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for all r > 2, and hence if we choose u < (m+n)~'(m+n—1)"1, then

IC(g; ¥*) < y*(g™*,

for all sufficiently large q. It now follows from the Borel-Cantelli lemma that
the system of inequalities

"qgi("}” < w‘(Q)’ i"_" 1, wy m+n,

has at most finitely many solutions for almost all weQ, which proves
Theorem 1.3,
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Representation of primes by the principal form of
discriminant — D when the classnumber h(—D) is 3
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KENNETH S. WiILLIAMS* (Ottawa, Ont.) and
RicaarD H. HubpsoN (Columbia, S.C.)

0. Notation and preliminary result. Throughout this paper p denotes
a prime > 3. We shall be concerned with binary quadratic forms ax?+bxy+cy?,
written (a, b, c¢), which are integral (that is, a, b, ¢ are integers), positive-definite
(that is, a > 0, b>—4ac < 0) and primitive (that is, GCD(a, b, ¢c) = 1). The
discriminant of the form (g, b, c) is the negative integer b?—4ac. On the set of
all such forms of fixed discriminant —D (D > 0), we define an equivalence
relation ~ as follows: we write (g, b, ¢) ~ (a, b', ') if there exist integers p, g, r,
s with ps—gr = +1 such that

a(px+qy)* + b(px+ qy) (rx +sy)+ c(rx + sy)* = a'x*+b' xy+c'y*.

It is well known that there are only finitely many such equivalence classes. The
number of classes is called the classnumber of forms of discriminant —D and is
denoted by h(—D). The principal form of discriminant —D is the form
p-p given by '

(1, 0, D/4), if D =0 (mod 4),
0.1) P-p= {(1, 1,(D+1)/4), if D=3 (mod 4).

A positive integer m is said to be represented by the form (a, b, c) if there exist
integers x and y such that m = ax?+ bxy+cy?>. If the prime p (not dividing 2D)
is represented by a form of discriminant —D, it is well known that the

Legendre symbol (_—D) = +1. In this paper we shall be concerned with the
p

representability of a prime p (> 3) by the principal form p_, of discriminant
—D when h(—D) = 3.

Recent deep work of Goldfeld, Gross, Mestre, Oesterlé and Zagier (see [6],
[71, [12], [13], [14], [20]) has led to the complete determination of all the
imaginary quadratic fields with classnumber 3 [12: Théoréme 4], namely,

* Research supported by Natural Sciences and Engineering Research Council of Canada
Grant A-7233.
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0(/—n): n=123, 31, 59, 83, 107, 139, 211, 283, 307,
331, 379, 499, 547, 643, 883, 907.

The complete list of all the imaginary quadratic fields with classnumber 1 has
been known for over twenty years [15], namely,

0(/—n: n=1,2 3,7, 11, 19, 43, 67, 163.
From these results we can deduce
PROPOSITION. h(—D) =3 if and only if
(0.2) D =23,31,44,59,76, 83,92, 107, 108, 124, 139, 172, 211, 243, 268, 283,
307, 331, 379, 499, 547, 643, 652, 883 or 907.

Proof. Let d be the discriminant of the imaginary quadratic field given
uniquely by

—D = f%d,
where f is a positive integer. Then, by a formula of Gauss, we have

h(—D) = h(f*d) = h(@d)Yu()/u,

where
d\1
vin=s 11(1- (7))
and
3, ifd=-3,
u=+2 ifd= -4,
1, ifd<—4.

d\ .
Note that g runs through the distinct primes dividing f and (E) is the

Kronecker symbol. As y/,(f) is a positive integer and h(—3) = h(—4) = 1, we
see that

h(-=D)=3 < (a) d< —4, h{d)=3, Y,(f)=1 or
(b) d< —4, h(d =1, Y,(f)=3 or
© Y-a(f) =6 or
@ ¥-3()=9.

Now it is easy to check that
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Y (f)=1<f=1o0rf=2 d=1(mod 8);
Wlf)=3 = f=2,d=5(mod §) or
f=3,d=0(mod 3) or
f=6,d=1(mod 8), d =0 (mod 3);
V_4(f)=6  cannot occur;
V-i(f)=9 = f=6o0r f=9.

Thus, appealing to the lists of imaginary quadratic fields with classnumber
1 or 3, we see that:

(a) occurs if and only if D = 23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379,
499, 547, 643, 883, 907, 23-22, 31-2%;

(b) occurs if and only if D = 11:22, 19:22%, 43-22, 67-2%,°163-2%;

(c) cannot occur;

(d) occurs if and only if D = 3-6% 3-9%

This gives the twenty-five values of D listed in (0.2).

