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Now R < J, so by our assumption on ¥V we may omit the first term on the
right. Then

Jv4 < DJ?3 TZ!?»(DT)z’

which implies the assertion (6.4), in the case D < T®. But otherwise (1.27) follows
directly from the fourth moment and the estimate L(1/2+it, x) < (DT)"**=

References

[B-I] E.Bombieriand H. Iwaniec, On the order of {(1/2+ it), Ann. Scuola Norm. Sup. Pisa,
Cl. Sci. 13 (1986), 449-472.

[G] A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29
(1982), 278-295.

[H1] D.R.Heath-Brown, The twelfth power moment of the Riemann zeta-function, Quart. J.
Math. Oxford 29 (1978), 443-462.

H2] — The growth rate of the Dedekind Zeta-function on the critical line, Acta Arith. 49 (1988),
323-339.

[H-W] M. N. Huxley and N. Watt, Exponential sums and the Riemann zeta function, Proc.
London Math. Soc. (3) 57 (1988), 1-24.

[Iv] * A. Ivié, The Riemann Zeta-Function, John Wiley & Sons, 1985.

[Iwl H. Iwaniec, Fourier coefficients of cusp forms and the Riemann zeta-function, Séminaire
de Théorie des Nombres, Univ. Bordeaux 1979/80, exposé no 18, 36 pp.

(RS M. Jutila, Lectures on a method in the theory of exponential sums, Tata Institute of
Fundamental Research, Lectures in Mathematics and Physics 80, Bombay 1987.

[2] — The fourth power moment of the Riemann zeta-function over a short interval, Coll. Soc.
Janos Bolyai 52, Number Theory (Budapest 1987), North-Holland, Amsterdam 1990,
221-244.

3] — Mean value estimates for exponential sums, Number Theory, Ulm 1987, Lecture Notess
in Mathematics 1380, Springer, 1989, 120-136.

4] — On exponential sums involving the R gjan function, Proc.Indian Acad. Sci. (Math.
Sci.) 97 (1987), 157-166.

5] - Exponential sums connected with quadratic forms, Proc. of the First Conference of the
Canadian Number Theory Association, Banfl, Alberta, 1988, Walter de Gruyter, 1990,
271-286.

[Mel] T. Meurman, The mean twelfth power of Dirichlet L-functions on the critical line, Ann.
Acad. Sci. Fenn. Ser. A I, Dissertationes, 52 (1984), 44 pp.

[Me2] — On exponential sums involving the Fourier coefficients of Maass wave forms, J. Reine
Angew. Math. 384 (1988), 192-207.

[Mo] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in
Mathematics 227, Springer, 1971.

[s]1 G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton
University Press, 1971.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF TURKU
SF-20500 Turku 50
Finland

Received on 21.2.1989 (1909)

ACTA ARITHMETICA
LVII (1991)

Khintchine-type theorems on manifolds
by
M. M. DobsoN (York), B. P. RYynNE and J. A. G. VICKERS (Southampton)

To the memory of Professor V. G. Sprindiuk

1. Introduction. SprindZuk made fundamental contributions to the difficult
problem of extending classical results on metric Diophantine approximation to
submanifolds, or in his terminology, from the case of “independent variables”
to that of “dependent variables” [9]. In this paper some Khintchine-type
theorems are obtained for a fairly general class of manifolds.

For any vectors x = (X;, ..., X), ¥ = (V45 ---» ) in R* we write

k
xy=) xy; and |x|=max{x]:i=1,...,k}.
i=1
For any real number t let
litll = inf {|t—p|: peZ}.
Let y(r), r = 1, 2, ..., be a sequence of numbers with y(r)e[0, 1/2]. It follows

from Groshev's generalisation of Khintchine’s theorem ([9], Chap. 1, Theorem
12) that for almost all xe R* the inequality

(1.1) lg-xll < yql)-

has finitely many solutions gqeZ* if the series

(1.2) Z Yr)r!
rax]

converges and infinitely many solutions if the series diverges (providing y(r)
satisfies certain monotonicity conditions when k=1 or 2). Khintchine’s
theorem on simultaneous Diophantine approximation ([9], Chap. 1, Theorem 8)
asserts that the dual system of inequalities

(1.3) lgxll <ylal), i=1,...,k,
has finitely many solutions geZ for almost all xeR* if the series
(1.4) PR AL

r=1
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converges (the corresponding result holds when (1.4) diverges if J satisfies
appropriate monotonicity conditions; we will not consider this case but details
are given in [5] and [9]).

