=B;nM,; B,:=BnM,.
It is now easy to see that

TB,N(TS,uS,)=8, TB,UTSuUS,=M,,
B,n(TS,uS,;)=@, B,uTS,US,cM,.

Hence we at once have, since S is maximal, )

n(B)=0, u(B,)=n(TB,)=0,
which proves the theorem. m

(4.12) Remark. It is not difficult to show that the converse of this theorem
does not hold. We hope to return to this in the future.

Let S be a singularization area and x an irrational number. Then
(ri/six> -1, the sequence of S-convergents of x forms a subsequence of the
sequence of regular convergents (P,/Qu)s> -1 of x, see also (2.10). Thus there
exists a monotonic function ng: N— N such that

Ty P nsm)
= , k=1
(sk) (Qnsm
(4.13) THeOREM. Let S be a singularization area. Then for almost all x we have
. ng(k) 1
lim -2 = ”
k—+wo k 1 — U {S)
Proof From the definition of ng it follows that

ns(k)

nsg(k) = k+ 2 xs(Tp Vs

i=1
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where x¢ denotes the indicator function of the set S. Hence from Theorem (3.11)
and the p-continuity of S we see that for almost all x
ns(k)

; : 1 k
1 = lim + lim — AT, V) = lim ——+ u(8).
k—co Nls (k} koo ns(k) jgl IS( ") kv ns(k) ‘u( ) .

(4.14) Remark. Notice that Theorem (4.13) implies that

lim "s%) ¢ log2
- kK log G
the maximum being attained if and only if S is maximal. In words: the sparsest
subsequences are given by the maximal singularization areas. Since the S for
the nearest integer continued fraction is maximal, we have proved a theorem by
William W. Adams, see [Ad] and also [J1], [N].
The following corollary gives the analogues for S-expansions of the two
classical theorems of Lévy, quoted in (3.10).

(4.15) COROLLARY. Let S be a singularization area and let (r,/s > -, be the

sequence of S-convergents of the irrational number x. Then for almost all x we
have '

= 1.4404...,

Emii 1 i3
—logs, = ——————
k= K E% 1—pu(S) 12l0g2’
l —ard
lim —-log x—4 = L —E—.
ko K 5 1—p(S)6log2

Proof. This is an immediate consequence of (3.10) and Theorem (4.13); we
have for almost all x

ng(k) 1 1 n?

1
lim —logs, = lim =-—— ——1 TP TR R . S
o k0B = MmN k) 08 Crsto = TS 21082

and similarly for the second equality. =

The function ng introduced above is a measure for the number of regular
convergents that are missing in the S-expansion. On the other hand, by the
mechanism of singularization itself, this number equals the number of £’s in the
S-expansion that are equal to —1. It is easily seen that the precise relationship

is expressed by

k

ng(k)—k =4(k—=Y e,).

®=1
Hence we have the following

(4.16) CoOROLLARY. Let ay+¢&, [ a;+...+¢, [a,+... be the S-expansion of
the irrational number x. Then for almost all x one has
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- 1-3u(S)
lim — =—72
NP T
(4.17) Remarks. (i) Using a formula of Spence and Abel for the dilogarithm,
see [Lew], p.8, G. J. Rieger gave a proof of Corollary (4.15) for the special case

of the nearest integer continued fraction, see [R1], Satz 5, 6. But we see here
that these transcendent techniques can be avoided. This was also observed in

1],

(ii) The minimum of the expression in Corollary (4.16) is attained when S is
maximal, the minimum being

1 . G
—log— = 0.11915...
logG £

This value was already found by Rieger in [R1] for the nearest integer
continued fraction, see also [Ad], [J1].

We conclude this section by giving the analogue of Legendre’s Theorem
(3.5) for S-expansions.

(4.18) TuEOREM. Define for a real number z with 0 < z < 1 the set ‘A(z) by
A@):={(T, V)e2; T(1+TV) < z, Ve @}
and the real number cs by ‘
cs:=sup{ze(0, 1]; A(2)nS = B}.
Put
Lg:= min (cg, 1/2).

Then for every rational number P/Q where gcd (P, Q) =1, Q@ > 0, and every
irrational number x we have

O(x, P/Q) < Ly = P/Q is an S-convergent of x.

The constant Lg is best possible.

Proof. Suppose that 6 (x, P/Q) < Lg and that P/Q is not an S-convergent
of x. Since Lg < 1/2 we have, due to Legendre’s Theorem (3.5), that P/Q is
a regular convergent of x, i.. there exists an integer n such that P/Q = P,/Q,.
By definition of S-expansions we now have, since P,/Q, is not an S-convergent,
that (T,, V,)e S. By definition of Ls we have

Due to (1.24) and (1.25) we then have
0(x, P/Q) = 6, 2 Ls,
contrary to the hypothesis.
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From the definition of Lg and Theorem (3.13) it follows at once that Ly is
best possible. m

(4.19) ExampLE. Of course, the expression for Lg in Theorem (4.18) is rather
theoretical. But in many cases it yields without any effort the numerical value
of the Legendre constant. Let us consider for example the case of the nearest
integer continued fraction. Here the S is the S§ from (4.6) (ii), and one finds at
once that cg is determined by the point (1/2,g) and that in fact

cs = (1/2)(14(1/2) g)~* = g*> = 0.38196...