1. Introduction. Gauss [5] showed that 2 is congruent to a cube modulo
a prime p =1 (mod 3) if and only if there exist integers x and y such that
p = x2+27y? that is, if and only if p is represented by the principal form of
discriminant — 108. Moreover, when 2 is a cube (mod p), where p = 1 (mod 3),

2 has three distinct cube roots (mod p). If p=2(mod 3) then (—:’08)

= (T) = —1 and p is not represented by any form of discriminant — 108,

and 2 has a unique cube root (mod p). Since every positive-definite, primitive,
integral binary quadratic form of discriminant —108 is equivalent to exactly
one of the three forms (1, 0, 27), (4, —2, 7), (4, 2, 7), Gauss’ theorem can be
expressed as follows: -

TueoreM (Gauss). The polynomial x>—2 is
(i) the product of three distinct linear polynomials (mod p) if (_—3) =+1
p

and p is represented by (1,0, 27);
(ii) the product of a linear polynomial and an irreducible quadratic

polynomial (mod p) if (%3) = —1;
(iil) irreducible (mod p) if (%3) = +1 and p is represented by (4, 12, 7).

Clearly Gauss’ theorem can be reformulated as a criterion for p to be
represented by the principal form of discriminant — 108, namely,
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THEOREM (Gauss). The prime p is represented by (1, 0, 27) if and only if
(-_—3 = +1 and x*—2 is congruent to the product of three distinct linear
p
polynomials (mod p).

Jacobi [10] showed that 3 is congruent to a cube modulo a prime
p=1(mod 3) if and only if p can be written in the form 4p = A*+243B%,
where A and B are integers. If 4p = A%+ 243B? then we have 4 = B (mod 2) and
p = x2+xy+61y* with x = $(4—B), y = B. Conversely, if p = x24xy +‘6_ly2
then we have 4p = A2+ 243B* with A = 2x+y, B =y. Since every positive-
definite, primitive, integral binary quadratic form of discriminant —243 is
equivalent to exactly one of the three forms (1, 1, 61), (7, —=3,9), (7,3, 9),
Jacobi’s theorem can be restated as follows:

THEOREM (Jacobi). The prime p is represented by (1, 1, 61) if and only if
(:3 — +1 and x3—3 is congruent to the product of three distinct linear

polynomials (mod p). .
In this paper we generalize the results of Gauss and Jacobi to all D (> 0)
for which h(—D) = 3. These values of D are listed in (0.2). We prove
THEOREM 1. Let D be a positive integer such that h(—D) = 3. T}.ten the
prime p (p > 3, p ¥ D) is represented by the principal form p_p of discriminant

—D if and only if (:E) — +1 and f_p(x) is congruent to the product of three
p

distinct linear polynomials (mod p), where f-p(x) is the monic cubic polynomial
with integral coefficients listed in Table 1. Further we have

-D, if D=3 (mod 4) or D =12 (mod 32),

discriminant(f-p(x)) = {_ D/4, if D =28 (mod 32).

Table 1
D f-p(x) D f-p(x)
23 x3—x+1 243 x3-3
31 x*4+x+1 268 X 42x2—2x+2
44 X34+ x2—x+1 283 x> 4+4x+1
59 x> 42x+1 307 x3—x?4+3x42
76 x3—2x+2 331 x}—2x*+4x+1
83 X4 xi4x+2 379 x*4+x2+x+4
92 x*—x+1 499 x*+4x+3
107 X34 x243x+2 547 x34+x2—3x+4
108 x3=2 643 x3-2x+5
124 x4 x+1 652  x*43x*-5x+3
139 x3—x24+x+2 883 x3+5x2—5x+2
172 xX—x*—x+3 907 X3 4+5x24+x+2
211 . x3—2x+3
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The cases D = 108 and D = 243 of the theorem are the aforementioned
results of Gauss and Jacobi respectively, so these two values of D will be
excluded from further consideration. Furthermore, when D = 92 and D = 124,
it is easy to check that p is represented by p_j if and only if it is represented by
P-pss, a8 D/4 =7 (mod 8). Thus we can also exclude these two values of
D from further consideration. We divide the remaining 21 values of D into two
lists according as D = 3 (mod 4) or D = 0 (mod 4), namely,

(A) D = 23,31, 59,83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883,
907,

(B) D =44, 76, 172, 268, 652.

The proof of Theorem 1 for the 16 values of D listed in (A) is based on
a theorem of Weinberger [18] and is given in Section 2. For the 5 values of
D listed in (B), Weinberger’s theorem does not apply and we give a proof (in § 3)
using Artin’s reciprocity law instead. We remark that the existence of such
a polynomial f_p(x) is known by class field theory (see [3: Theorem 9.2 and
Ex. 9.3]). Our Theorem 1 gives such a polynomial f_p(x) explicitly for all
D with h(—D) = 3, and furthermore shows that f_,(x) may be chosen with
discriminant —D/4 or —D according as D = 28 (mod 32) or not. In future
work it is planned to determine f_,(x) explicitly when h(—D) =4, 5, 6, 7 and
8, assuming that the known lists of such D are complete. For general D not
much is known about f_p(x) or its discriminant,

The case D = 124 of Theorem 1 was treated by Kronecker [11], who
showed that p is represented by (1, 0, 31) if and only if the congruence

(x3—10x)2+31(x>*—1)®> = 0 (mod p)
is solvable. It is easy to check that this is equivalent to our result, namely,

p (¥2-3-31) is represented by (1, 0, 31) if and only if (_TM) = +1 and the

congruence x*+x+1 =0 (mod p) is solvable. Appealing to Theorem 1,
a sextic polynomial analogous to that of Kronecker for D = 124 can be found
for each D in (0.2).