When the points x in the inequalities (1.1) and (1.3) are restricted to lie on
a smooth submanifold M < R* of dimension m < k, the above results tell us
nothing since M has measure zero. However, the same questions as in the
Euclidean case can still be considered but'with respect to the induced measure
on M. Despite the substantial difficulties posed by the functional relationship
between the coordinates of the points on the manifold there has been progress
in carrying over the classical theory to manifolds. Surveys of known results and
further references are given in [4], [9] and [10]. In one direction, conditions
have been sought which ensure that for almost all xe M the inequality (1.3),
with the special sequence /(r) = cr ™ '*~¢ (or, equivalently, inequality (1.1) with
Y(r) = cr~*7%), has at most finitely many solutions for arbitrary ¢, ¢ > 0 (see
[97). Such manifolds are called extremal. It is an immediate consequence of the
results below that the manifolds we consider are extremal; in [6] manifolds
satisfying slightly weaker conditions have been shown to be extremal. In the
other direction, it has been shown that if M belongs to a very general class of
manifolds then for almost all xe M the inequality (1.3) with ¥ (r) = cr™ 1%,
¢ > 0, has infinitely many solutions ([1], Theorem 1). This result, together with
Khintchine’s transfer principle ([5], Chap. V, corollary to Theorem IT), shows
that when /(r) = cr™* ¢ > 0, (1.1) has infinitely many solutions for almost all
xeM.

For general sequences ¥ the position is less satisfactory, particularly when
the series are divergent, although some special cases are known. For example, if
M consists of the cartesian product of sufficiently many curves then some
partial results have been obtained for the inequality (1.3) in both the divergent
and convergent cases (for further details see [2], [3], [4] and Section 12, Chap.
2 of [9]). When M is the (1-dimensional) curve {(x, ..., x*): xeR} and (1.2)
converges, then (1.1) holds infinitely often almost nowhere on M ([4], The-
orem 3).

In this paper we extend these results to general C* manifolds satisfying
certain non-zero curvature conditions (which exclude curves).

Much of the notation and terminology we will use is taken from [6]. In
particular, we suppose that M is a C*® manifold of dimension m and
codimension n embedded in R* (k = m+n). For any point xe M, T,M* will
denote the normal space of M at x, and for any ye T, M*, »'(x, y),i=1, ..., m,
will denote the principal curvatures of M at x with respect to y (further details
are given in [8]).

DEerFINITION. We say that the manifold M satisfies condition K1 at xe M if|

for any ye T_M*, at least two of the principal curvatures x!(x, y) are non-zero
and have the same sign.
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Now suppose that xe M and N is a codimension 1 hyperplane whih
intersects M transversely at x. Then the set N~ M is a C (m— 1)-dimensional
manifold embedded in the plane N in a neighbourhood of x. The above
definition of condition K1 for a manifold (with respect to an embedding in
R™*") can readily be extended to the case of an embedding in a hyperplane.
This enables us to make the following

DEerFINITION. The manifold M satisfies condition K2 at xe M if there exists
a codimension 1 hyperplane N(x) = R™*" which intersects M transversely at
x with the property that the set N(x) " M satisfies condition K1 at x with
respect to its embedding in N(x).

The conditions K1 and K2 impose some restrictions on the sizes of m and
n. In particular, for K1 and K2 to hold it is necessary that m > 2 and m > 3
respectively. Thus, we need k =m+n =3 for K1 or K2 to hold. Further
restrictions on the relative sizes of m and n can be deduced as in Section 2 of
[6] where a similar condition is discussed.

To illustrate the geometrical meaning of the above conditions consider the
case where M is an m-dimensional hypersurface in R™*!, ie. when M has
codimension 1. In this case, at any point x € M the unit normal vector y (with
respect to the Euclidean norm) is uniquely determined (up to a factor of +1)
and the Gaussian curvature K(x) of M at x is given by the product
K(x) = %*(x, y)...%™(x, 7). Thus, when m = 2 condition K1 at x is equivalent
to the condition that K(x) > 0, so that M must be “bowl shaped” rather than
“saddle shaped”. However, when m > 3 the condition K(x) s 0 is sufficient (but
not necessary) for condition K1 to hold. To deal with condition K2 we first
note that for any m > 3, n > 1, condition K2 implies K1, but not conversely in
general. However, if M is a hypersurface then K1 implies K2 (these results can
be deduced from the alternative formulations of the conditions discussed in
Section 3 and in the proof of Lemma 4.1 below). Thus, in this case K2 holds if
M has non-zero Gaussian curvature.

We will now state our main results.

THEOREM 1.1. Suppose that condition K1 holds at almost all xe M. If the
series (1.2) is convergent then, for almost all xe M, the inequality (1.1) has at
most finitely many solutions ge Z™*",

THEOREM 1.2. Suppose that condition K2 holds at almost all xe M. If the
series (1.2) is divergent then, for almost all x € M, the inequality (1.1) has infinitely
many solutions geZ™*".

THEOREM 1.3. Suppose that condition K1 holds at almost all xe M. If the
series (1.4) is convergent then, for almost all xe M, the system of inequalities (1.3)
has at most finitely many solutions qeZ.

These theorems can be generalised in the same way that Theorem 12
(Groshev’s theorem) is generalised by Theorems 13, 14 and 15 in Ch. 1 of [9].
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These generalisations will be omitted since they can rt;adily be derived from the
results below and in [9]. Note that Theorem 1.1 extends (but does not include)
Theorem 3 of [4]. This suggests that Theorem 1.1 should hold for curves which
satisfy a suitable curvature condition.

2. Preliminary estimates. In the following we will use the notation
e(t) = exp(2nit) and |X| for the Lebesgue measure of a measurable set X in
Euclidean space.

LeEMMA 2.1. Let Q < R' be an open set and let g: 2— R be a C? function and
let G(o) = {ueQ: |lgw)| < ¢} for all 0[O0, 1/2]. Suppose that the inequality

2.1 li[a e(jg(u))du| < aj™!

holds for some « > 0 and all positive integers j. Then
22) [IG(e)l —2¢122l| < 8ao(1 +[log al).

Proof When p =0 the result is clear, so we suppose that p.> 0. The
Fourier coefficients a;(¢), jeZ, of the function y,: R—R defined by
x(t)=1 if |t| <g and x,(t) =0 otherwise, are given by a,(e) = 2¢,

a,(0) = {e(je)—e(—jo)}/2nij), j # 0, so that |a;(o)l < min{2¢, 2j'} for all
j#0, ge[0, 1/2]. Now

IG(@)l = ‘jlx,(g(ﬂ))du = 20191+ ), a;(e){])e(jg(u)) du,

J#0
and the result follows from (2.1) and the estimate for |a;(g)l.

The next two lemmas will be used in applying Lemma 2.1 in the following
sections. The first is a variant of Lemma 4.2 of [11].;s

LeEMMA 2.2. Let I = R be an interval and let g: T— R be a C* function such
that

lg' W) = o,

for some constants ¢, o > 0. Then for any subinterval A < I,

lg" @) < ca, uel,

1§ elg)du| < (1 +cldhn~"a~.

Proof. Letting b and a denote the upper and lower end points of
A respectively we have, on integrating by parts,

b b
I e(g(w)) du| = |{ g’ ()~ e(g(w)) g'(u) du|

b
= |¢' ()~ (e(g(b)—e(9(a)) + § 9" (W) g ()~ *(e(g (w)) — e(g (a))) dul/(2m)

< (mo) ™ +c(ne) Al
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LemMma 2.3. Let g: R*—R be a C® function and suppose that
2

0%g .
2. —(u) = = 1,2

2

0*g
5u15u2(u)

for all ueR?, for some constants ¢, « > 0. Then for any convex set A < R2,

<af2, |D*g(u)| <cu,

(24) If e(g(w)du| < 16(1+clAhx™ta".

Proof. It follows from the inequalities (2.3) that there exists a unique
point oo € R? such that

og .
(2.5} a_u‘(llgo) = 0, 1= l, 2,
(see [6], §3). We may assume that ugo = 0. Introducing polar coordinates

u(r, 0) = (rcos 0, rsin ) and letting h(r, 0) = g(u(r, 0)), it follows from (2.3) and
(2.5) that

oh d*h 3h
(2.6) 5(0, 8 =0, -é}-f(r, 0) = «/2, 5’_(” )| < 8ca,
for all r >0, #€[0, 2n]. In the new coordinates we have
2n
27 fe(g(w)du = | ((6)d0,
A 0
where

£@) = | e(h(r, ®)rdr,
A©)
and A(0) = {r > 0: u(r, )€ A}. Since A is convex, the set 4(0) is an interval; its
upper and lower end points will be denoted by b(6) and a(6) respectively. Now,
the integral {(0) can be rewritten in the form
" r
2.8 ) = [e(h() W ()=
(2.38) () { e(h(r) ' (r) e
where the dependence of k, a and b on 6 has been suppressed and the dashes
denote differentiation with respect to r (by (2.6), k'(r) > 0 for r > 0). Integrating
(2.8) by parts we obtain

b
29 1LO) = B} e(h(®))—e(h(@))— ¥ () e(h(r) - e(h(a)) dr|/(2m),
where y(r) = r/h'(r). Using (2.6), we have
) <227, Y@ <16ca™', r=0,
and the result follows from (2.7) and (2.9).

0e[0, 2n]

dr,
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3. Proof of Theorem 1.1. We will henceforth assume that M has the form
M = {xeR""": x = £(u), ueQ} = &(Q),

where Q is a bounded open subset of R™ and the parametrisation function
& Q- R™" is C* and has the form

S(u) = Uy, ooy Upy @y (1), ..., 0 (w) = (4, @(n)), ueQ,

where @(u) e R". In addition, we assume that the function & and its first three
derivatives are uniformly bounded on Q. These assumptions are not restrictive
since it is always possible to cover M with a countable collection of local
coordinate neighbourhoods on which the assumptions hold (after relabelling
the coordinate axes if necessary) and it is clearly sufficient to prove the
theorems on these local neighbourhoods. Also, the mapping & Q— M maps
sets of measure zero in £ to sets of measure zero in M. Thus, to prove the
theorems it suffices to show that the appropriate subsets of Q, rather than M,
have measure zero.