Recently, Shunji Ito [I] developed a theory to determine the Legendre
constants for a whole class of continued fractions. Ito’s method is more general
and it contains our result on S-expansions. However, his method is much more
complicated. ;

The value g? for the Legendre constant in case of the nearest integer
continued fraction was also found recently by still another method, see [JK].
For further examples see Section 6 and [Bos], Theorem (4.31).

5. The two-dimensional ergodic system connected with the shift operator for
S-expansions. In this section we will show that for each S-expansion there exists
an »underlying« two-dimensional ergodic system. These ergodic systems will be
obtained via an induced transformation from (2, &, u, T), the two-dimensional
ergodic system underlying the regular continued fraction. From the thus
obtained ergodic systems we will then deduce further metrical theorems for the
corresponding S-expansions.

Let S be a singularization area and let x = [B,; By, ..., B,,...] be an
irrational number. Let ag+¢, / a,+...+¢, [ a,+... be the S-expansion of x.
Recall that this is a semi-regular continued fraction expansion satisfying
&t+a, =21, n=1.

Let T, and t, be as in Definition (3.1) resp. Remark (1.14), ie.

T,=[0; Bosys.oos Bysmr o], n=0,
h=¢6+1 [ Qo1+ .. teim [ Gamt..., k20
We have, see Lemma (1.22):
Voi=0Qn-1/Q, = [0; B, ..., B,], n>1,
=S/ =1 [a+e [a-1+...+& [a,, k=1,

where (P,/Q,),> - is the sequence of regular convergents of x and (r,/s)i> -1 18
the sequence of S-convergents of x.

In (1.19) it was observed that

(5.1)

PII+1:|'PN_1

0.+T0.. "7"
2 = bty

= k2 1.

S,,-I'tkst_l’
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Finally we put
A:=Q\S, 4 :=TS and 4*:=4\4".
(5.3) THEOREM. With the above notations we have:

(i) (T, V)eS < P,/Q, is not an S-convergent;

(i) P,/Q, is not an S-convergent = both P,_/Q,_ and P,./Q,+, are
S-convergents;

rk—l=Pn—l9rj‘=P.,
Sk—1 = Qn—lt 5 = Q,,
ty = T, (hence g4, :=sgn(y) = +1),
v, =V

() (T, V)ed* < 3k: { and

rk—,l:Pn—Z’rk:Pu

(iv) (T,, V)ed™ < 3k: { and

Sg—1 = Qn‘—2; 5 = Qu
t, = =T /(1 +T,) (hence gx+1 = —1),
o, =1-V,.

Proof, (i) This follows directly from Definition (4.5) of S-expansions and
from (2.6).

(i1) This follows from the first and third equality of Corollary (1.10); in the
sequence of regular continued fraction convergents we cannot remove two or
more consecutive convergents and still have a sequence of convergents of
a semi-regular continued fraction.

(iii) In case (T, V,)e A* we have by definition of 4":

(Tl'!—lv Vu—l)¢sr {T;I’ Vn)és

Hence neither B, nor B, ., are singularized and therefore both P, ,/Q,; and
P,/Q, are S-convergents. But then there exists a non-negative integer k such
that

-1 _Pa-1 1P,

Sk—1 Qn—1, S Q.'

Since all these fractions are in their lowest terms and their denominators are
positive we even have

Tee1 = Ppogy =Py
Sk—1 = Qn-1, =0,
From this and (5.2) it follows that
Pot+ TPy P,+t, Po—y
0,+T,0.1 Q0 +40.1
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hence t, = T,. Finally,

Se-t _ Qn-s
Sk Ox "
(iv) In case (T,, V,)e A~ we have, by definition of 47,
(To-1, Vo= eS8, (T, V)¢S.
Then B, = 1 and must be singularized by Definition (4.5). Due to (ii) we then

have that P,_,/Q,-, and P,/Q, are consecutive S-convergents. Again there
exists a non-negative integer k such that

v, =

Tk—1 = Py-2, rl;=Pm

Si—1 =Qn-2, S =0,

Since
0,=B,0, 14+0,-2=0,-1+0,->
we have
v = Qé:Z = Qn'_Q?u—l = 1_“;.