In Section 4, we use Theorem 1 to construct explicitly some class fields.
We prove

THEOREM 2. (i) For those D in (A), the Hilbert class field over Q(./ —D) is

Q(/=D, ¥xp+ %),

where xp, is given as follows:

D ) Xp D ®p h #p

23 (=27+3/69)2 139 (=61+3/a17)2 379 (—101+3./1137)2
31 (—27+3/93)2 211 (—81+3./633)2 499 (—81+3./1497)2
59 (2143172 283 (-27+3/849)2 54T (—137+3./1641)2
83 (—47+3./249)2 307 (=719+3./921)2 643 (—135+3./1929)/2
107 (=29+3 /3202 331 (—83+43./993)2 883 (—529+3,/2649)2
907  (—259+3./2721)2
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(ii) For those D in (B), the ring class field of the order Z[./—D/4] in

Z[(—1+/—D/4)/2] is

Q(/—D/4, I/xp+3 %),
where
s = —19+3./33,
%76 = —27+3./57,

I

Hy72 —35+31/ 129,
Hagg = —53+3\/201,
—135+3./489.

We remark that Hasse [9] has shown that the Hilbert class field over

0(/=23) is

X652

0(/=23, Y25+ 3./69)2+/(25-3./69))2)

and the Hilbert class field over Q(,/—31) is

0(/=31, J(29+3./93)2+Y/(29-3./93)2).

Our results for D = 23 and D = 31 agree with those of Hasse since f§ = (@ —9)/a
for

{a = J(=27+3/69)2+ Y (—271-3./69)2 = —3.9741...,
B =/(25+3./69)2+Y(25—3./69)2 = 3.2646...;
and 6 = (—y—9)/y for

{? = J(=2743./93)2+/(—27-3./93)/2 = —2.0469...,
8 = v(29+3./93)2+/(29-3./93)/2 = 3.3967...

In Section 5, we use Theorem 1 and a theorem of Cauchy [2] to give
a necessary and sufficient condition for the prime p to be represented by p_, (D
in list (A) or list (B)) in terms of integer sequences defined by a second order
linear recurrence relation which need only be considered modulo p. When
D = 23 our result agrees with that of Gurak [8]. We prove

THEOREM 3. Let D denote one of the integers in list (A) or list (B). Let p be
—D
a prime (> 3) such that (—) = +1. Then
p

x2+§y2, if D=0 (mod 4),
p=

x2+xy+(#)y2, if D=3 (mod 4),
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is solvable in integers x and y if and only if

{"(p—ms =2 (mod p), if p=1(mod 3),
Ups1ys = —2k (mod p), if p=2(mod 3),

where the sequence of integers {u,},=0.1.2... iS given by

“0=2¢ 1‘1:'{;
Upyz =lpiy+Ku, . n=0,1,2,...,

and the integers k, | are given in Table 2:

Table 2
D k l D k I
23 -1 +25 283 +12 +27
31 —1 +29 307 +8 —-79
44 -4 —38 331 +38 +83
59 -4 —43 379 +2 +101
76 +8 -2 499 +12 +81
83 +2 —47 547 —10 +137
107 +8 +29 643 —6 +135
139 +2 —61 652 +20 +196
172 -4 +70 883 —40 +529
211 -6 —81 907 =22 ¢ #2599
268 -10 +106

The identities
Upm = Up—2(—1)"K>™, Uz = up—3(—1)"K*"u,,

are often useful in computing u,+ )5 (mod p). We illustrate Theorem 3 with
a simple example.

ExAMPLE. Is the prime 1297 represented by the form (1, 0, 19)? Here we
have p = 1297, (p—1)/3 = 432, D = 76, k = 8, | = —2. Making use of the above
identities, we obtain successively modulo 1297

Uo=2 uy=—2, u,=1028, u,=726 us=889,
U1 =904, ue =544, upaa=1296, uus, =2,
so that, by Theorem 3, 1297 is represented by (1, 0, 19). Indeed we have
1297 =1-92419-82

2. Proof of Theorem 1 for those D listed in (A). Throughout this section,
D denotes one of the integers listed in (A). Note that D is a prime = 3 (mod 4).
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. . -D :
Let p be a prime > 3 with p¥D. If (T) = —1 then p is not represented

by p-p=1(1,1,3D+1)) and, as discrim(f-p(x))= —D, by a theorem of
Stickelberger [16], f_p(x) is the product of a linear polynomial and an

irreducible quadratic polynomial modulo p. Now suppose (_TD) = +1. We

must show that p is represented by p_p, = (1, 1, (D +1)) if and only if f_p(x) is
congruent to the product of three distinct linear polynomials (mod p).
We set

1) K, =0(/3D), Kj$=0(/3D\{0}.
Lgt G, be the group defined by
(22) Gp = {xeK}: (2) = A* for some ideal A of K}

and let Hj, be the subgroup of G, given by
(23) Hp = {eeK}: a =p? for some BeK}}.

Then Gp/H) is a group isomorphic with the direct sum of r,+1 groups of
order 3, where rp, is the rank of the 3-Sylow subgroup of the classgroup H(K )
of K. Now

Z,, for D= 107,331, 643,
2.4) HKp) ~< Z,, for D=547,
Z,, otherwise,

SO

1 for D =107, 331, 643
2.5 = k] » E] £
23) "> {0, otherwise,
and thus

Z.xZ if D =107, 331, 643
2.6 ~{T3TT® ’ ’ ’
(26) Go/Hp {23, otherwise.

Let &35 denote the fundamental unit (> 1) of K,. When D # 107, 331, 643
a basis for the group G,/H is {e;pHp}. When D = 107, 331 or 643, H(K)) is

generated by the class containing the ideal 4, = (2, i(l+\/35)). Since
(3a7+,/321)), it D =107,
y ) (331—/993)), if D =331,
7] (44963 — 113,/1929)) = (3(1258562169097 — 28655537523, /1929)),
if D=643.
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a basis for Gp/H), is given by {espH), uspHp), where

(3(17+./321)), if D =107,
pap = < ($(31—./993)), if D =331,

(4(1258562169097 — 28655537523,/1929)), if D = 643.

Hence, for every nonzero integer o of K, there is a unique integer y;p of Kp,
a unique integer r (=0, 1, 2), and, if D = 107, 331 or 643, a unique integér
s (=0, 1, 2), such that

@7 a£sp = ¥3p, if D # 107, 331, 643,

' aipiip = ¥3p, if D =107, 331, 643.

The choice of generator u,p of A3 with large coefficients in the case D = 643 is
so that when « is taken to be a;, (see (2.12)) we have r = 0 and s = 1 (see Table 6
and-(2.13)). The values of e,p for those D under consideration are taken from
the table of Wada [17] and are listed in Table 3.

Table 3

D Eap

23 (25+3./69)2
31 (29+43./93)2
59 62423 +4692,/177
83 8553815 +542076.,/249
107 215+ 12,/321
139 85322647 +4178268,/417
211 440772247 4 17519124,/633
283 1501654712948695 + 51536656330476., /849
307 2522057712835735+83104627139412, /921
331 2647+84,/993
379 650468934487 419290626292, /1137
499 2251671875127+ 581961430932, /1497
547 4375+ 108./1641
643 126794455+ 2886916, /1929 .
883 99736649218553790682248535 + 193782160%1 15448210697276. /2649
907 5231287949706796270736288215 + 100286934195999623391686388 5 /2721

Next we define g_p(x) to be the menic cubic polynomial
by

w5800 O
(2.8) g-p(x)=x +3x+2?,

where the integers a, and b, are listed in Table 4.
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Table 4

D ap by D ap bp
23 -1 —-25 307 +8 +79
31 -1 —-29 331 +8 —83
59 —4 +43 379 +2 —101
83 | +2 +47 499 +12 —81
107 +8 -29 547 —-10 —137
139 +2 +61 643 -6 —135
211 —6 + 81 883 —40 —529
283 +12 -27 907 -22 —259

The integers a,, and b,, were chosen so that the polynomials f_p(x) and g - p(x)
have the same discriminant as well as the same number of roots (mod p). It is
clear that

discrim(f _ p(x)) = discrim(g - p(x))

as

discrim(f_p(x)) = —D, discrim(g-p(x)) = (—4a3—b3)/27,
and '
29) 4a}+ b} = 27D.

It is also clear that f_p(x) and g_p(x) have the same number of roots (mod p)
as

i tx+u
(2.10) S-p(x) =(—1)'x g—p(varw),
where the integers d (=0, 1), e (=0, 3), t, u, v, w are given in Table 5.
Table 5
D d e t u v oW D d e t u v w
23 1 3 1 -3 3 0 307 0 0 3 -1 0 3
3 1 3 -1 =3 3 0 331 1 0 =3 2 0 3
59 0 3 2 3 3 0 39 1 0 -3 -1 O 3
83 0 0 3 1 0 3 499 1 0 -1 0 0 1
107 1 0 -3 -1 0 3 54 1 0 -3 -1 0 3
139 0 0 3 -1 0 3 643 1 0 -1 0 0 1
211 0 0 1+ 0 0 1 883 1 0 -3 =5 0 3
283 1 0 -1 0 0 1 907 1 0 -3 -5 0 3

We can also see that discrim(f-p(x)) = discrim(g_p(x)) from (2.10) and
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Table 5, as in each case we have

3,9%._ 2 bp 4 2__ S |
(2.11) (t + 3 tv +2,?v) = +(tw—uv)’.
Set
(2.12) ap = 3(bp+3./3D),

so that by (2.9) a, is of norm (—ay)®. For each D, we determine the values of r,
s and y3p = 3(up+vp+/3D) in (2.7) when « = ap,. These are listed in Table 6.

Table 6

D r s up vp

23 1 -2 0

31 1 -2 0

59 1 +173 +13

83 1 +931 +359
1007 1 0 +17 +1
139 1 +2185 +107
211 1 +4101 +163
283 1 +449331 +15421
307 1 +754117 +24849
331 1 0 +31 +1
79 1 +4687 +139
499 1 +92433 +2389
547 1 —41 -1
643 0 1 —55164 +1256
883 1 —3343018627  —64952791
907 1 —8124416167 —155749941

It is no coincidence that r = 1 for D # 643, this is a consequence of the choice
of sign of by.
Summarizing we have
Opesp = Y3p, for D # 643,

(2.13) pE3D ?:;n #

dpptap = y3p, for D = 643.
In view of (2.10), f-p(x) is the product of three distinct linear polynomials
(mod p) if and only if g_p(x) is the product of three distinct linear polynomials
(mod p). By a theorem of Dickson [4], as discrim(g-p(x))= —D and
(_TD) = +1, the polynomial g_p(x) is the product of three distinct linear
polynomials (mod p) if and only if a;, is congruent to a cube (mod p), where p
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is a prime ideal of the ring of integers of K,; which divides p. We note that
o, # 0 (mod p), otherwise p|a,, which is seen to be impossible from Table

-D
4 remembering that p > 3 and (—p—) = +1. In view of (2.13), a, is a cube

(mod p) if and only if e3p (if D # 643), uap (if D = 643) is a cube (mod p).

Let H(—9D) denote the group of classes of primitive, positive-definite,
binary quadratic forms of discriminant —9D, so that, for those D under
consideration, H(—9D) is cyclic -of order 12 (resp. 6) if D = 1 (mod 3) (resp.
D =2 (mod 3)). As the 3-Sylow subgroup of H(—9D) is of order 3, by
a theorem of Weinberger [18], &3p (if D # 643), pip (if D = 643) is a cube
(mod p) if and only if N(p) is represented by one of the forms in the subgroup
of sixth powers in H(—9D), that is, by

214) {(1, 1, 40D +1)) or (9,9, 4(D+9), if D=1 (mod 3),
) (1, 1, 39D +1)), if D=2 (mod 3).
In view of the identities
x’+xy+wy’E(x—y)2+(x—y)(3y)+( i )(3y)2
9x? +9xy+{ : 9) Yy =0CBx+y)P*+ (3x+y)y+~!—4il)y R

it is clear that if N(p) is represented by (1, 1, 40D +1)) or (9, 9, 4(D+9)) it is
represented by p_p = (1, 1, 3(D+1)). In order to treat the converse, we first
show that N(p) =1 (mod 3). We have

N(p) =

—-D 3D
Recalling that (T) = 1, the condition (?) =1 (resp. —1) is equivalent to

p=1 (resp. 2) (mod 3). Hence we have N(p) =1 (mod 3). Thus, if N(p) is
represented by p_p = (1, 1, 2(D+1)), then
N(p) = x*+xy+3(D+1)y?,

with either (i) y =0 (mod 3), or (i) x = y # 0 (mod 3), D = 1 (mod 3). If (i)
holds then N(p) is represented by (1, 1, (9D +1)) as

N{p)=(x+§)2+(x+ )( )+Q‘T—l-)(3) ;

If (i) holds then N(p) is represented by (9, 9, (D +9)) as

—y\? = D+9
NGp) =9 ("3”) +9( ; )y+( ; D+3)
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This completes the proof when p = 1 (mod 3) as in this case N(p) = p. When
p=2(mod 3), we have N(p)=p? and since there are exactly three in-
equivalent forms of discriminant — D, p? is represented by p_p if and only if p is
represented by p_p.

This completes the proof of Theorem 1 for those D listed in (A).

We conclude this section by noting that when D = 44, and p is a prime

= 1 (mod 3) with (:F;ﬁ) = 1, Weinberger’s theorem [18] gives a necessary

-and sufficient condition for p to be represented by the form (1, 1, 223), namely

p is represented by (1, 1, 223) if and only if 33 = 23+4./33 is a cube
(mod p), where p is a prime ideal of Q(,/33) with N(p) =

This result is not relevant to Theorem 1. Similar remarks apply to the
other values of D in (B). Thus a different approach is needed to prove
Theorem 1 for those D in (B), and this is done in the next section.

3. Proof of Theorem 1 for those D listed in (B). Throughout this section,
D is one of the five integers listed in (B). Note that D = 4D* where
D* is a prime = 3 (mod 8). Let L, denote the bicyclic biquadratic field

0/ —3,/—D*). If feL, the conjugates of @ are 6, &, &, &, where
0 =a+b/—-3+c/—D*+d./3D*,
¢ =a-b./—-34+c./—D*-d./3D*,
d=a-b./—3—c./—D*+d./3D*,
#=a+b,/—3—c./—D*—d./3D*,

where a, b, ¢, de Q. The ring of integers of Ly, is denoted by Rj,. It is known that
R, is a unique factorization domain [1].

(3.0

-D
Let p be a prime > 3 not dividing D. 1If (T) = —1, p is not represented

by p-p = (1, 0, D/4), and, as discrim (f-p(x)) = —D, by a theorem of Stickel-
berger [16], f-p(x) is the product of a linear polynomial and an irreducible
quadratic (mod p).