For any C' function f: V— R® defined on an open set V< R' lét Df(x),
where 0 < i < r, denote the ith order Fréchet derivative of f at the point xe ¥,
In particular, when f is real valued we will identify Df(x) with the vector

of of
(o)

and D’f(x) with the Hessian matrix of f at x.
As in [6] we define a function @,: 2— R, for each veR", by

o, (u)=v o), uecQ.

By calculating the second fundamental form of M at a point x = &(u)e M using
the parametrisation § (a similar calculation using a slightly different paramet-
risation is given in [8], Chapter VII, Example 3.3), it can be shown that
condition K1 holds at x if and only if for each non-zero veR", the matrix
D*®,(u) has at least two non-zero eigenvalues with the same sign.

Since by hypothesis the set of points x e M at which condition K1 does not
hold has measure zero in M, this set cannot affect the conclusions of the
theorem and hence can be neglected (similarly in the proofs of Theorems 1.2
and 1.3 we will neglect the set of points at which the relevant condition does
not hold). We now choose a point x® = &(u°) in M at which condition K1
holds. For notational simplicity and without loss of generality, we will suppose
that x° = 0, u® = 0. Since D>, (0) is a continuous function of » it follows from
the above formulation of condition K1 that there exists a constant § > 0 such
that for each ve S, (1) (where SPg) = {weR": |w| = ¢}) the matrix D*>®,(0)
has at least two eigenvalues of the same sign with magnitude greater than 26.

In order to use the results of Section 2 we need a function &,: R™— R for
each veR", such that &,(u) is a C* function of (u, v)e R" x R",
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(3.1) D*&,(u)—D*@,(0)| < 9/2m?),  (u, )R xS (D),
and &,(u) = P,(u) for all (u, v)eB3()xR", for some &>0, where
BZ(e) = {weR™: |w|, <&} and |w|, = (w-w)'/%. Such a function can be con-
structed as in Lemma 3 of [7].

It follows from (3.1) that
(3.2) U, (D*®,(w)—-D*®,0) U, | <6/2, (4, v)eR™x S%.(1),

where U, is an orthogonal matrix which diagonalises the matrix D?®_(0).
Let

K = sup {|D&(w)|: weQ} = max {1, sup {|De(u)|: ueQ}}.

For any numbers u, v > 0 the notation u < v will mean u < cv, where the
positive constant ¢ depends at most on m, n, 6 and K. We now shrink M further
by putting Q = Q(¢) = B3(e) and M = M(g) = §(Q(e)). The‘ assumption that
x° = 0 implies that M(e) = B} *"(§), for some ¢ with ¢ <& <e.

Lemma 3.1. For any vector qeZ™"", q # 0, we have

(3.3) |f e(q-&(w)du| <lql™".
(7]

Proof. We choose a non-zero vector g € Z™*", and consider this fixed. For
any xeR™" write x = (x1), x?)eR"x R". Let v = q?/|g"®| (if g =0 let
v=0) and define the functions g: 2R, §: R"—R by

gu)=q-Ew) = ¢ u+qg? o) = ¢ u+|q?| @),
34 -
B4 gu) = ¢V u+|q'?| D, (u).
Since &,(u) = ®,(u) on 2xR", §(u) = g(u) for all ueQ. Now suppose that
1g@| < |g/(2nK). Then it follows from (3.4) that there is an integer j, 1 <j <m,
say j= 1, such that

(3.5) >4lql, wueQ.

dg

—(u
au,( )
For any ue R™, write u = (u,, u'), where &' = (u,, ..., u,)eR™"!, and for any

weR™ !, let Q)= {u,eR: (u;, w)eQ}. For each u' e BF ' (¢) the set 2'(w)
is an interval, so by Lemma 2.2 and (3.5)

| | elgluy, w))du| <lqI™".
'(w’)
Thus by Fubini’s theorem, (3.3) holds in this case.
To deal with the case where |¢'®| > |q1/(2nK) we first make tt_ae orthogonal
transformation of the u coordinates in R™ determined by the matrix U,,, defined

above. For simplicity we will not introduce a new notation for the transformed
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variables apd functions of these variables. By the construction of this
t‘ransformalmn', the matrix D*&,(0) is now diagonal. Furthermore, by relabel-
ling the coordinates if necessary, we may suppose without loss (;f generalit

that the first two elements of the diagonal of D2 & (0) are each greater than 2<5y
Therefore, it follows from (3.2) and the equatio::l D*G = |q'®|D*®, that '

3§

2™ >1g®0, =12,
(3.6) ' ucR™
0% ’

Ou, du,

() <l1q*)9/2,

In this case for ue R™, write u = (u,, u,, u"), u’ = (us, ..., u,)e R"2 and for

u eRm—Z ]et Qu("u) - {(H u )ERZ. ( 1"
s St 1 Uy : (uy, u,, u")eQ). For each u"eB7-2
the set Q”(u”) is convex so by Lemmal 2.1’: and (S.é} sl

| el s, w) dudug] < 1qI.

