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1. Introduction. The equation
xyz=x+y+z=1

has been studied and shown to have no solution in the rational number field
Q ([2], [4], [5])- This leads to the study of the equation

(1.1) UglaUy = Uy Uyt U,
where u;, i = 1, 2, 3, is a unit in the ring of integers of an algebraic number field

K. When K is a quadratic extension of Q the problem has been completely

solved [3]. Mollin et al. proved that if K = Q(\/E). where d is a squarefree
rational integer, then there exist solutions to (1.1) if and only ifd = —1, 2 or 5.
In this paper we will show, for a real number field K with unit group U, having
rank 1 and containing a fundamental unit # > 3, (1.1) has no solution.
Consequently, we shall prove that (1.1) has no solution in any pure cubic field

Q({‘/r_n) and we shall also give an alternative proof of the theorem of Mollin et
al. in [3]. :
2. Results

THEOREM. Let K be a real number field such that the group of units Uy of

the ring of integers of K has rank 1. Let n be the fundamental unit which is
greater than 1. If n > 3 then there exist no solutions to the equation (1.1).

Proof. We assume # > 3. Let u; = +n", ;€ Z, i = 1, 2, 3, be a solution of
(1.1) and

u= ulu2u3 - H1+u2+u3.

We may assume u > 0, if not look at

—u = (—u)(—uy)(—u3) = (—u)) +(—u)+(—u;).
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So at least one u, > 0. We may assume u, > 0. Then, without loss of generality,
we may assume that I, > [, > I,, and consequently n"* = 2 > n'>. There are
only two possibilities, that is, the case

@1 phthths = gl
or the case
2.2) ?fh thatls P’,lh —ﬂh—ﬂu-

We first consider the case (2.1). If [,+1, > 1, then
ghitiath = ghglath > gy > 3ph > gt +12 4B,
If I,+1; <0, then
pltiatls = pligltls < pht < 424

So (2.1) is impossible.
Now consider the case (2.2). If I,+1; =0, then

nh'”z"'f! - qhqlz‘”s > ﬂh - ql'—’ih—ﬂh-
If I,+1; <0, then

qh"'l;“'h _ ”.‘h "114—!3 < %nh < %n{l_

Here we note that I, > I,, otherwise if I, <[, then
qh_nlz_nb < _qh <0

which is impossible. Therefore I; <1I, <I,—1 and

23) W< = g < gy = o € %r:“-

n

Thus
nr+n <3p"  and  dnt <y—n-n.
Therefore, (2.2) is impossible. This completes the proof.

Remarks. 1. Let K = Q(\:‘/;z} be a pure cubic field, where m = ab?,

a, b are positive squarefree integers with (a, b) = 1. Since Q({/ab*) = Q(/a*b),
we may assume that a > b without loss of generality. It is not hard to see that if
the fundamental unit 5 > 1 of K, then n > 3. To see this we use Artin’s lower

bound ([1], [6])
43 +24 > d,
where d, is the discriminant of K, and

L _[pent i ab’ # 11 (mod 9),
k= 13a2b>  if ab®> = +1 (mod 9).
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Therefore if d, > 132, then > 3. For ab® # +1 (mod 9), d, = 27a*b* > 132
provided ab > 3. The only exceptional case occurs when m =2 when
n=1+3/2+3/4 > 3 is the fundamental unit. For ab? = 1 (mod 9), d, = 3a*b?
> 132 provided ab > 7 which always holds. )
2. Let K = Q(\/c_I) where d > 1 is a squarefree integer and d # 2, 5. If
# > 1 is the fundamental unit of K, then # > 3. This can be seen as follows.
Let n=a+b\/;j>1 and n’=a—bﬁ. Then -

m'=N@m=+1 and [f|=1n<l1.
Consequently '
1
——(m—n)>0.
z\/Em )

Ford# 1 (mod 4), n = a+b\/¢_i> l+\/3 > 3 provided d = 6. The only
exception then occurs in case d = 3, when n = 2+\/§ = 3 is the fundamental
unit.

If d=1 (mod 4), then d > 13 and a, b = 1/2. Since

n—n' =2b/d>./d and r}+%? n—n'>./d,

we have nz—ﬁn+l = 0. Thus

; ?\/E+2Jd—42\/ﬁz+\/§> .

An immediate consequence of the theorem and the first remark is the
following corollary.

COROLLARY 1. Let K = