ACTA ARITHMETICA
LVII (1991)

Additive functions monotonic
on the set of primes

by

J. M. DE KoNINCK* (Québec), I. KATAI** (Budapest)
and A. MERCIER*** (Chicoutimi)

1. Introduction. Let L: [1, )—[1, o) be a monotonically increasing
function such that lim,., L(x) = +c. Let f=f, be a strongly additive
function determined by f(p) = L(p) on the set of primes. For an integer-n > 1,
let p(n) and P(n) denote the smallest and the largest prime factor of n,
respectively.

De Koninck and Mercier [3] proved that if L is a slowly oscillating
function which increases “fast enough” and f = f, is as above, then, as x — c0,

2 S(Pm)~ ¥ fo.

2=n=x 2=n€x

In [2], we proved that, for a large class of strongly additive functions f;,
Y 2<n<x fu(M/L(P(n)) ~ x as x— 0.

Our purpose in this paper is to find necessary and sufficient conditions
which L must satisfy in order that the functions

Jr(n) - Jo(n)
L(P (n)) L(n)

have mean values or limit distributions.

In what follows, p, p,, p,, ..., 4, 4,, 45, ... stand for prime numbers. The
letters ¢, ¢y, c,,... denote suitable positive constants (not necessarily the
same at every occurrence) which may depend only on L. As usual, 7 (x) denotes
the number of primes up to x while 7z (x, &, I) stands for the number of primes
P < x, p=1(modk). Finally ¢(n) denotes the Euler totient function, @, (n)
denotes the tth iterative function, @, (1) = n, @, (n) = ¢ (n), ¢,(n) = ¢ (@- 1 (n)).
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2. Lemmata on primes and on additive functions.

2.1. Let ¥ (x, y) be the number of integers n up to x for which P(n) < y. It
is known (see de Bruijn [1]) that

log x
g —_
(2.1) ¥(x, y) xexp( clogy)
is valid uniformly in x, y 2 2, and furthermore that
(2.2) ¥(x,x) =x(1+o.(1))e(l/e) (x—0)

uniformly in every interval a€[d, 1], 6 > 0, where g is a continuous function.

2.2. By using elementary estimations on 7 (x), one can obtain immediately
that, if s 2 1,

(logp)~* 1
2.3 < s
@3) L S Shoghy
1 log H
2.4) ¥ ('t)gqr)’s c(og )*
g<H q s
uniformly in H > 2.
23. Let ¢ > 0. Then for 0 <6 < 1,
exp(—cizg x)
@.5) Y EP/ < e(d)+0,(1)
p=x®

where e(6)—0 as 6—0.

Inequality (2.5) is an immediate consequence of the elementary estimate
n(x) < cyx/log x.

24. If 1 < k< x and (k, ) = 1, we have

3x
¢ (k) log (x/k)
For a proof of this result, see [5], Theorem 3.8.

2.5 (Theorem 2.3 in [5]). Let g be a natural number, a;, b; (i=1, ..., g) be
pairs of integers satisfying (a;, b) =1 (i=1,...,g), and let

(2.6) n(x, k) <

Ed‘i'ril![ a; |1

=1 1Sr<ssg

(a,b,—a.b,) # 0.

Let y and x be real numbers such that 1 < y < x. Further, let 8 be a set of
primes for which there exist constants 6 and A such that

> (1/p) = dloglog y—A.
p<yipe®
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Then
#{n: ne[x—y, x1, (@an+b;, B)=1,Vi=1,..,, g}

n (1 l)wtpl -4 y
« _— —_—,
plE;pe® 14 (IOg y].!g

where w(p) denotes the number of solutions of
g
[ (@;n+b;) = 0 (mod p),
i=1

and where the constant implied by the <« notation depends only on g and A.
This theorem contains as a special case the following:

COROLLARY. The number of solutions of the equation p—1 = aq in prime
variables p, q, where p runs in the range 1 <p < x, is

X
K ———5——
¢ (a) log? (x/a)
and the constant implied by the <« symbol is absolute.

2.6. Let 0 < o < 1/4, U (x, 6) be the number of those integers n up to x, the
second largest prime factor q of which is larger than P (n)' ~°. Then for each fixed
¢e(0, 1/4),

@7 U(x, 0) < ¥ (x, x¥)+x (log li—a) (mg1

C) +o0(x).

This can be proven as follows. We separate the set of integers n < x in two
sets: those for which P (n) < x* and those for which P (n) > x¢. The first set has
no more than ¥ (x, x*) elements. To estimate the second one, we first fix p, then
the second largest prime factor ¢ of n is varying in p' ™% < q < p. The size of
this second set is therefore not larger than

1 1 1 1
x - -=x(log=]{lo —)+ox.
xﬁézp<xppl‘§q<pq ( gf)( gl“’a ( )

2.7. Let g(n) be an arbitrary strongly additive function. Then
2 2
(2.8) ¥ (g (m-Y QT[P)) Siex ) g p(p}'

n€x pEx pEx

This is the so-called Turan-Kubilius inequality.
2.8. Uniformly in y 2 2, 0 < e <1, we have
#{p<y: P(p—1) <y} <cl(e)yflogy,

where A (¢) is a function tending to zero as e— 0. (This inequality follows easily
from Theorem 2.3 of [5] cited in 2.5.) Consequently, if 0 < n, <n,, then
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lim inf Y (1/g) <

x*w xM<g<x;Plg—1)<x";

d(nys 12),

where lim,,.od(n,, n;) = 0 for every choice of n, > 0.

3. Lemmata on functions L.

3.1. Lemma 1. Let L: [2, co)— R* be monotonic, continuous and satisfying
lim, ., L(x) = +c0. Suppose that there exists a constant ¢ > 0 such that

1 % L(u

3.1 _— du— ;

(3.1) L) wioga u—c as x—oo

Then

(3.2) L(x) = (log x)'* H (x),

where H (x) is a very slowly oscillating function, i.e. a function such that
. H (x;)

3.3) Jim  max Z_1=0.

( Xy—ao .tl\.r;%xl H(xl)

Reciprocally, if L satisfies (3.2) and (3.3), then (3.1) holds also.

Remark 1. The notion of very slowly oscillating function was introduced
by De Koninck and Mercier [3]. They defined such a function H: [A4, + o)
—=R*, A >0, as one which satisfies

. H(x)
g T

=1, for every fixed a > 0.

This is clearly equivalent to our definition.
Proof of Lemma 1. Define

_ 1 L
(34 Fix) = £ ulogu
Clearly
oy _ LX)
(3.5) F'(x) = x__log <
By hypothesis, we have
(3.6) L(x) ~ % F (x).

So, using (3.5) and (3.6), it follows that

F'(x) ]
F (x) ex log x’
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Therefore

*F 13 dt

= E£(1+o(l))”

log F (x)—log F(2)

1
= +:(l)log log x,

whence we obtain
F (x) = (log x)* (log x)°>*,
Thus, by (3.6),
L(x) = (log x)'"* (log x)** = (log x)'/* H (x),

where 6(x)—=0 as x— oo.
Now we estimate log (H (x,)/H (x,)) in the range x, < x, <
observe that by (3.2) we have

H (x;) L(x;) 1 log x,
1 =1 - ——1 4
BHE) T FLk,) ¢ Flogx,

x?. First we

Using (3.6), we then obtain

L(x,) F(x,;)
T~ " )

On the other hand, we have

log

+o0,, (1)

F(x) _ ? 1+o,(1) . _ 11 log x, xf o,(1)
F(x,) ctlogt ¢ logx, ; ctlogt

xi

log

Combining these last two estimates, we conclude that

H(xy) _°0 o(1)

Ay~

log
5 Ctlogt

3

which implies (3.3).
We now prove the second assertion. For this we assume that (3.2) and (3.3)
are satisfied. So we have, for every fixed & > 0,

t L 1 logu\'"* du
B3 ,;‘;L(x)ulog u—(1+ "(l))j(logx) ulogu

= (140, (1)c(1-0").
This implies that, uniformly in x,

x*  L(u)
anulogu

du < ¢ L(x).

Consequently
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T L

{

culogu

du < ¢, (L(x)+L(x"?)+L(x"*")+...)

=0 L(x) (1 + L(x”2) L(x”z ) L(xUZ) )

L(x) L(x"* L)

But from (3.2) it is clear that, uniformly in x > ¢,, there exists 0 < 0 < | such
that

L(x**)/L(x) < 0.
Thus we have

% L(u)
(3.8) L‘ g du < ¢, L(x).

Then the conclusion follows easily from (3.7) and (3.8).

Remark 2. Assume that the conditions of Lemma 1 are satisfied with ¢ = 0.
Then

log L(x)
log log x

(3.9) —00 asx—00.

This result can be obtained easily if we observe that (3.1) implies that for
every ¢ > 0 we have L(x'2)/L(x) <& whenever x > X, (g).

Remark 3. Assume that the conditions of Lemma 1 are satisfied with
¢ = o0. Then

log L(x)
log log x

(3.10) - asx—co.

In order to prove this, first let F be as in (3.4). Then L(x) = o, (1) F (x), and
using (3.5) we deduce that

Flu) 1
G.11) Fg = " Wiss G~
This implies that
z du
(3.12) log F (x) = log F(2)+£ o, (l)m = & (x)loglog x,

where 6 (x)—0 as x— o0, But since L(x) < F(x), (3.10) follows from (3.12).

3.2. In this section we assume that L: [2, co)— R™ is a monotonic function
satisfying lim,..,, L(x) = + co. Further, for each 4 €(0, 1), let (#,) denote the
condition:

L(xl -A)

Sz ool T Tl
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Remark 4. A function L which satisfies condition () for some 4€(0, 1)
and which is also a slowly oscillating function (that is, such that
lim, ., L(ax)/L(x) = 1 for each fixed a > 0) must satisfy

L(x)
L(x)

which means essentially that it increases faster than any power of log x.

xlogx—o asx—o0,

LEMMA 2. Assume that condition #,,, holds. Then there exists a monotonic
Jfunction H such that lim,., H(y) = +oo and such that

H(y
oy L0 ()

— whenever 2 < y < x1/16,
L ~ \iogx 4

Proof. First we let

der L@
W= mm Ty

ind define H (y) by

£(y) = 272HO),
Since clearly lim, ., & (y) = 0, we have lim,. , H (y) = + 0. Let y and x be any
pair of real numbers satisfying the condition 2 < y < x'/*%. Further, let k be

the largest integer for which y** < .J; Clearly k = 1. Since ¢ is monotonic, we
can write

LO) _ LO) LO™)
LX)~ LOY) LO™)

< s(_y)" = 2~ ZHD),

further, since

R 1log x 1 4logy
k41 k+1 e —
7 ;2103}?’ Y F S Togx
we have
L) _ (4logy ALY
L(x) ~ \ logx '

Finally, since H(y) = 0 and

41log y\? & log y
logx /] ~logx’

we easily obtain (3.13).
LEMMA 3. Assume that (,) holds for every A in (0, 1). Let C and & be

arbitrary positive numbers. Then there exists a constant x, = x, (C, €) such that



48 J. M. De Koninck, I. Katai and A. Mercier

L@y) _ (logy\° x
3.14 — l=e¢
( ) L6 (x) (logx whenever x, <y < x

Proof. The proof is similar to the one of Lemma 2. If y < x'/16, then
(3.14) is a consequence of (3.13). So let us take y > x'/1® Set ¢ = 1/(1—¢)
and, for each k=1,2,..., define y, = y°*. Further, let T be defined by
Vr<x'TP <y, and let A be a large posmvc number such that

(3.15) et > (1—8)~€ 67¢,
Clearly (3.15) implies that

(log y/logx)€ > e~ 4T if y < x'~
Choose y, large enough so that

L(z)
L) <

max —<e 4
z2yp

Then, if y > y,, we have

Ly) _ L) LG
3.16 <
Bl L) SLO) Lhrey S °

Observing that
' logyr = o"logy,
log yr < (1—¢g)logx,
(1—g)logx < log yr+, < ologyy,
(3.14) follows rapidly.

4. On additive functions satisfying f (n)/f(P (n)) - 1 for almost all n. Assume
that L: [2, o) R" is a monotonic function satisfying lim,_, L(x) = + o0
and that f=f; is a strongly additive function. Let

@.1) ()“i' L .

(‘P (ﬂ)) T L(P (ﬂ)] qln; qz*:f P(n) e

THEOREM 1. Let L, f, u be as above. Assume that u(n)—0 as n— o for

almost all n. Then (#,) holds for every 0 < 4 < 1. On the other hand, if (%)
holds for every 0 < A < 1, then, for every a > 0,

4.2) lim L T (0 _1) = 0

x=ow " nEx

in which case u(n)—0 for almost all n.
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Proof. I. First assume that u (n) — O for almost all n and suppose that (5 3
fails to hold for some 4 € (0, 1), which we can assume to be smaller than 1/2.
We shall show that this leads to a contradiction.

Let 4 be defined by 6 = 34/(1+4). Let 1 < x, <x, <
of real numbers such that

.. be a sequence

LG 285 cl(3*) (r=1.2.::)
for some ¢ > 0. Define Y, = x3~%4. Now let p and g run over the intervals
Mgt x, <pextd
If n<Y, and n is a multiple of pg, then n = mpq, where
<YV/pg <xi7* (<g),
P (n) = p and q is the second largest prime factor of n. With this it is clear that

SL@ L(xv ~24)
Luﬂ 1+A)

We now count the number S of such integers n. Clearly
1 1 1
S=)|=2|=Y(>- —l+o(Y).
2] - %(23) (23) o

1 1-4 1
ZE=1031—24+0"(1) and 21—,=

u(n) =

>cC.

Since

log(1+A]+0‘(1)!
we may conclude that

§ > dY,+o(X)

with d= log ‘log(1+4) > 0.

12A

This contradicts our assumptions. The first assertion is thus proven.
II. Assume now that (3,) holds for every 4e(0, 1). Let

S, u,a)= Y (eMm—1).

2%nsx

We want to show that
4.3) S(x, u, a) = o (x).

Since u(n) < w(n) and

4 — Acta Arithmetica LVILI



50 J. M. De Koninck, I. Katai and A. Mercier
Z elael) . x(log x}ezﬂ-—l’
2=Ensx

a simple application of the Cauchy-Schwarz inequality shows that

2 (@™—1) = o(x),

nes

where 4, is a subset of {neN: n < x} for which
card (£,) = O (x/(log x)**).

Therefore, because of (2.1), we may omit those integers n < x for which
P (n) < exp ((log x)'/2).

Let u, (n), u,(n) be arbitrary positive quantities such that uy (n)+u,(n) .

= u(n): First consider the obvious identity
e — 1 = (™10 — 1) (20— 1) 4 (eM1(n) _ 1) 4 (22 _ 1),
Now since
(e — 1)2 < g2aum 1 (j =1, 2),
we easily obtain, using the Cauchy-Schwarz inequality,
44) S(x,u,a)
' < S(x, uy, a)+8S (x, -uz, a)+(S (x, uy, 2a))"' (S (x, u,, 2a))*2,

We now choose §r!1all positive numbers ¢, # arbitrarily and pick according
to these a large positive C such that the inequality

(4.5) (1—gf 1<y
is satisfied. Let x, be the constant involved in (3.14). We let
def L e
uwmE Y O ) )y ().

gln.g<xq L (P (ﬂ))’

Since we have assumed that P (n) > exp (y/log x), it is clear that, because of
(3.14}, one ha§ #, (n)—0 and hence S(x, u,, a) = 0(x) as x — co. Therefore,
keeping in mind (4.4), in order to obtain (4.3), it is enough to prove that
S(x,u,,2a) =o0(x) as x—00. To do this, we split u, into two parts,
u, = uy+u,, where
uy () L@
gln,xo<g<Pn)t-¢ L(P ("))
We shall show that

= L(g)
‘e {n) glm:P(n)l <<€ g < P(n) L(P {n))

(1/x)S(x, u, da) < & (i =3, 4)

for every § > 0 and every large x, thus establishing the proof of (4.3) and hence
of Theorem 1.
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We first estimate S(x, u;, 4a). Using (4.5) and Lemma 3, we obtain

log x
log P (n)’

log x
uz (n) < W

(1-9'<n

Thus
S upda)< Y (e4en—1) ¥ (x/p, p).

expvlogxSpsx
Using (2.1), we may write

46)  S(x,uy 4a)

<x Y
expVlogxSp<x!/4
The second sum is bounded by 2 (e*®™"—1). To estimate the first sum, we can
separate it into two parts, namely the one for which p < x®*" and the one for
which p > x%". Thus we obtain that the first sum on the right of (4.6) is

« )
expVlogx < p<x8an
The second sum in the above expression is clearly bounded. On the other hand,
one can see, using (2.5), that the first sum above is bounded by a function of
n which tends to 0 as n —0. Hence we have proven that S(x, u,, 4a) < (8/2) x if
n is small enough and x large enough.

We now proceed to estimate S(x, u,, 4a). Let ¢ > 0 be small but fixed. For
each integer n (= exp./log x), we let P (n) = p, and g, ..., g, be all its prime
divisors which belong to the interval [p' ~%, p]. If there are no such primes g,
then u,(n) = 0, and in general, u, (n) < r. Therefore

e ¢ logx l
l(e“mﬁ':’?_ l}e_i:u%_._x z _(elﬁaq_l).
xl/d<p<x p

_ & logx logx _cle=x

e 1 Iogy_
p<xuaplogp

4.7 S(x, uy, 4a) < i (e* —1)T.(x),
r=1

where T(x) stands for the number of those integers n < x such that
P(n) = p > exp./log x and which have exactly r prime divisors in [p' ™%, p].
We will show that there exists an absolute constant ¢, > 0 such that
(4.8) T, (x) < ¢, x(2¢)/r!.

Setting this in (4.7), it will follow that

)
S(X, Uy, 4a) < (. Z 84‘"(28)"/?! & clx{eg_maq_ l)

r=1
Hence, if ¢ is sufficiently small, we will have

S(x, uy, 4a) < c, x4e*¢,
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from which it follows that S (x, u,, 4a) = o(xj. This will end the proof of
Theorem 1 if we can prove (4.8). For this, we first write

T(x) = Z z 1,
expYlogx<p<x P1...grmEXx
where in the inner sum the gs and m satisfy

p'7*<q<..<q,<p, Pm<p'~
Hence we have -

X

4.9) Tx)= ¥ ¥ ¥ (pq D _‘).

expViogr<psx P! T ESQ1<..<gr<p 1004y
We now separate the sum over p into two sums, according as p > x!/8” or
p < x'®". We first consider the one with p > x!/®) In this case, since
pt 9% < x, it follows that p < x!/ and therefore the part of the sum in (4.9)
concerned by those p’s is clearly

) (28)'
-
r H

:Iﬂ&fl-cp(xlhpr 1- ¢¢1(Pq

If p<x'®) then pq,...q, <p'*' < x4 and -
?(P = ,p"')s. X ex
Gy ool P4y...q,

clogx
pl —= — ).
2logp
Summing first on gy, ..., g,, the sum with p < x'®) js bounded by

2e)f 1 1
g —exp(—E ng) « 1.
rl 5p 2logp

This proves (4.8) and finishes the proof of Theorem 1.

Remark 5. Let P, > P, > ... > P, be the largest prime factors of n and
define

1
“t(ﬂ)=m Z L(g).

gln.g <P
By the method used in the proof of Theorem 1, one could prove the following
generalization of Theorem 1:

THEOREM 1'. Assume that condition (o ,) holds for every 0 < A < 1. Then,
Jor every positive integer k and every a > 0,

l ue(n) _ 1) —
3 ”E; (e 1)—0.
5. The behaviour of f(n)/f (P (n)) on subsets of N. In this section we shall

show that the sufficiency of the conditions (in Theorem 1) remains true if we
replace the set of all integers by some subset satisfying certain conditions.
Hence we state:
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THEOREM 2. Let of = {a,, a,, ...} be an infinite sequence of not necessarily
distinct integers such that a, = O (n*), where k is a fixed positive real number.
Assume that

1
(5.1) lim sup — # {n < x: P(a,) < x%} < c(d),
X—+o0
where
(5.2) lim ¢ (6) =
=0

Further, for 0 < & < 6, let S(x, 6, ¢) be the number of those integers n < x for
which there exists a suitable couple of primes q,, q, such that

919210, X’ < g, < gy < g, x*
and set
(5.3) d(e, 8)= lim sup% S(x, 8, ¢).
Assume that
(54) limd(e, ) =0 for every 0 <6 < 1/2

e—~+0

and furthermore that for L the condition (3 ,) is valid for every 0 <4 < 1.
Then u(a)—0 for almost all n.

Proof. First we choose 0 < & < 6 fixed. We then define the set & = 8, ,,
as the set of all integers n < x such that P (a,) > x® and for which there exist no
pairs q,, g, of primes satisfying the conditions

4y, 3, €[X*% P(a)], 4,420a,, 41 <42 < gy X"
Let & be the complementary set, that is,
&=1{1,2,..., [x]}\%.

We shall first prove that u(a,) is small for every ne #. So let a, = P(a,}’ b, d,,
where P (a,)’||a,, b, is composed of the prime power divisors ¢* of a, satisfying
x*? < g < P(a,), and d, of those for which ¢ < x%. Let also

dal’ L def L(q)
"= L(P((q::.)) ] L(P(?a,.))'
It is clear that
u(a,) < o,(n)+0,(n).
Let ne ®. Since g|b, implies that ¢ < P(a,)x™*, by Lemma 3, we have
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. logg \°¢ e\¢
0<% (mre) <(-3) &

qlbn qlbn
Since b, < a, < Cr*, it follows that ) g, 1 < 2k/3, if x is large. Hence we have

(5.5) o, (n) < 275’5(1 —E)c.

Now define

I, it [x¥2***, x"fz"], 7, (n) = m !Z L(g).

hiqldn
Then

o0

(5.6) oc,(m) < Y 1,(n).

h=1

Denote by g,, q,, ..., g all the prime divisors of a, in I,. Since g; > x¥2""",
1

[14; < a, < Cx, it follows that R < 2k-26 :
L(g)/L(P(a,) < 27" if ¢ > x4(C, 1/2), we have

On the other hand, since

h+1

(5.7) (1) < 2k— 2,
Choose C large. It is clear that
1
max —_— L(q))—»[) as x— 0.
n<x; P(a,.):-xd(L(P (“u}) qra..;qu:a{c.uz;

Hence we have

.D=C
_r 16k52 +o,(1)

if C = 3. For each fixed ¢ > 0, let

T;dg% # {n < x: u(a,) > &}.

We shall prove that lim,. .. T, = 0.
Let ¢ be an arbitrary small number. Then it is easy to see that we can pick
& 0 <e& <9, small enough, and C > 0 large enough, so that

2f, ey 62" ¢
3\ k 5 2

Hence we may conclude that u(a,) < & for each ne®, ;,, whenever x is
sufficiently large.
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Finally, we estimate card (#). If n € &, then either P (a,) < x° or there exist
4, q, such that g, g,la,, x¥* < g, < q, < g, x*. So, by our assumptions (5.3)
and (5.4), we have
limsup T, < ¢(6/2)+d (¢, 6/2).
We first let £ tend to 0, and then we let & tend to 0. It follows that
limsup T, = 0. Since this is true for every ¢ > 0, our theorem follows.

Remark 6. One can easily check that the conditions hold for &/ = N.

6. Iterations of the totient function.

THEOREM 3. Let of = {o@,(n): n =1, 2, ...}, where @, (n) is the t-fold iterate
of the Euler totient function. Then the conditions of Theorem 2 are satisfied.
Consequently, if (3 ,) is satisfied for every 0 < 4 < 1, then

u(p,(n)—-0 (n-> o)
for almost all n.

Proof. Let R,(n) =n, R,(n) = @,(n) R,—1(n), 1.e. R, (n) =ne(n)...e,(n).
In order to prove our claim, we only need to prove that the conditions of
Theorem 2 hold for

A ERM:n=1,2,..)

We proceed by induction on t. If t = 0, then &/§ = N, and consequently the
conditions of Theorem 2 hold. Assume now that ¢ > 1. We shall proceed in
three major steps:

1. Let #, = {p,, P, ..., Pr} be an arbitrary set of primes p; < x. Define
B,_y, ..., B, as follows. &,_, is the set of those primes g < x for which there
exists pe %, such that plg—1. If #,_,, ..., #;+ are defined, then &, is the set
of those primes g < x for which there exists pe #;,; such that plg—1.