h

We now define the sets

B(x, b; o) = {uef: |x §(u)—b| < o} = Q = BJ(e),
B(x; 0) = {ue: |x-¢)| <o} = |J B(x, b; 0),

for any xeR™*", beZ, g€[0, 1/2]. Combining Lemmas 2.1 and 3.1 yields
LEMMA 3.2. If ¢ is as above then, for any g€[0, 1/2] and qeZ™ " q #0
3.7 IB(a; o)l —20l€| < ¢, elql™* (1 +log g),
where ¢, > 0 is a constant.
Now let y*(0) = y*(1) = 1/2, and
V) = max {y(), rm Y, r=2,3,
Clearly the series

(3.8) S pmen-t g

r=1
1s convergent if and only if the series (1.2) is convergent. In addition,
(3.9 r 1+ Jlogy*(r)) < rlogr,
for all > 2, and hence by (3.7)

(3.10) 121y (1q)) < [B(g; y*(lD)] < 3121 y*(lq),
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for all sufficiently large q. It now follows from the Borel-Cantelli lemma that
the inequality

(3.11) lg- &l < y*(ql)

has at most finitely many solutions for almost all e Q. Since Y(r) < y*(r) for
all r, this proves Theorem 1.1.

4. Proof of Theorem 1.2. We now suppose that the series (1.2) is divergent
and the manifold M satisfies condition K2 almost everywhere. Since condition
K2 implies K1 it follows that condition K1 holds almost everywhere on M and
so Theorem 1.1 holds on M. Thus, for almost all xe M the inequality

(4.1) lg-x|l <lqgl~™""%,

has at most finitely many solutions. Therefore, the inequality (3.11) has at most
finitely many more solutions than (1.1) for almost all xe M, and it is sufficient
to prove Theorem 1.2 with the function Y replaced by y*. For notational
convenience we will now relabel y* as y.

To prove the theorem it is necessary to estimate the measure of the set
B(p; ) " B(q; o) for linearly independent vectors p, ¢ eZ™*" and for
o, 6€[0, 1/2]. To obtain an appropriate estimate for the measure of this set for
arbitrary pairs of vectors p and q is rather difficult so we restrict our attention
to the set of vectors lying in a suitably chosen cone. To define this cone we now
suppose, in addition to the assumptions at the beginning of Section 3, that
condition K2 holds at the point x° = 0 and let n° denote a unit normal vector
to the hyperplane N° = N(0) (see the definition of condition K2). Also, for any
vectors x, yeR™*" let 0O(x, y) denote the unique number satisfying
0 < O(x, y) < 2m and cos O(x, y) = x- y/(|x|,|yl,). For any positive number f, let

Cy={xeR™" O(x, n°) < B}.

LemMa 4.1. If &, B > O are sufficiently small then for all ¢, o€[0, 1/2] and
«all sufficiently large linearly independent integer vectors p, € C;,

4.2) IB(p; o) " B(g; 0)| < 002 +eallogallgl ™" eb(p, @) -

Proof. We prove the result for arbitrary sufficiently large linearly indepen-
dent vectors x, ye C,. We first deal with the special case where n®=(1,0,...,0
and N° = {xeR™*": x, = 0}. Using the coordinates (x,, ..., Xm+n) iD the plane
N© it is clear that the set N® n M, regarded as a subset of N°, consists of the
manifold whose parametrisation is given by the function

w — (W, @0 u), weBF ().

By the definition of condition K2 this manifold must satisfy condition K1 at
the point x°. Since the above parametrisation is of the form considered in
Section 3 it follows from the parametric formulation of condition K1 discussed
there that K1 holds if and only if, for each non-zero veR", the matrix
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Dl'ldi,(l)) has at least two non-zero eigenvalues with the same sign (D' denotes

differentiation with respect to w'). Since D'2®,_(u) is a continuous function of

(u, v) there exist § > 0, &% > 0, such that for each ve §",(1), u € B7(e°), the matrix

g2¢"§") has at least two eigenvalues of the same sign with magnitude greater
an o.

Now suppose that f < 3(m+n)~ !, so that for all x€C,z we have x, > 0,
|x| = x, and
4.3) [x < Blxl, x| < Blx|,
where x" = (x,, ..., x,).

Before dealing with arbitrary vectors x, y €Cy we first suppose that
y=0,0), y= 0. Let xeCyy, acZ and write £ =x/|x), 4= aflx| and
0 = O(x, y). It is clear that 6 > max {|£'”], |#®|}. We now define the function
g: BZ(e%)—R by
@4) g =2 Ew—d=u+EV w+2D gu)—d, ueBIEO).

For each £€(0, £% let L=p|x|™! and
B(x, a; @) = {ue B3(e): |x-§(u)—a| < ¢} = {weB3(e): |g(u)| < L}.
'_l'h?re exists a constant ¢, > 0 such that for all £€(0, £°) the set B,(x, a; ¢9) = &
if |4 > c,e. Now let Z7 = {ue B7(s%: g(u) = t} for each teR. It is clear that
Bo(x, a; @) = Um<LZ?.
Since xeC,; it follows from (4.3) that for sufficiently small g

4.5) 12< <2, ueBl().

dg
;3u_,(")

Thus, for each te[—L, L] the set Z? is a C* manifold of codimension 1 in
B7(¢°) and has a parametrisation of the form

W —z(u, t) = (z, (&, 1), uy, ..., Up)s

whfere the function &’ — z(#', t) € B (c°) is defined on an open set 2, < B} (9.
Using (4.3) and (4.4) it can be seen that for sufficiently large |x| and sufficiently
small positive B and ¢ (< &% the function &' — z(«, ¢) is defined on the ball
B;""(a} for all te[—L, L], |4 < c,e. Again we restrict the manifold M by
putting @ = Q(e) = B7(¢) and M = M(¢) = £(2(¢)). Thus, we now have

B(I, a, Q) = Bz(x$ a, 0) = U z!'
IHESA
where Z = z(B% " '(e), t) = Z? for each te[— L, L]. Also, the assumed form of
y implies that B(y; o) = {we B3 (e): |lyu,|| < o).
It follows from the implicit function theorem that the function
(', £) >z, (w', £) is a C* function on the open set I' = B3 '(e)x[~L, L]. By
implicit differentiation we find that for (u’, t)el T
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oz, dg [0g .
(4.6) Elf("")=_5;;/a_u:' i=2..,m,

azzl ']
;T
augu "
d 0’g 09 g 09 09 _@E/a_g}/(ﬁ)’
= T \Ou, du;0u;, Ou,ou,0u; Ou,0u,0u; Ou,0u;] du,f| \Ou,)’

hj=2,...,m,

@.7

where the argument of the functions on the right hand sides of (4.6) and (4.7) is
z(u', t). It follows from (4.6) and the above estimates that

4.8) D'z, (', )| <€ B, (W, 0)el.
To estimate |Z, n B(y; o)|, |t < L, we introduce the sets
R, = {w'eB} '(e): llyz,, )]l <o}.’

When |t| < L, Z, n B(y; o) < z(R,, t), and s0 by (4.8), |Z,n B(y; o)l < |R,|. We
will use Lemma 2.1 to estimate |R,|. '
It follows from (4.4) that there exists a constant n >0 such that if

4.9) [£2)] < |1,

then for some integer i, 2<i<m,

a—g(ll) >33, weB3(°).
Ou;

Thus, if £ satisfies (4.9) then by (4.5) and (4.6)

%51 i, 0| > 191> 0, (4, DT

1

This estimate together :v?ith a similar argument to that used for the first case in
the proof of Lemma 3.1 shows that

(4.10) | | e(yz: (o, H)du| <y 07, JU<L.
BT (o)

Hence, by Lemma 2.1

@4.11) IR| < o(e™ 1+0 1y !llogal), It <L

-

Now suppose that % satisfies
(4.12) |23 = n|2*).

The elements of the matrix D'z, (0, ) are given by (4.7), and we see from this
formula that
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P
D%z,(0, 1) = —%(2(0, 0)~ D" B3(2(0, 1)) +E,,
1

where E, denotes the (m—1)x(m—1) matrix whose elements (E)i—; -4,
i,j =2, ..., m, are obtained from the right hand side of (4.7) by deleting the first
term inside the brackets. It follows from the discussion at the beginning of the
proof that the matrix D'?>®(z(0, t)) has at least two eigenvalues with the
same sign, and modulus > |£*)| > 6. However, by examining the terms in (4.7)
it can be seen, using the definition of g in (4.4) together with (4.5) and (4.12),
that |E| < |£®|2, Thus, for sufficiently small f the matrix D'?z, (0, t) has at least
two eigenvalues with the same sign and modulus greater than 2¢, 0, for some
constant ¢; > 0. It can easily be seen that if £ and B are sufficiently small, then
this estimate holds uniformly for any £eC,, satisfying (4.12). In addi-
tion, by adapting the technique used in Section 3 above, a C* function
Z;: R""'x[—L, L] >R can be constructed such that z,(«’, t) = z,(«, ¢), for
all (w,t)erl, and

D22, (', )—D"2,(0, t)] < ¢;6/2m?), («, )eR™'x[—L, L],

for each £eC,; satisfying (4.12). Now, these estimates together with a similar
argument to that used for the second case in the proof of Lemma 3.1 show that
(4.10), and hence (4.11), holds. Thus, we have shown that (4.11) holds for any

xeCyy.
By implicit differentiation and (4.5) we see that
0z, 0g =4
—(u’ = e ! < )
at (l‘ ? t) aul (z(" 2 t)) = 2! (" 2 I)E F’

hence the above results show that

|B(x, a; @) n B(y; o)l = | |J Z,n B(y; o)| <sup{|R}: |t| <L}2L
IHES A

<o ' +07 1y logal)elx~*.