From (5.2) it follows that
PH+T:!PH'1 _ Pn+llQn—2
0+ T0u-1 Q@+ 0n-2

and from this, using the first and second equality of Corollary (1.10) and the
fact that B, = 1 we arrive at

L+, T,+T,=0
or, equivalently,

—T,

., = 5 1 .
4T, T

(54) DerNITION. The transformation &: 4— 4 is defined by:
T(x,y), T(x, ¢S,
T(x,y), T(x,))eS.

Since & is an induced transformation, we have at once, see [Pet], Sections 2.3
and 24:

(5.5) THEOREM. With the above definition and notations we have:

?(x,y)=={

(4, B, u,, &) forms an ergodic system.
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Here % is the collection of Borel subsets of A and u , is the probability measure on
(4, #) with density

' 1 1
u(Mlog2 (14+TVy*
(5.6) Remark. Since the entropy h(T) of the regular continued fraction
operator T equals

1'!2

6log?2’

see e.g. [Bil], [N], we easily obtain the entropy k(%) for each S-expansion by
applying the formula of Abramov, see [Ab], [Pet], p. 257.
We have

T 1 @
u(4)  1—pu(S) 6log2’

Note that the entropy is maximal for maximal singularization areas.

h(#) =

In view of Theorem (5.3) it is natural to consider the following definition.
(5.7 DeriNiTION. The map M: 4—R? is defined by

_f@w, (T, P)ed®,
M(T, V):= {(_n(1+T),l—V), (T, V)ed~.

We define the space Qg by Q5:= M (4). Hence Qg consists of 4* = Q

\(SuTS) and of the image of 4~ = T S under the above defined map M. -

Writing (¢, v):= M (T, V), the image of A~ lies in the second quadrant of the
(t, v)-plane, see Figure 2. Notice that M is an injection.

1

b Ts

ke ]

MTs

S
Fig. 2

(5.8) DerFmniTiON. The operator t: Qg5— £ is defined by
tt,0):=MF M '(t,v), (tv)el.
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Let ay+¢, [/ a,+...+¢, [/ a,+... be the S-expansion of the irrational num-
ber x and let t,, v, be as in Remark (1.14), resp. (5.1). Then it follows from
Theorem (5.3) that we have
T(tys U) = (bk+15 Vkr1), k=0,
A simple calculation shows that the determinant of the Jacobian J of M|, _
equals
J=1/14T)>>0.
Putting
1 1
ci= —
1—p(S) log2

we have for (T, V)ed~™

Ut S TP 4TV 1 Y
a+1veE - ‘a+rrve = Ut ) \i/IT3v

c 1 c 1 c
T+ T T-1+VE T (iR (+w)P
From this, Theorem (5.5) and the definition of M and 7 it is now obvious that
we have:

(5.9) THuEOREM. Let Qg be the set defined as above, & the collection of its Borel
subsets. Denote by ¢ the probability measure on (Qg, B) with density function
1 1 1
1—pu(S)log2 (1 +tv)*

Then (Qg, #, o, t) forms an ergodic system.

(5.10) Remark. Due to the way in which it is constructed it follows that
(2, B, o, 7) is the two-dimensional ergodic system underlying the correspond-
ing S-expansion. We moreover have

2

1 14
h(z) = T4 6log2’
(5.11) THEOREM. Let the map f: Q3—Ru{c0} be defined by

fit,0):=t" =1, (t,0), (t,0)e0,

where 1, is the first coordinate function of . Let B: [0, 1)>Nu{co} be the
Junction defined in (3.1). We then have:
B(1), when sgn(t) =1, T, v)¢S,
B(t)+1, when sgn(t) =1, T(t, v)eS,
B(—t/(1+t))+1, when sgn(t)= —1, TM™1(t, v))¢S,
B(—t/(1+1))+2, when sgn(t)= —1, T(M~!(t, v))eS.

® feo=
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@) (0=t =1t v), (sgn@®o+f(t,0)7"), (t,v)eQs
A consequence of this is:

(5.12) CoRroLLARY. (i) f(t, v)eN, (t, v)eQs, t # 0.
(“) A+ =f(tk" Ulr.): k 2 09 where UO: UO) = (x"_al)! 0]

(5.13) Proof of (5.11). We distinguish four cases, of which two will be proved
here. The other two are proved in an analogous way.
(I) Let (t,v)ed* and T(t, v)eS. Then

FM ', v) =T, v)

(! 1 _( L. .5 1 )
N (?"B“)’B(z)w)_ =B 1+1/(B(0)+v)

_ (t—=1+tB(t) B()+v )EA_
"\ 1—tB(t) 'B(t)+1+v ’

Therefore
t—1+tB(t)
) T, B+
(¢, UJ=M(9’(M L, ”)))= t—1+tB(t) B(t)+1+v
“1-tB(t)

1—t(B()+1) 1 i1 1
= ( . (BO+ l)+v) = (: (B@)+1), u+(B(z)+1))'

Thus we see that
1 1
t(t,v) = (H —f(t,v), m)

where we have in this case

f(t,v)=B({t)+1eNs,u{wo}.