For an arbitrary subset 2 of primes, let

6.1) A4,:2)E # (n < x: (R,(n), D) > 1).

Here (R, (n), 2) > 1 means that there exists g € 2 for which g|R, (n). Hence if we
let

E,(x12)= #{n < x: (R,(n), 2) > 1 and (R,-; (n), 9) = 1},
it follows that '

(6.2) A,(x12) = ¥ E;(x19).
i=0

Letting
(63) s@)= Y 1p,
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we clearly have
(6.4) E, (x|2) < xs(2),

1‘01: every choige of 2. Furthermore, if 2 = #, and n is counted in E, (x|2), then
n is counted in E,_, (x|®,-,) as well. Indeed, let ¢,_, (n) = rgt-...-rf and
ass:ume Ehat (Ri-1(m), B,) = 1, (R,(n), ) > 1. Since there exists plo,(n) =
[Ti=178" (r,—1), pe ®, and (p, R,_, () = 1, it follows that r,—1 = 0 (mod p)
for some r,e#,_,. So we have

(6.5 E,(x|#) < E,- (X|®,-,).

Now let 6 be a small positive number and assume that all the elements of
2, arelllarger than x°. Then the elements of 2, are larger than x’ for 0 < j < ¢,
as well.

Further, let # be a small positive number that may depend on 8. We shall
choose it later explicitly in such a way that it will allow us to estimate 5(®)
from s(®,.,,). ’

First we observe that

sS@)< Y Y lg= Y (U,(0)+U,0)
pedlj+y g=1(modp) pedly

where in U, (p) we sum over those g for which g < p!**, while in U, (p) we sum
over those g such that ¢ > p'*”.

Let My = p'*", M, =" M,, v=1,2,... Starting from the inequality
B cM,

plog (M,/p)

valid with an absolute constant ¢ (see (2.6)), we obtain

U= Y 1<§Zﬂ_l___

M,=sx ﬁ{M.,My+1]q v v+qlog p,

n(2M,, p, 1) <

where v runs over the nonnegative integers satisfying M, < x. Hence we have

c 1
U,(p) < —log—:;
Z(P)mp ogms.

therefore
E Uz (p) < 4s (gj-l- 1)
pe@;y
where
(6.6) A = clog(1/(nd)).
We now proceed to estimate
6.7) z U, (p).

ped) 4y
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If p, g are two primes occurring in (6.7), then g—1 = ap, where 1 < a < p".
Therefore the sum (6.7) is not greater than ), , 1/g, where the summation is
extended over all solutions of the equation g—1 = ap, 1 < a < p" in primes
p, q satisfying x” < p < g < x. To estimate it, we shall use the Corollary stated
in Section 2.5. We split the interval [x", x] in intervals of the type [M,, M,,],
where M, = x, M, = 2" M, Since for every fixed a, the number of solutions of
p—1 = aq where ge[M,, M,.,] is

« M, /(¢ (a)log? M,),

assuming that y < /2, say, and since clearly ) 1/¢ (a) « nlog M,, we obtain,
after some calculations, '

Y U, () < ¢ nlog(1/d).

pe@j1

Hence we proved that

(6.8) s(#) < As(®#+1)+B,
where
(6.9) B = ¢, nlog(1/d).

Inequality (6.8) implies that
S(Bp) S A's(B)+B+A+A +...+ A7),

Therefore, using (6.5) and (6.4), we obtain

(6.10) (1/x) E, (x|®,) < A‘s(.@?,).+B(1 +A+...+AY,

and so by (6.2) we obtain

611)  (1/x)4,(x®8) < (l+A+...+A‘)s(QI)+B('§ (t—j) A).
i=0

2. We are now in a position to prove that (5.2) is satisfied. Hence let

lim (1/x) # {n < x: P(R;(n)) < x*} =¢;0) (=0,1,...,0).
Assume that ¢,(3,) =0 as 8,—0 has been proved for j < t—1. We shall prove it
is also true for j=1.

Let ¢ > 0 be an arbitrary small number. Let us choose §,—; so that
€-1(0,-1) < g/2 is satisfied. Let 2 be the set of those integers n < x for which
P(R,(m) < x*. Write 2 = 9,U9,, where P(R,-;(n) <x** in 9, and
P(R;-;(n) = x*-* in 9,. Because of the hypothesis of induction, we have

card (2,) < xe,—y (6,-1)+0(x) < ex
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if x is large enough. It remains to estimate card (2,). If ne 2 2, then there exists
a prime g > x%-', g|R,_, (n), P(g—1) < x*. We shall now make use of the

result of part 1. We define #,_, as the set of the primes g e [x%-!, x] for which
P(g—1) < x*, Then

(6.12) S(B-1) = ¥ 1/q.

xb-1l<g<x;Plg—1)<x

It is clear that
card (2,) < A4, (x|8,-,).

We now substitute J,_, in the place of J in (6.6) and (6.9). Further, let # be so
small that B (352§ (t—j) A’) < ¢/2. Hence it follows, using (6.11), that

card (2,)/x < A"~ ' s(B,_,)+¢/2.

Collecting our estimates, we obtain

€, (a.rj < A S(Qi— 1)+£-
It then follows from Section 2.8 that

limsupe, (d,) <¢
3—0

Since ¢ can be taken arbitrarily small, our result follows.

3. It remains to prove that (5.4) is satisfied. For this we assume that (5.4) is
true for &%, ..., &/ ;. We show that this fact implies that it is true for oA
let0<e<d be fixed and let . be the set of those prime pairs (g4, q,) for
which q,/q, < x*, X’ < q, < q,, 4,4, < x. Let 5 be small (depending on &y M,
be the set of those integers n < x for which p|R,(n) and peD,VE, Here D, 1s
the set of primes p € [x°, x] such that p— 1 does not have prime dmsors in the
interval [x", x*?]; E, is the set of primes pe[x’, x] such that p—1 contains
two prime divisors satisfying 4, = q, > x*?, q, > q}~". By using parts 1 and
2 above, one can show that
lim lim sup M”—) =0, limlimsup Mz"-}
n—=0 x—w n—+0 x—ow

= 0.