Since the number of integers a for which the set B(x, a; g) is non-empty is
bounded by 2c,e|x|, we have

(4.13) |B(x; @) N B(y; o)l < eoe™+galloga]y~'ef 1.

Since &™ < |B7(e)|, this proves the result for all xe Cy; for the particular choice
of y=00,0).

Now suppose that x, ye C, are arbitrary. We can choose an orthogonal
matrix T, so that T,y = (|y|,, 0, 0), T,C, < C,5 and T, is of the form I+ O0(f)
for small B. Using the matrix T, to change coordinates in R™*" we see that, in
the new coordinate system, the vector y has the form assumed above, x€ C,; and
the coordinates of the set B(x; g) n B(y; o) are given by ’I",(B(x; @) n B(y; 0)).
Since T, is orthogonal
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|B(x; @) N B(y; o)l = |T,(B(x; ¢) » B(y; 0))|

and we may estimate this, using the new coordinates, by the above method.
Also, in the new coordinates, M has a parametrisation &,: B7(e)—R™"" of the
same form as before with §,—¢ uniformly on B7(¢) as §—0. Thus for all
sufficiently small B, it can be seen that we obtain an estimate of the form (4.13)
which holds uniformly for all x, ye C,.

Finally, to complete the proof we must deal with the general case where
the hyperplane N° # {xeR™*": x, = 0}. To do this observe that since N° is
transverse to M at x°, there is an orthogonal basis in R™*" such that, with
respect to the new coordinate system defined by this basis, M has a paramet-
risation of the above form near the point x° and the vector n® has components
(1,0, ..., 0). Thus, in this coordinate system the hyperplane N° has the form
considered above and so the general result follows from the result in the special
case above. This completes the proof of the lemma.

From now on we will use the notation B(q) = B(g; ¥(q])). Suppose that
e and B are as in Lemma 4.1. Then, for all sufficiently large linearly independent
integer vectors p, g€ Csp, it follows from Lemma 4.1 and (3.9) that

(4.14) |B(p) ~ B(g)| < ¥ (Ip) ¥ (lq) 121 0(p, g)~*.
Now let
I; = {ueQ: ueB(q) for infinitely many geCy}.

To prove the theorem it is sufficient to show that |I,] = |Q]. We will use the
estimates (3.10) and (4.14). However, (4.14) requires that the integer vectors be
linearly independent. To ensure that this holds some further definitions are
needed. Let P denote the set of primitive integer vectors in Z™*" (i.e. vectors
whose components have greatest common divisor 1). If p, ge P, and p # +g4,
then p and q are linearly independent ([9], p. 38). Now let P; = P n Cy, and for
r=1,2,...,let Py(r)={qeP; |gl=r}. If p ge Py and f <m, then p# —q
and so distinct vectors in P, are linearly independent. In addition, the
discussion following Theorem 14, Ch. 1 of [9] shows that

(4'15) ﬁ’;n+n—1 <§ |P§(r)l @ ﬁrm+u—1,

for all sufficiently large r (|[P4(r)] denotes the cardinality of the set Py(r)).
By Lemma 5, Ch. 1 of [9] we have, for any positive integer N,

( E Y IB@I)?

(4.16) {5l > lim sup ——="19<Pe0) .

Mre ¥ X X BB

ra=N; pePa(r) qePs(s)
It follows from (3.10), (4.14) and (4.15) that for sufficiently large N,
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N2 N2
(4.17) Y Y IB@I>BIR Y (),
r=Ny gePgl(r) r=Ni

N2

“18) Y Y ¥ IB(pnB)

ris=Ni pePp(r) qePp(s)

<BIA Y YR Y bOvEe ST 0k, 9t

r=N; rs=N; pePgalr) qePp(s)
r<s q#p

We now estimate the quantity

(4.19) 2 97!

qePpls)
q+p

for an arbitrary vector pePy(r), r <s.
' The line spanned by the vector p intersects the hypercube §™*"(s) at the
point p(s) = (s/|p|) p, and it can be seen that for any vector qeSTt"(s),

(4.20) - lg—p@)s™! < 0(p, q) < lg—p(s)s™*
Also, there is at most one integer vector geS7*"(s) with
(4.21) lg—p) < 1/2,

and, for any integer j > 1, the number of integer vectors g € S™*"(s) satisfying
=Yz <|g—p@) <j+1/2

is <j"*""% Thus the contribution of the vectors q€S7*"(s) not satisfying
(4.21) to the sum (4.19) is bounded by

< Z J,m-Hr 2 S < ﬁsm+n l
1<j<ps
To estimate the contribution of the vector g satisfying (4.21) (if it exists) we
note that for any linearly independent vectors p, g€ Z™*",