Suppose now that (_TD) = + 1. We must show that p is represented by
p-p=(1,0, D/4) if and only if f_p(x) is congruent to the product of three
distinct linear polynomials (mod p). Define

b,
(3:2) g-o(x) =x3 +?x+ﬁ

where the integers a, and bj are given in Table 7.
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Table 7
D a, by,
44 —4 +38
76 +8 +2
172 —4 —-70
268 —-10 —106
652 +20 —196

We note that

—D, if D # 652,

(33)  discrim(g-p(x)) = (—4ap—b3)/27 = {_ ey

and that
1 tx+u

34 2 =—(vx+w)’g_ ’

(3.4) f-p(x) = 5(ox+w)g n(vx +w)

where the integers d, e (=0, 3), ¢, «, v, w are given in Table 8.

Table 8

D d e t u v w
44 +1 0 +3 +1 0 +3
76 +27 +3 +1 +2 +3 -3
172 -1 0 -3 +1 0 43
268 -1 0o -3 =2 0 +3
652 —108 +3 -4 -2 =3 43

From (3.4) we see that f_p(x) is congruent to the product of three distinct
linear polynomials (mod p) if and only if g_ 5(x) is the product of three distinct
linear polynomials (mod p). By (3.3) we have

() (2)-
p P ?

so that by a theorem of Dickson [4], g_p(x) is the product of three distinct
linear polynomials (mod p) if and only if

35 @] -1,
(3.5) [An A

where
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19+3./33, if D =44,

149,57, if D =76,
(3.6) pp =< —35+3./129, if D=172,

—53+3,/201, if D =268,
—98+6./489, if D =652,

and A, is a prime divisor of p in Rp. (The symbol ]:g] in (3.5) is the cubic
3

Legendre symbol.) The prime factorization of the prime 3 in R, is given as
follows:

—njng, if D=44,

(3.7) = {—uﬁ, if D =76, 172, 268, 652,

where

(38 = ={%(1+2\;—3+\/_11), if D =44,

/3, if D =76, 172, 268, 652.

By Artin’s reciprocity law, we have
(#Da AD) (PD:}"D) [2'_1)] , .“‘ D= 44,
(39) [,u_n] _ Tp /a\ 7o /JalHpls
‘i'D 3

(M’) [112] if D44,
Tp /3l lpla

where (?’?ﬁ) is the cubic Hilbert symbol. From (3.6) we see that
3

(3.10) pp =1 (mod (/—3)%),

so that

(3.11) (M) =(‘""—'1”) - i
Ty /a Tp /3

Thus (3.9) reduces to

(4]

Next we observe that
(3.13) pp = 0p0p 05 v,

where y,€R,p, wp is a unit of Ry, and 6, is the prime divisor of 2 in R,
given by :
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(3(/-3+/—11), if D =44,
13/-3+./—19), if D =76,

(3.14) 0, =< 3(19\/—3+5./—43), if D=172,

We note that

(2 D=4,
(3.13) By = {_2, if D 44,

7]
O )5

Appealing to (3.13) we see that

][4
.16 l:#p 3 0p 13

Thus we have shown:

35/ =3+/-67), if D =268,
(3(715/—3+97./—163), if D = 652.

A
(3.17) p is represented by p_p <> [A—D] = [—”] :
9.0 3 QD 3
From (3.14) and (3.15) we obtain
(—7-/33, if D =44,
—-23-3./57, if D=76,
+03F, =203 = < —1579—-95./129, if D=172,
-711-5./201, if D=268,
—1533671—69355./489, if D =652,
from which we see that
(3.18) {,,’3D‘ = r, (mod 63),
) J/3D* = —rp (mod 73),
where
1, if D=44,
(3.19) rp=<3, if D=76,172, 652,
5, if D=268.
Multiplying (3.18) by ./ —3, we obtain
< =D* =3ry./—3 (mod 63),
(3.20)
/ —D* = —3rp,/—3 (mod 83).
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Next, as 4, is a prime divisor of p in R,, we have
ApdpipAp, if p=1(mod 3),
ApAp, if p=2(mod 3).

As 1, is an integer of Q(,/—3, ./ —D*),if p=1 (mod 3), and of Q(,/ —D¥), if
p = 2 (mod 3), there are integers x,, X;, X,, X3, if p =1 (mod 3), and integers
Xgs X, if p=2 (mod 3), such that

(322) Ip= {*("0‘”‘1«/ —3+x,/=D*+x;,/3D%), if p=1 (mod 3),

(3.21) p={

3(xo+xy4/—D*%), if p=2 (mod 3),
with
Xo = X; = X, = X, (mod 2) e
(323] {{xo_x1+x2+x3 =0 {mod 4)}; if P= 1 (mO'd 3);
Xo = X, (mod 2), if p=2 (mod 3),

see [14]. (Note that /m, n, should be replaced by \/m,./n, in Theorem 1 of
[19].) Set

’ - ;_.,1”,11” if p=1 (mod 3),
(3.24) Yu+v,/-D¥ = {1:» if p=2 (mod 3),

so that u and v are integers such that

(3.25) - {("5 +3xf—D*x3—3D*x3)/8, if p=1(mod 3),
- o if p=2 (mod 3),
(3.26) P {("0"2”3"1 x3)/4, if p=1(mod 3),
X1, if p=2(mod 3),
and
(32 4p = u?+D*v?, wu=v(mod2).