(IT) Let (t, vye M (4" ) and T(M~*(t, v)) ¢ S. Then ¢ (t) = — 1 and we have:

tt,)=MTM '(t,)=TM '(t,v) = T(-;Trt, l—v)

1 B ——t) 1 )
“\Fyi+y T\U+t) 1o+ B(—t/(1+1)

- (_Tl_(B(]—J::)J“ I)’ vsgn (t)+(B(1—z/(l +1)+ 1))
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|
i)y ],

- ( vsgn (0 +/ (¢, v)

where by definition we have in this case

1
t

f(t,v)= B(]—_.;%)-FIEN;zU{(D}. u

6. Nakada’s x-expansions viewed as S-expansions. In this section we will see
that the so-called a-expansions, introduced and studied by Hitoshi Nakad:s in
1981, are examples of S-expansions. Once we have established this we can
apply the general results of the previous sections on S-expansions. In this way
we will obtain Nakada’s results in a very simple way.

For sake of convenience we put here and in the rest of the paper:
Q:=1[0,1], Q:= Q2

Let o be a real number satisfying g < a < 1. (We remind the reader that
g is the smaller of the two golden numbers, g:= (1/2) (\/3—1).) Put

(6.1) S,:=[a, 17x [0, 1].

It is easily checked that §, is a singularization area: Obviously it is
p-continuous, it is contained in [1/2, 1]1x [0, 1] and S,n TS, = @ since, as is
easily verified,

TS, =[0,(1-a)/alx[1/2,1],

and
(6.2) (1—a)/a < a.
A simple calculation shows that
log (1 +a)
S)=1-——2=
1(S,) log2

thus for the values of « we consider here, the singularization area S, is never
maximal. Instead of S -expansions we will simply speak of a-expansions.
Next we observe that

MT(S,) = [a—1, 0] x [0, 1/2].
Finally, if we denote
(6.3) Q,:= (2\S, 0 T 5))u(MT S\({0} x [0, 1/2]))

and if we denote by f, the ffrom (5.11) in this special case, we see that f;: Q, —» N
is such that

7 —falt, v)efa—1,a), tela—1,a)\{0}.

Since there exists only one positive integer n such that
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t™Y—=nela—1, «)

we find that f (¢, v) is independent of v, in fact f (¢, v) = [|t~*|+ 1 —a]. Hence,
t—|t™|—f, (¢, v) is the operator from [N]. We denote it here by T,. Thus for
the above values of « we now have found Nakada’s main result:

(6.4) THeoreM (Nakada, 1981). Let g <o < 1. Put
Q. :=[a—1,0)x[0, 1/2]JU[0, (1 —a)/e] x [0, l/2)u((1—-a:)/o:, a)x [0, 17.

Denote by @ the collection of Borel subsets of Q, and define u, as the probability
measure on (Q,, #) with density

1 1
log (1+a) (1 +tv)*

Finally, define the rﬁap T: Q,—Q, by

1 ;
sS“(‘)'H[It“|+1—r:=])’ ¢, vel,.

Then (2,, ®, u, T) forms an ergodic system.

T.(t, v):= (II_II—[II"'HI—O!],

For a picture of S, and Q,, see Figure 3 (x = 3/4)

112

-1 0 (t~eellae 2 « 1

Fig. 3

Due to (5.6) we moreover have
(6.5) CoroLLARY (Nakada, 1981). Let g < o < 1 and let (2, ®B, u,, T,) be as in
(6.4). Then h(T), the entropy of T, equals n?/(6log(l+a)) ([N], p. 417,

Theorem 3).
By projection on the first axis, we at once have from Theorem (6.4):
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(6.6) CoroLLARY (Nakada, 1981). Let g < @ < 1 and put Q,:= [a—1, a). Define
U, as the probability measure on (Q,, %) with density (log (1+a))~* h, (1), where

b () = {1/(t+2), tela—1, (1—-a)fa],
T Me+1),  te((—a)a, a).

Then (2, B, u,, T) forms an ergodic system.
See also [N], Corollary 1, p. 412.

We conclude this part of Section 6 with some results on these x-expansions
which are not to be found in Nakada’s paper.

Clearly the vertex (o, 1) of S, determines the value of the Legendre
constant L, As min («¢/(1+a), 1/2) = a/(1 +a) we have the next theorem.

(6.7) THEOREM. Let g < a < 1 and let x be an irrational number and P/Q € Q,
ged(P,Q) =1, @ > 0, such that

0(x, P/Q) < af(o+1).

Then P/Q is a convergent of the a-expansion of x. The constant af(e+1) is best
possible.

For a picture of L, see Figure 5.