To see this, it is enough to observe that

lim limsup () ~)~ , lim limﬁup(z1 -

0
70 x-wxm psD., 7=+0 x—wm pEE.,pJ
estimates which follow easily from known sieve results, Thus we have
card (A ;) < (z(n)+0, (1)) x

where 7(n)»0as n—0. Let #, = {1, 2, ..., [x]}\#,. Let H,(x|%) be the num.-
ber of integers ne A", for whlch there exlsts (g, g;)e & satlsfymg 4,4,|R;(n),
but for which there cxlsts no pair (g3, 4,)€ & such that g,q,R;_, (n). Let
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K, (x#) = EO H,(x|¥).

We shall prove that

5 K, (x|%)
———=0.
(6.13) !1_{1; lu:las:p .
This will imply (5.4) and end the proof of the theorem.
We have

1
H,(x|¥) < x < x (): )
0 (1) (q,qzﬂsy‘h% z 4>

<x log log +0(x),

1
—g/d
which proves that

lim lim sup = 0.

e—=0 x—w
Let now 1 <j < t and consider H;(x]¥). Let n be counted in H;(x|#). Then

q,4,/n for a suitable choice of (g, qz}e &, but there exist no (45, q4)e.9’ such
that g;q4/R;-, (n). Let us fix (q,, q,)€ &. Then the following cases can occur:

(@) 4,|R;j-1(n), g, X R;—1(n),

(b) g5IR;-1 (n), g /Ry (n),

(€) g24/R;-1(n), qlfl’RJ—n“(")- .

We split the sum H;(x]¥) = H{® (x|)+ H{P (x|#) + Hf (x|¥), according
to these three cases. _

We first consider the case (c). Let U;_, (g;) be the set of primes {r"{. f-&,“, -
for which g, — 1 for every positive integer v and which come up as divisors of
R;_,(n) for at least one ne. 4, Assume that &< n&._ Then Uj_ 1(ay)
NU;j-;(q,) = 9. Indeed, if r were an element of the intersection, then it would
imply that g,q,|r—1. But then re E,, which is impossible because ne A4",. So
there exist Ve U;_,(q,), P eU;- 1(q2) such that r'V r?|R;_, (n). Further—
more, it is clear that r®¥R;_,(n) (I =1, 2). Starting now from the set

X;-1 = Uj—,(q,), define X}_, as the set of those primes pe [x?, x] for which
there exists re X;_,, rlp—l and which do not belong to D, Now let
Yj-1 = U;-,(q,) and Yj*, be defined by ¥, exactly in the same way as
X%, was defined from U;_,(q,). Further, let Z;_, =X¥,nY*,, X; .,
=X \Zj-2, Yj-2 = Y2,\Z;_,. Let X4, ..., Xo, ¥j-3,..., Yo, Zj-35 .-
Z, be defined by the same process.

If n is counted, then the following cases can occur:
(1) there exist pe X,, g€ Y, such that pgn,

H, (x|¥)
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(2), there exists s, 0 < s <j—3, and peZ such that p|R,(n).
Since X, N Y, = @, then we have at most

+(25)(Z.0)

integers n¢ D, for which (1) holds. But

1 1 1
2-< ) 2 -<B} -,
P geX: p=1(modq);p>q!*";peXo P gex, 4
where B is defined in (6.9). Continuing this process, we obtain
1 . 1
-<B'' Y -
pgﬂp rm\%_, r
Since
1 1 B
Z -=< = ——f
reX - r rul(modqzn:rbq}“‘ r gy
we get
{ )
Yy -< 5
peXo P 44
Similarly, we obtain
1 B
qEYuq ‘h

Let us now consider the case (2),. If pe Z,, then there exist /VeX,,,,

t® e Y, ,, such that ¢ ¢¥|p— 1. Since 1" ® > p! " is excluded, we must have
pAD,, and therefore

D = 012 ne < E (1) Z )]
peZ, t,H2) p=1 (modt(1)e(2)); p> (r(p2))t +n P 16X, 4 t H2), Y'HI

Proceeding as above, we get
1 BI-(.H-I) 1 Be—(a+1)
Yo <—, _—<
ph 9 Z ¢ qa
and so

1 BZ{I’ -5=-1

pez. P q:1 92
Collecting our estimates and summing over (q,, ¢,)€ ¥, we finally obtain

lim lim sup—:E HY) (x|%) = 0.

=0 x-wo
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Since there is essentially no difference between the treatment of the cases
(a) and (b), we will only consider case (b). So let g, and g, be fixed. Let s be the
smallest integer such that g,|R,(n), 0 < s < j—1. Let W,_, be the set of those
primes rt D, such that g,jr— 1, r < x. Let W,_, be the set of those primes
u < x such that rlu—1 for some re W,_,, utD,. Continuing this process, we
define W3, ..., W,. If n is counted, then there exists r* € W, such that IR, (n),
¢,)R,(n) and such that r* VYR, ,(n), g,/ R,—1(n). It follows that the
estimation

#{ne #,: 19 q,|R,(n), case(c)} < B¥/(g, ")
can be deduced as earlier. Moreover, since

Y, U < B7q,

ri®eW,

we have

lim lim sup 2 H{ (x|#) = 0.

e=+0 x—ew

Similarly we can deduce that

lim lim supi H{Y (x|¥) = 0.

e~0 x—m

Summing up for j < ¢, we see that for d(e, ) defined in (5.3),
limsupd (e, 0) < ().

=0
But since this is true for every 1 > 0 and 7 () = 0 as n -0, it follows that (5.4) is
true.
This ends the proof of Theorem 3.

7. Further applications. There are other cases in which we can apply
Theorem 2 successfully. The following results, which we state as theorems, can
be obtained by using the theorem mentioned in 2.5 and from other known sieve
results.

THEOREM 4. Let o, = {p+1: p is prime} be the set of shifted primes. Then, if
1 # 0, the conditions of Theorem 2 hold. Consequently, if (¥#,) is true for
0< A4 <1, then u(p+1)—0 as p— oo for almost all primes p.

THeOREM 5. Let k = 3,(0 <) I, < I, < ... < I, (< k) be integers, coprime to
k(,kp=1(j=1,...,5). Let # be the set of those integers n for which all the

prime divisors belong to the union of the sets {p: p = I, (mod k)). Let B, = B+
= {n+1: ne ). Then the conditions of Theorem 2 are satisfied for & = &,

(=0, £1, £2,...).
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THEOREM 6. Let K (x) be a polynomial with rational roots, taking on positive

integer values for every n > n,. Let of = {K (n): n > n,}. Then the conditions of
Theorem 2 hold.