Clearly p is represented by p_, if and only if u = v = 0 (mod 2). Thus, in view
of (3.17), we must show that

3 2-8] I:)._l,] " [&] - XoX;—3x,x; =0 (mod 8), if p=1 (mod 3),
) 051 LObls x, =0 (mod 2), if p=2 (mod 3).

Next, as ), is a prime divisor of 2 and A, is a prime divisor of the odd
prime p, we have i, + 6, and

(3.29) A} = B2t = 1 (mod 6)),
showing that
(3.30) Ap =1, w or w* (mod 6,),

5 — Acta Arithmetica 57.2
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where @ =(—1+./—3)/2. Appealing to (3.18) and (3.20), we obtain for
p=1 (mod 3)
1 (mod 6p), if E=0 (mod 4), F =4 (mod 8),
(3.31) Ap =< o (mod ), if E=2 (mod 4), F =4 (mod 8),
w? (mod 0,), if E=2(mod 4), F=0 (mod 8),
where
(3.32) E = xy+rx;, F=Xxq—x3—3rx;+7rxs;
and for p =2 (mod 3)
1 (mod 6p), if xo=x, =0 (mod 2), xo+rx, =2 (mod 4),
(3.33) i, =< w (mod 8p), if xo=x,=1(mod 2), x,+rx, =2 (mod 4),
w?(mod 0,), if xo=x, =1 (mod 2), xo+rx, =0 (mod 4).
We now treat the two cases p =1 (mod 3) and p = 2 (mod 3) separately.
Case (i) p=1 (mod 3). We have by (3.31)

;"D _ ;'D
-2,
2= 1 (mod on)} N {A,, = o (mod e,,)} . {AD = w? (mod 9,,}}
Ap =1 (mod p) Ap = o (mod b)) Ap = w?* (mod Bp)

( Xo = —TX; (mod 4)

Xo—X,—3rx,+rx; =4 (mod 8)
< ﬁ or
X = Ixy (mod 4)

 Xo+X; —3rx,—rx; = 4 (mod 8)

( Xg+2 = —rx; (mod 4)
Xg—Xy—3rx,+rx; =4 (mod 8)

Xo+2 =rx; (mod 4)
Xo+X; —3rx,—rx3 =0 (mod 8) |

Xo+2 = —rx, (mod 4)
Xg—X,;—3rx,+rx; = 0 (mod 8)
Xo+2 = rx; (mod 4)

Xo+X; —3rx;—rx; =4 (mod 8) )
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i Xo =X =X, =x; =0(mod 2), say x; =2y, (i=0,1,23) h
and
Yo = y3 (mod 2), yo—y,—3ry,+ry; =2 (mod 4), yo+y,—3ry,—ry; =2 (mod 4)
<« < or >

Yo+1=y;(mod 2), yo—y,—3ry,+ry; =2 (mod 4), yo+y,—3ry,—ry; =0 (mod 4)
or
Yo+1=y; (mod 2), yo—y,—3ry,+ry; =0 (mod 4), yo+y,—3ry;—ry; =2 (mod 4) )

Yo =¥1 =y =y;(mod 2), yo—y;+ry,+ry; =2 (mod 4)
== or

Yo =ys+1(mod 2), yo—y,—3ry,+ry; = yo+y, —3ry,—ry;+2 (mod 4)

Yo=Yy =y =y; (mod 2), yo—y,—y;—y; =2 (mod 4)
- or

Yo=y, =y +1=y;+1 (mod 2)

It should be noted that if x,=Xx, =x, =x; =0 (mod 2), with x; =2y,
(i=0,1,2,3), then by (3.23), we have
(3.34) Yo+yi+y:+y; =0 (mod 2).
In view of (3.28) we must show that the assertion
(3.35) XogX;— 3%, %3 =0 (mod 8)
is equivalent to

x;=2y; (1=0,1, 2, 3) and

(336) < yo=y; =y, =y;(mod 2), yo—y;—y,—Yy3 =2 (mod 4), or
YYo=y, =y,+1=y;+1 (mod 2),

under (3.23). It is clear that (3.36) implies (3.35) as
Xo%y—3%; X3 = 4(yo ¥, —3¥1 ¥3) = 4oy, —3¥e¥,) = 0 (mod 8).

Next we assume that (3.35) holds and begin by showing that the x; are all
even. We suppose that this is not the case, so that by (3.23) the x; are all odd,
say x;=2z;+1 (i=0, 1, 2, 3). Then, from (3.35), we have

(3.37) 2(292y+ 24 23) + (2o + 2, + 25 +23) = 1 (mod 4).

Further,as u=v=0 (mod_2), by (3.27) we see that u+v = 2 (mod 4), and so
by (3.25) and (3.26), we have

(x3+3x3 —D*x2—3D*x3)+2(xyx, — 3%, x5) = 16 (mod 32),
and so (as D* = 3 (mod 8)) we obtain

(3.38) (234323 —322—23)+ 2(z92,+2,23) +2(20— 2, +225) = 7 (mod 8).
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From (3.37) we deduce
(3.39) (2z,+1)zy = 1—2zy—2, —2z,+ 2242, (mod 4).
Multiplying (3.39) by (2z,+1), we obtain

(3.40) zy=1—(z0+2,+2,)+2(2p2, + 2,2, +2,2,) (mod 4),
so that

(341) {Z : i;j: —2 fA(Tzi;)Emod 8),

where '

(3.42) A=z4+z,+2,, B=2zyz,+2z,2,+2,2,.