It is again easily checked that T~ S,n([1/2, 1] %[0, 1) =[1/2, 1/(1 +a)]
x [0, 1]. Since for our values of « we have (1 —a)/a < 1/(1 +«) we find that the
set B, or shortly B,, from Definition (4.9) equals (1/(1+a), @) x [0, 1].

Now

log(2+a)

pa(Brx) = 2—l0g(l +a)’
thus we find

(6.8) THEOREM. Let g <a <1 and let x be an irrational. number, with
a-expansion ay+e, [ a;+...+¢, [ a,+... Then for almost all x we have

N log (2+a)
lim-#{;j<ma,=1}=2——"2""—",
M,n#{’ PR Higy ) log (1 +a)
The case o = 1 gives the classical result.
. ’ log(2+a)
(6.9) Remark. Note that on the interval [g, 1] the function & 2 — ————
log(1+a)

increases monotonically from 0 to 2—log 3/log 2 = 0.4150..., the last number
being the classical result for the number of partial quotients equal to 1 in the
regular continued fraction. For a = 0.76292... we have just lost half of the
original 1’s.
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From Corollary (4.16) it follows that for each a-expansion with ae(g, 1]
we have

X 4
lim% Y e, =3 log for almost all x.
=1

& sl log(14a)

If we take in (6.1) a parameter o with o < g, then (6.2) is no longer true.
For 1/2 € x <€ g, we define the set S, by

(6.10) S,:= [2, g) x [0, g)u[g, (1 —e)/a] x [0, glu((1 —a)/e, 11 [0, 1].
Then
6.11) TS, =0, Ra—1)[1—a)x[1/2, 1Ju[Re—1)[(1—a), g]

x [g, 1Tu(g, (1 —a)/a] x (g, 1].

Hence S,nT S, = {(g, )}, so we may consider S, as a singularization area, see
also Remark (4.6) (ii).
Now we find
log G

K5 = l_log2

hence the S, from (6.10), where 1/2 < a < g, is always maximal.
Notice that

MTS, =[a—1,9—1)x[0, 1—g)ulg—1, (1 —2a)/a]
x [0, 1 —g]u((1 —2a)/a, 0] x [0, 1/2].

Define €, as in (6.3) and denote by f, the f from (5.11). Analogously to the case
g <o <1 we find that f, (¢, v) is independent of v and that in fact we have

L) =0 +1—a], (¢, v)eM,,t#0.
Thus we have found
(6.12) TueoreM (Nakada, 1981). Let 1/2 < a < g. Put
Q,:=[a—1,g-1)x[0, 1—g)ulg—1, (1-2e)/a] x [0,1—g] U((1 —2)/:, 0)
x [0, 1/2]U[0, (2a— 1)/(1 — )] x [0, 1/2)U((20:— 1)/(1 —a), @) x [0, g).

Define u, as the probability measure on (2, %) with density

11

log G(1+tw)*

Furthermore, define the map T,: Q,— Q, as in (6.4). Then (Q,, 8, u,, T,) forms an
ergodic system.

For a picture of S, and Q_, see Figure 4 (x = 0.55).
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We have, due to (5.6):

(6.13) CoroLLARY (Nakada, 1981). Let 1/2 < a < g and let (2,, #, u,, T,) be
as in (6.12). Then h(T), the entropy-of T, equals n%/(6log G).

Again by projection on the first axis, we have from Theorem (6.12):
(6.14) CoroLLARY (Nakada, 1981). Let 1/2 < a < g and put Q,:= [a—1, ).
Define p, as the probability measure on (Q,, &) with density (log G)™* h, (1),

where
1 . { 1-2a
t+G+1’ N e e

h, (1) = < ] t.s(‘l——_—?"li 2“_1)

p-

t+2 @ 1—a )

1 - 200—1 i
 t+G’ 1—a’ )
Then (2,, B, u,, T, forms an ergodic system.

See also [N], Corollary 1, p. 412.

(6.15) Remark. If we take @ = 1/2 we obtain the one-dimensional ergodic
system of the nearest integer continued fraction, a result obtained independent-
ly by G. J. Rieger and A. M. Rockett, see [R1] and [Roc]. Taking & = g we
obtain the one-dimensional ergodic system of Hurwitz' singular continued
fraction.

From Figure 4 it is obvious that the vertices («, g) and ((1—a)/x, 1)
determine the value of the Legendre constant L,. A short calculation yields

(6.16) THEOREM. Let 1/2< o< g and let x be an irrational number and
P/QeQ, ged(P, Q)= 1, Q@ > 0 such that
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0(x, P/Q) < L,
where
L, = min {o/(1 +ag), 1 —a}.

Then P/Q is a convergent of the a-expansion of x. The constant L, is best
possible.

For a picture of L, see Figure 5.

b

Y —

0 112 a*
a2 “5-g
u:—‘;g—g—
Fig. 5

Notice that for 1/2 < « < g we have
T([1/2, ®)x [0, g)) < S,.