Remark 7. We are unable to prove (54) if & = {n*+1:n=1,2,...).
8. The distribution of the large values of f(n)/L(P (n)). Let

8.1 def _ S L@
(8.1) v(n) = u(n)+1 LP0) ,,% L)
(8.2) 0 (K) ¥ lim sup% #{n<x:vn) =K}

In this section we shall give necessary and sufficient conditions for L which
guarantee the fulfilment of

(8.3) lim Q(K)=0.
K=o
We first define a function which will play an important role, namely
(8.4) a()= Y L.
g<x

Using the Turan-Kubilius inequality (stated in (2.7)), we obtain

f(n) a(X))2 1/L(g)\?
8.5 A R il ox ik ke 03
- 2 (L(x) it <% q(L(x))'

gsx

Since L(g)/L(x) < 1, the right-hand side of (8.5) is less than ¢x a (x)/L(x), hence
we have

8.6 A _la _, L)
(8.6) #{ns-: 'L(x){2L(x) <4 200
Since f(n)/L(x) < v(n), we obtain

1 a(n) 4cx
8.7 <x: !
8.7 U {n <x:olm) <3 L(x)} & e

If a (x)/L(x) is not bounded and x,— oo is a sequence of real numbers such that
Z = a(x,)/L(x,)—cc, as v— oo,

then, from (8.7), we obtain
#{n<x;:v@m=>z,/2) > (1-¢x,,

for every & > 0, provided v is large enough.
Thus the condition
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(8.8) a(x) < cL(x)

is necessary to guarantee (8.3). Now assume that it holds and let 0 < n < 1 be
a constant. Then

L 1 1
(8.9) a(x)=z Y —% = L(x") (log;+ (0] (’? e x))

xM<gsx

From (8.8) and (8.9) we infer that
(8.10) L(x")/L(x) < 1/2 if  is small and x > x,.

Let n be fixed. Using (8.10) and repeating the arguments used in the proofs of
Lemmas 2 and 3, it follows that there exists a suitable positive x, depending
only on #, such that

L(y) _ (logyY
8.11 — | — wh <y<xW
(8.11) L) ( T enever X, <y € x
Finally, note that it is easy to prove that (8.8) is equivalent to
= L
8.12) (=) 4y < e, L),

Lulogu

where ¢, is a suitable positive constant.

THEOREM 7. Relation (8.3) holds if and only if (8.12) is satisfied. Moreover, if
(8.12) is satisfied, then, for every a > 0,
(8.13) Y, €™ = 0(x).
nsx

Consequently, there exists a positive constant C = C(a) such that
Q(K)< C,eKa

Proof. We have already shown above that “(8.3) = (8.12)”. So assume
that (8.12) holds, that is, that (8.8) is true. To prove (8.13), we may ignore the
integers n < x such that P (n) < exp ( /log x), since their contribution to (8.13)
is o(x). Let x,, 1, % be determined from (8.11). Further, let

v(n) = v, (N)+v,(n)+v,(n),

where in their definitions (see (8.1)), we sum over g < X, Xo < g < P(n)",
P(n)" < g < P(n), respectively. It is clear that v, (n) tends to O uniformly.
Therefore, using the Cauchy-Schwarz inequality, it is enough to prove that
both the estimates

(8.14) Yem=-0x (=223

nEx

hold.
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Forj = 2,. we split the sum (8.12) into subsums according to the largest
prime factor belonging to
LS [V x12%Y k=12, ...

and so

def 392+ *(logaflogx)* _ |
5E Y e < x [ (1+ ]

nsx gSxi/zk! q
Using (2.4), we observe that the product on the right-hand side is bounded by
a constant that depends on x but not on k.
Furthermore, by the Cauchy-Schwarz inequality combined with the
inequality
¥ (x, x}*7") < xexp(—c2* 1),
we deduce that

(8,15) E ez‘“’ﬂ”] < E E g2avain)
n<x k P(melx

Y W0, xMFNRII2 &« x Y exp(—e2t?) « x.
P x

It remains to consider the case j = 3.

If n contains exactly r distinct prime factors gq,, ..., g, in the interval
p" < q; < p, then v, (n) < r. Therefore the left-hand side of (8.14), in the case
J =3, is bounded by

w

(8.16) Y e R, (x),
r=0
where
(8.17) Rx)<Y¥(—2—, )
A2 (p‘Il"'Qr 4

Now pq,...q, > \/x implies that p > x'**1; furthermore p'*" < pq,...q,
< x, and so p < x!/1*™ Therefore the contribution of the terms satisfying
X < pq,...q, is less than

1 1\ (2log(1 1 2\ (2log(1
31 3, ) < (), o)t

For the other terms we have

x x clogx
WC} 5 n')-~<.. ex (—-——).
gy -4, 2 P4y---4, 3 2logp

Summing first for g, ..., g,, and after for p, we get
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(2log(1/r))

R,(9) < (4+B)—— " x,

where 4 = 2log(2/n), and B is a number such that

1 clogx)
—exp| —= <B
,,%,p p( 2logp

Substituting this inequality in (8.16), we obtain (8.14) in the case j = 2. This
ends the proof.

Remark 8. It is interesting to note that Theorem 7 remains true if we
replace the whole set of integers by the set of values of an arbitrary polynomial
or by the set of shifted primes.

9. On the limit distribution of v(n). Let

er 1
9.1 F.(y) Lr; #{n<x:vn <y},
where v(n) is defined in (8.1). We say that v has a limit distribution if
9.2) lim F,(y) = F(y)

exists for almost all y, and F is a distribution function.

It would be nice if one could characterize those functions L for which v has
a limit distribution. We are unable to solve this problem in general.