Using (3.41) in (3.38), we obtain
34+4(zo+2)) (202, + 2,2, +2,20)—2,) = T (mod B),

that is

(2o+2)(202y + 2125+ 2,2p—2;) = 1 (mod 2),
showing that

Zo+z, =202, +2,2,+2,29—2, = 1 (mod 2),
which gives the contradiction

Zo+2z, =245z, = 1 (mod 2).

This completes the proof that (3.35) implies that all the x; are even, say x; = 2y,
(i=0,1, 2, 3). We complete the proof in the case p = 1 (mod 3) by showing
that we must have either
Yo=Yy =yY;=y;(mod2), y,—y,—y,—y;=2(mod4)
or
Yo=Yy, =y,+1=ys+1 (mod 2).

As u=0(mod 2), v=0(mod 2), u+v =2 (mod 4) we have

(343) y3—yi+yi—y} =0 (mod 4),
(3.44) Yo¥2+¥,¥s =0 (mod 2),
(3.45) ¥5+3y1 =3y —y3+2yoy,+2y,y; = 4 (mod 8).

We begin by showing that y, = y,; (mod 2). Suppose not, so that we have
Yo = y;+1 (mod 2). Next (3.34) gives y, = y;+1 (mod 2). Then, from either
(3.43) or (3.44), we deduce that y, = y,+1 (mod 2). Thus we have

(3.46) Yo=Y+l =y;+1 =y, (mod 2).

Representation of primes 151

If y, =0 (mod 2) then (3.45) and (3.46) give
Y6—y3+2yo+2y; = 4 (mod 8),
which gives the contradiction
0= (yo+1)*—(y3—1)* = 4 (mod 8).
If yo =1 (mod 2) then (3.45) and (3.46) give
y3+y3+2y,+2y, =4 (mod 8),
which gives the contradiction
2= (y,+ 12+, +1)* = 6 (mod 8).
Hence we must have .
Yo = y; (mod 2),
and so, by (3.34), we also have
Y2 = y; (mod 2).

If y, = y,+1 (mod 2) we are finished. Otherwise y, = y, (mod 2) and we must
show that y,—y,—y,—»; =2 (mod 4). We have

Yo=Y, =y, =y, (mod 2).
If yo=y,=y,=y;=1(mod 2) then (3.45) gives
Yo¥2+y1¥3 =2 (mod 4),
and thus
Yo=Y1—Y2—V3 = 2Yo— o +y1 +y,+y,) (mod 4)
= 2=t DO+ D=+ DO+ DH+0eya+1Y5)
+2 (mod 4)
=2-0-0+2+2 (mod 4)
= 2 (mod 4),

as required. If y, =y, =y, = y; =0 (mod 2) then (3.45) gives (remembering
that n? = 2n (mod 8) when n is even)

Yo—Vi+V,—y; =2 (mod 4),
and thus
Yo=Y1—Y2=Y3 = (Vo—Y1+¥2—y3)—2y, =2 (mod 4),
as required. This completes the proof when p =1 (mod 3).
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Case (ii): p=2(mod 3). As ip = 4, and 0, = —0p, we have [A—”:l
3

O

A Ap A ; . .
=|=2|,andso |5 | =|-=| holdsif and only if | == | =1, that is, if and
9D 3 D_i3 eD 3 GD 3

only if i, =1 (mod 6,). By (3.33) this condition is equivalent to x, = x,
= 0 (mod 2), x,+rx, = 2 (mod 4), which by (3.25), (3.26) and (3.27) is equiv-
alent to u = v =0 (mod 2) as required.

The proof of Theorem 1 is now complete.

4. Proof of Theorem 2. Since 3/ x,+.3/ %), is the real root of 27f_ p((x —r)/3),
where r is the coefficient of x? in f_p(x), Theorem 2 follows immediately from
Theorem 1 and [3: Theorem 9.2, Exercise 9.3].

5. Proof of Theorem 3. Theorem 3 follows from Theorem 1 and the
following theorem (which is essentially due to Cauchy [2]) with k = 4, = a),
I= —B = —b, (see (2.8) and (3.2)).

THEOREM (Cauchy). Let A and B be integers and let p be a prime such that
—443-27B?

Define an integer A, by A = 3A, (mod p). Let {u,},=o0,1,2,... be the sequence of
integers defined by

uﬂ+2+Bu|l+l_A‘;lun=0a
ug=2, u,=-B.

Then x>+ Ax + B is congruent to the product of three distinct linear polynomials
(mod p) if
{“tp—ma = 2 (mod p), p=1(mod 3),
Upiiys = —24, (mod p), p=2(mod 3),
and x>+ Ax+ B is irreducible (mod p) if

{u{p_”ﬁ -1 (mod p), P= 1 (mod 3),
Upiiys = A; (mod p),  p =2 (mod 3).
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