From this and (6.10) it at once follows that B, = &, which confirms Theorem
(@.11).

We conclude this section by giving the analogue of Vahlen’s Theorem (3.7)
for a-expansions. For the nearest integer continued fraction and Hurwitz’
singular continued fraction the analogue of Vahlen’s Theorem (3.7) was
independently given by Kurosu and Sendov, see [Kur], [Sen]. For these
continued fraction expansions we have, for all irrational numbers x and all
positive integers n,

min (6,, 6,+,) < 2¢° = 0.4721...,

where the constant 2g° is best possible.
One might ask whether there are o’s for which still smaller values can be

obtained. Note that one can never find a value smaller than 1 /ﬁ = 0.447...,
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due to a theorem of Hurwitz. In [J2] it was shown that the point (6,, 6,+,)
always lies in the interior of the triangle with vertices (0, 0), (1, 0) and (0, 1). In
[Kr1] the Kurosu-Sendov result was proved by giving the area in which
the point (6, 0,+,) always lies. The method described in [Kr1] can easily be
adapted for S-expansions. As an example we will sketch here the case of the
a-expansions.

(6.17) Some notations. Let xe[a—1, 2)\Q, where 1/2 <« < 1 and put

T;.n = T:I (X). Eym+1 = SN {T::.n}a Ila.n <= Qu.r— 1/Q¢,m nz= 03

where (P ,/Qsn)n> -1 is the sequence of a-convergents of x.

Writing 6,,, instead of 0 (x, P,,/Q,,) we have, due to Lemma (1.24) and
Remark (1.25),

B _ Ean+1 Tl.n

=l n>0,
~=irn,v, "0

Van

P, = PR .. . B = 1.
-t =TT, v "ol

This leads in a natural way to the introduction of the function F: Q,— R?, see
also [J2] and [Krl], p. 183:

. v It .
F(,v):= (1_'_w, ——1+w) =:(&,n), tw#E -1

Put

I,:=F(@Q),

where ©, is defined as in (6.3), 1/2 < « < 1. Then for all xe R\Q and n >0 we
have

(6.18) F(Toms Vap) = (Oan-1 Oan)€ Ly
Let

ry:=FMJ); [Ig7:=F(M;)
where

M :={t,v)eM;t>0}; M;:={t v)eM,;t<0}.

For a picture of I} see Figure 6 (@ = 0.55) and Figure 8 (« = 0.7), and for
a picture of I'; see Figure 7 (x = 0.55) and Figure 9 (x = 0.7).

3 — Acta Arithmetica LVILI



34 C. Kraaikamp
4 n
p=la-1%¢+1-a

L p=G44-62
e

pli2aNialEs 2a-Na

(2ee-Nf1-c (2a-Nak

q=hi-2

0 T2 9 ¢ 0 P T
Fig 7. Iy (I2<a<g

12| "2

1-ehiee
11+l 211-all+a))

T 0 ‘ 2 G

Fig. 8. T1lg<a<1)
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From Figures 6-9 it at once follows that

(6.19) THEOREM. For all irrational numbers x and all positive integers n we have
On<cl@ and min(Op,-y, 0.0 < V()
where the functions ¢, V: [1/2, 11— R? are defined by:

l—a
¢ () := max (Gl+gu

max( g ,4a—2),
1+ag

zl—a o
e G e §

The constants c(a) and V(x) are best possible.

,a), 12<a<1,
and

12<a<y,

Vie):=
g<a<l.
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For a picture of c(x) and V(a), see Figure 10 resp. Figure 11.

L

0 1z g : * ]

Fig. 10 Fig. 11

(6.20) Remarks. (i) Taking « = 1 in Theorem (6.19) we again have Vahlen’s
Theorem (3.7), taking o = 1/2 or « = g we again have the Kurosu-Sendov
analogue of Vahlen’s theorem for the nearest integer continued fraction resp.
Hurwitz’ singular continued fraction.

(i) A simple calculation yields, see also [BJW], p. 292:

min ¢ (o) = ¢ (&) = &,
with
a0 = 3(=2—/5+V6/5+15) = 0.5473...

Moreover, we have

=39+ /10-11
minV(a)=V( Iks/ 10 lg)=0.4434...,

44°

a constant slightly larger than lf\/g, with

. 1-3g+./10-11g —06121...<g

0yt yye

7. Two other examples. In this final section we will briefly describe two
other examples of S-expansions: the classical diagonal continued fraction of
Minkowski and Wieb Bosma's optimal continued fraction. The singularization
areas of both expansions will be given here, and some conclusions will be
drawn from this,
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(7.1) MINKOWSKI'S DIAGONAL EXPANSION. Let x be a real number such that
x¢ Z and 2 x ¢ Z. Consider the sequence o of all irreducible fractions P/Q, with
Q > 0, satisfying

P

X ——

0

ordered in such a way that the denominators form an increasing sequence.

It can be shown, see [Per], §45, [Min], that there exists a unique
semi-regular continued fraction expansion of x such that ¢ is the sequence of
convergents of this expansion. This unique expansion is Minkowski’s diagonal
expansion.

From Legendre’s Theorem (3.5) we see that we take precisely those regular
convergents for which @, < 1/2. Using the first formula from (1.24) it now at
once follows that Minkowski’s diagonal expansion is an S-expansion, with
singularization area

Soce = {(T, V)e@; TN +TV) > 172},

11
207

see Figure 12.
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Due to Vahlen’s Theorem (3.7) the diagonal expansion picks at least one
out of any two consecutive regular convergents of x. Since

1
1 (Spcr) = l—m,
see [BJW], p. 286, we have
lim ic-ﬁ-?- =2log2 =1.3862..., for almost all x,
N—=+w

with k: N— N defined as in Section 4.
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For more details and results, see [Kr2].

(7.2) BOSMA’S OPTIMAL CONTINUED FRACTION EXPANSION. In 1895, F. Klein [K]
gave a geometrical interpretation of the regular continued fraction algorithm.
In [Bos], §4, Wieb Bosma shows how a similar interpretation can be given for
Nakada’s a-expansions. Inspired by this Bosma developed a new continued
fraction algorithm which yields a semi-regular continued fraction expansion,
previously found in a different way by C. O. Selenius [Sel].

Since this continued fraction has »various« optimal properties, the name
optimal continued fraction was chosen for it. We mention two of these
properties:

(i) the optimal continued fraction is fastest; the growth rate of the
denominators of the optimal convergents is maximal.

(ii) min (8,, 6,11 < 1/3/5.

In [BK1] it is shown that the optimal continued fraction is in fact an
S-expansion, its singularization area being

Sock ={(T, V)€ V< T and V< 2T-1)[1-T)},

see Figure 13.
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Notice that Spcr is contained in Socr, hence the sequence of optimal
convergents of an irrational number x forms a subsequence of the sequence of
diagonal convergents ¢ of x. Simple calculations yield furthermore that the
analogue of the Legendre value Ls . equals 1/\/5, and that Socp is maximal,
which is a probabilistic interpretation of (i). Notice that Bs_ ., the set defined in
Section 4, is empty. Hence each optimal partial quotient is greater than 1.

For more details, results and proofs, see [Bos], [BK1], [BK2].

(7.3) Remark. Both in case of the diagonal continued fraction and the
optimal continued fraction we have, see Figures 12 and 13, that the underlying

two-dimensional ergodic system has curved boundaries. Related with this we
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have that in both cases the function f from Theorem (5.11) depends on ¢ and v,
and not only on ¢, as in the case of Nakada’s a-expansions, Due to this a one-
dimensional ergodic system cannot be given.

[Ab]
[Ad]
[Bar]

[Bil]
[Bor]

[Bos]
[BIW]

[BK1]

[BK2]
[BP]

[CFS]
(D]

[H]

m
0]

B2]

[JK]
[X]
[Krl]
[Kr2]
[KN]
[Kur]

[Leg]

References

L. M. Abramov, Entropy of induced automorphisms, Dokl. Akad. Nauk SSSR 128
(1959), 647-650.

William W. Adams, On a relationship between the convergents of the nearest integer and
regular continued fractions, Math. Comp. 33 (1979), 1321-1331.

Dominique Barbolosi, Fractions Continues 4 Quotients Partiels Impairs, Thése,
Université de Provence, 1988.

P. Billingsley, Ergodic Theory and Information, John Wiley and Sons, 1965.

E. Borel, Contribution d I'analyse arithmétique du continu, J, Math. Pures Appl. (5)
9 (1903), 329-375.

Wieb Bosma, Optimal continued fractions, Indag. Math. 50 (1988), 353-379,
W.Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation
by continued fractions, ibid. 45 (1983), 281-299.

Wieb Bosma and Cor Kraaikamp, Metrical theory for optimal continued fractions, ).
Number Theory 34 (1990), 251-270.

—, — Optimal approximation by continued fractions, J. Austral. Math. Soc., to appear.
N. G. de Bruijn and K. A. Post, 4 remark on uniformly distributed sequences and
Riemann integrability, Indag. Math. 30 (1968), 149-150.

I. P.Cornfeld,S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, 1981.
W. Doeblin, Remarques sur la théorie métrique des fractions continues, Comp. Math,
T (1940), 353-371.

A. Hurwitz, Uber eine besondere Art der Kettenbruchentwicklung reeller Grissen, Acta
Math. 12 (1889), 367-405.

Sh. 1to, Preprint, Tsuda College.