O(p, q) > Ip™ " Iq|™*

(this follows from the inequality (p-q)* < (|pl,|gl,)*>—1, which comes from
Schwarz’ inequality and the fact that p, q are distinct elements of Z™*"). This
inequality shows that the contribution of the vector g satisfying (4.21) to (4.19)
is bounded by <rs<s% and hence (4.19) is bounded by <fs™*"" !, for
sufficiently large s, since m+n > 4. This estimate together with (4.15) shows
that the second term on the right hand side of (4.18) is bounded by

LF
<prlelI( y rrrT )y

l'=~|
and hence, by (4.16), (4.17) and (4.18)
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N2
I, > limsup |Q/[1+(8 ¥ r*" 1ym)~'],

Na—w r=N;
for sufficiently large N,. Since the series (1.2) is divergent it follows that
[I;| > |2, ie. there exists a constant c¢, > 0 such that
(4.22) Hgl = c4l€2.

This result shows that the set I, has positive measure. To prove the
theorem we must show that |I;| = |Q|. First note that the estimate (4.22) is
uniform in the sense that if £ and B are sufficiently small and if G cQ=Bpeis
an open ball then
(4.23) [T o/ > Ci 19,

where ¢ > 0 is independent of § (this follows from the uniformity of the
estimates in the proof of (4.22)). Now suppose that |I,| < |€2|. Then there exists
a point u,€Q at which the Lebesgue density of the set I, is zero. Therefore,
there exists a sufficiently small open ball Q, = Q surrounding u, such that
I, 2,4 < ¢5|Q,|/2. However, this contradicts (4.23) so we must have |I,| > |£].
Thus since I, = Q we must have |I;| = |Q|, which completes the proof of the
theorem.

5. Proof of Theorem 1.3. For each integer g > 0 let
Clg; ¥) = {we@: gl <¥(9) i=1, ..., m+n}.
By Lemma 8, Ch. 2 of [9],
ICl@ ¥l <v@™™ Y |fe(p-&w)dul

lpl<¥i~* 02
and so by Lemma 3.1 we have for all positive g,

(5.1) IClg; W)l <¥@"*"(1+ > g 'Ipl™)
lplswig !
P#0
<Y@mt"(1+q Y@~ " "*").
Now let y*(0) =y *(1) =1/2, and
Y*() =max{y@), r2- "M, r=213,...,
for some u > 0. Clearly the series

(5.2) Y yremt

r=1

is convergent if and only if the series (1.4) is convergent. In addition,
r—ll‘&#(r)—m—n+l < ru{m+n—l]_’ﬂm+ﬂl,
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for all r > 2, and hence if we choose u < (m+n)~'(m+n—1)"1, then

IC(g; ¥*) < y*(g™*,

for all sufficiently large q. It now follows from the Borel-Cantelli lemma that
the system of inequalities

"qgi("}” < w‘(Q)’ i"_" 1, wy m+n,

has at most finitely many solutions for almost all weQ, which proves
Theorem 1.3,
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Representation of primes by the principal form of
discriminant — D when the classnumber h(—D) is 3

by

KENNETH S. WiILLIAMS* (Ottawa, Ont.) and
RicaarD H. HubpsoN (Columbia, S.C.)

0. Notation and preliminary result. Throughout this paper p denotes
a prime > 3. We shall be concerned with binary quadratic forms ax?+bxy+cy?,
written (a, b, c¢), which are integral (that is, a, b, ¢ are integers), positive-definite
(that is, a > 0, b>—4ac < 0) and primitive (that is, GCD(a, b, ¢c) = 1). The
discriminant of the form (g, b, c) is the negative integer b?—4ac. On the set of
all such forms of fixed discriminant —D (D > 0), we define an equivalence
relation ~ as follows: we write (g, b, ¢) ~ (a, b', ') if there exist integers p, g, r,
s with ps—gr = +1 such that

a(px+qy)* + b(px+ qy) (rx +sy)+ c(rx + sy)* = a'x*+b' xy+c'y*.

It is well known that there are only finitely many such equivalence classes. The
number of classes is called the classnumber of forms of discriminant —D and is
denoted by h(—D). The principal form of discriminant —D is the form
p-p given by '

(1, 0, D/4), if D =0 (mod 4),
0.1) P-p= {(1, 1,(D+1)/4), if D=3 (mod 4).

A positive integer m is said to be represented by the form (a, b, c) if there exist
integers x and y such that m = ax?+ bxy+cy?>. If the prime p (not dividing 2D)
is represented by a form of discriminant —D, it is well known that the

Legendre symbol (_—D) = +1. In this paper we shall be concerned with the
p

representability of a prime p (> 3) by the principal form p_, of discriminant
—D when h(—D) = 3.

Recent deep work of Goldfeld, Gross, Mestre, Oesterlé and Zagier (see [6],
[71, [12], [13], [14], [20]) has led to the complete determination of all the
imaginary quadratic fields with classnumber 3 [12: Théoréme 4], namely,
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