We shall nevertheless discuss what happens when v has a limit dist-
ribution. First of all, in that case, (8.3) is true, and hence the conditions of
Theorem 7 are satisfied. Thus (8.13) is true, and so by (9.2) we have 1—F (y)
=0(e ®) as y—co. From this we can deduce that

(9.3) lim 1 S vy =g

x+x X nex

exists for every k=1, 2, ... Indeed, if A > 0, we have

l A A
- Y omF= [y dF () = [ dF (y)+o.(1).
X psxemsa 1 1
Furthermore,
1 " 1 o _ Ak
- £ — < —,
X néx.gi:n))vﬂ v(ﬂ) xAk n%x ’ (n) Ak

for a suitable constant dy, and [7 y*dF (y)—0 as A— co. Combining these,
(9.3) follows immediately. Taking into account the fact that

k
Y. (av (n))/j! < e,
j=0

5 — Acta Arithmetica LVILI
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we find, using Theorem 7, that ) {2 c; a’/j! is convergent. But, as is well known,
in this case the existence of all moments given in (9.3) is sufficient for the
existence of the limit distribution.

On the other hand, it is clear that

L@,
94) v(n) = [x]+ ( )
Ilgx chﬁx[’(p)
Taking into account (2.2), for every fixed 0 < 4 < 1, we have

x x {logx—logp—Ilog q)
(Pq p) ( ' )}qu log p

uniformly for p > (x/(pg))*. Furthermore, the contribution of the terms
g < p < x™ in the sum on the right-hand side of (9.4) is < Q(4,)x, where
Q(4,)—=0as A, —0. Hence, from the existence of (9.3) for k = 1, we can deduce
that

: L(q) logx—logp~logq
9.5
6= ,Eﬂ.— L)ap® ( logp
Clearly (9.5) is equivalent to
L(e")e(logx—é—n)ﬂqffé
n

z —=—c;—1 as x—o0.

It is clear that (9.6) implies (9.3) in the case k = 1.

Note that the relations (9.3) for an arbitrary integer k > 1 can be expressed
by relations equivalent to (9.6), but these become very complicated for large
values of k, and it becomes very difficult to characterize the functions L which
satisfy them.

In the next section, we consider a somewhat easier problem.
10. On the distribution of f (n)/L(x}. Let
(10.1) v, (ﬂ] f (m)/L(x)

and

) c;—1 as x—o.

9.6) {

1<n<E<logx L(€)

der 1

F, [y)——#{n x: v (n) < y}.

We say that v, (n) has a limit distribution F if

(10.2) F(y) = lim F,(y)

x—+oo

exists for almost all y.
Using the standard theory of limit distributions for additive functions, as
presented in Chapters 16-18 of Elliott [4], one can obtain necessary and

Additive functions monotonic on the set of primes 67

sufficient conditions for the existence of the limit distribution F(y). More
precisely, one can prove that the existence of the limit

. a()
(where a(x) is defined in (8.4)) with
(10.4) A= lim 1 Y v (m)=0

Xx—=w " nEx

is a necessary condition for the fulfilment of (10.2).
On the other hand, if (10.3) holds with 4 = 0, then F(y) exists and has
a maximal jump at y =0, that is,

0 ify<oO,
F(y)={ o

1 ify>0.
Finally, if (10.3) holds with 4 > 0, then it is easy to see that
* L(u
(10.5) a) = (1+o (1) {7 ‘ ’

and thus, using Lemma 1, that
(10.6) L(x) = (log x)"" H (x),

where H is a very slowly oscillating function.
Therefore, with L(x) as in (10.6) (set & = 1/4 > 0) and introducing the
following functions:

def det k (n)
k L(g), K,
O ]

def  (log q\* der  k(n)
= ?(m) O ey

T= ———Y (logg® (n>2),

( P (n )), gln
one can prove, using Theorems 18.1 and 18.2 (along with Lemma 1 4) of Elliott
[4], the following results:

THEOREM 8. Assuming the conditions stated above, K_(n) has a limit
distribution F, that is,

F(y)—llm #{n x: K, (n) < y}

for almost all y. Furthermore, F does not depend on H, so K_(n) is distributed as

V.(n).
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THEOREM 9. Under the conditions stated in Theorem 8,

Iimi#{ngx: t(n)éy}=G(y}

X+ oo

exists for almost all y; furthermore, G is a distribution function and it does not
depend on H. The same result holds when replacing t(n) by T(n).

Acknowledgement. The authors wish to thank the referee for some helpful
comments.
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ACTA ARITHMETICA
LVII (1991)

Suites de G-orbite finie

par

CHRISTIAN MAUDUIT et BRIGITTE MossE (Marseille)

1. Introduction. Pour démontrer 'existence de géodésiques récurrentes non
périodiques sur certaines surfaces de courbure négative, M. Morse a introduit
la suite u = (u,),ey & valeurs dans {a, b} définie par u, = a(resp. b) si la somme
des chiffres de n écrit en base 2 est paire (resp. impaire). Depuis, cette suite est
réapparue lors de la résolution de nombreux problémes de combinatoire,
d’algebre, d’arithmétique, d’analyse harmonique, de physique théorique, etc...
(on pourra consulter & ce sujet [18]). Les procédés de construction de la suite
de Morse ont été généralisés par divers auteurs, et notamment par S. Kakutani
et M. Keane qui ont étudié les systémes dynamiques symboliques obtenus ainsi
(cf. [5], [6], [91-[13], [17], [23], [27]).

Par ailleurs, J. Coquet et B. Mossé¢ ont défini dans [3], [21], [22] un
décalage g-adique des suites dont ils ont étudié les propriétés harmoniques et
arithmeétiques. Les systémes dynamiques les plus simples associés a ce décalage
sont évidemment ceux obtenus pour les suites d’orbite finie; il est donc utile de
pouvoir les caractériser.

Une famille de telles suites a été étudiée dans [19]. L’objet de ce travail est
de les décrire toutes et d’établir leurs liens avec les suites de Morse généralisées
au sens de M. Keane. Nous étudions ensuite une propriété de disjonction

spectrale de certaines de ces suites, complétant ainsi les résultats concernant la
somme des chiffres obtenus dans [1], [7], [8], [16], [25].

2. Rappels et definitions. Soit g un entier au moins égal 4 2. Tout entier
naturel n sécrit de fagon unique

n= 3 enq,

rz0
ou e, (me{0, ..., g—1} est le r-iéme chiffre du développement de n en base q.

DEFINITION 1. On appelle addition g-adique de deux entiers n et n'
Popération notée @, (ou @ si aucune confusion n'est possible) et définie par

VreN, e (n®nn)=c¢e, (n)+e (n)mod q.

Nous désignerons par G, le groupe commutatif (N, @)
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