H. Jager, On the speed of convergence of the nearest integer continued fractions, Math.,
Comp. 39 (1982), 555-558.

— The distribution of certain sequences connected with the continued fraction, Indag.
Math. 48 (1986), 61-69;

— Continued fractions and ergodic theory, in Transcendental Numbers and Related Topics,
RIMS Kokyuroku 599, Kyoto University, Kyoto, Japan, 1986, 55-59.
H.Jagerand C. Kraaikamp, On the approximation by continued fraction, Indag. Math.
51 (1989), 289-307.

F. Klein, Uber eine geometrische Auffassung der gewdhnlichen Kettenbruchentwickiung,
Nachr. Gottingen 1895, 357-359.

Cor Kraaikamp, The distribution of some sequences connected with the nearest integer
continued fraction, Indag. Math. 49 (1987), 177-191.

— Statistic and ergodic properties of Minkowski's diagonal continued fraction, Theoret.
Comput. Sci. 65 (1989), 197-212.

L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley and
Sons, 1974.

K. Kurosu, Notes on some points in the theory of continued fractions, Japan J. Math.
1 (1924), 17-21.

A. M. Legendre, Essai sur la théorie des nombres, Paris 1798.

[Lew]
[Min]

[Minn]
[N}
[NIT]

[Per]

[Pet]
[R1]

[R2]

[Roc]
[R-N]
[Sch]

[Set]

[Sen]

[T
vl

A new class of continued fraction expansions 39

L. Lewin, Polylogarithms and Associated Functions, North-Holland, 1981.

H. Minkowski, Uber die Anndherung an eine reelle Grésse durch rationale Zahlen,
Math. Ann. 54 (1901), 91-124.

B. Minnigerode, Uber eine neue Methode, die Pellsche Gleichung aufzulézen, Nachr.
Gottingen 1873,

Hitoshi Nakada, Metrical theory for a class of continued fraction transformations and
their natural extensions, Tokyo J. Math. 4 (1981), 399-426.

Hitoshi Nakada, Shunji Ito and Shigeru Tanaka, On the invariant measure for the
transformations associated with some real continued fractions, Keio Engrg. Rep: 30 (1977),
159-175.

O. Perren, Die Lehre von den Kettenbriichen, Band 1, 3. verb. u. etw. Aufl, B. G.
Teubner, Stuttgart.

Karl Peterson, Ergodic Theory, Cambridge University Press, 1983.

G. 1. Rieger, Mischung und Ergodizitit bei Kettenbriichen nach néchsten Ganzen, J.
Reine Angew. Math. 310 (1979), 171-181.

— Uber die Linge von Kettenbriichen mit ungeraden Teilnennern, Abh. Braunschweig
Wiss. Ges. 32 (1981), 61-69;

— On the metrical theory of the continued fractions with odd partial quotients, in Topics in
Classical Number Theory, vol. 1, Budapest 1981, 1371-1481. (Colloq. Math. Soc. Janos
Bolyai, 34, North-Holland 1984.)

A. M. Rockett, The metrical theory of continued fractions to the nearer integer, Acta
Arith. 38 (1980), 97-103.

C. Ryll-Nardzewski, On the ergodic theorems (II) {Ergodic theory of continued
fractions), Studia Math. 12 (1951), 74-79.

F. Schweiger, Continued fractions with odd and even partial quotients, Arbeitsbericht
Math. Instit. Univ. Salzburg 4 (1982), 59-70;

— On the approximation by continued fractions with odd and even partial quotients,
Arbeitsbericht Math. Institut Univ. Salzburg 1-2 (1984), 105-114.

C. O. Selenius, Konstruktion und Theorie halbregelmdssiger Kettenbriiche mit idealer
relativer Approximation, Acta Acad. Abo, ser. B, XXII. 2 (1960), 1-75.

B. Sendov, Der Vahlensche Satz iiber die singuldren Kettenbriiche und die Kettenbriiche
nach néchsten Ganzen, Ann. Univ. Sofia, Fac. Sci. Math. Livre 1 Math. 54 (1955/1960),
251-258.

H. Tietze, Uber die raschesten Kettenbruchentwicklungen reeller Zahlen, Monatsh.
Math. Phys. 24 (1913), 209-241.

K. Th. Vahlen, Uber Ndherungswerte und Kettenbriiche, J. Reine Angew. Math. 115
(1895), 221-233.

FACULTEIT WISKUNDE EN INFORMATICA
UNIVERSITEIT VAN AMSTERDAM

Plantage Muidergracht 15

1018 TV Amsterdam

The Netherlands

Received on 15.2.1989 (1905)



	s004.tif
	s005.tif
	s006.tif
	s007.tif
	s008.tif
	s009.tif
	s010.tif
	s011.tif
	s012.tif
	s013.tif
	s014.tif
	s015.tif
	s016.tif
	s017.tif
	s018.tif
	s019.tif
	s020.tif
	s021.tif
	s022.tif
	s023.tif

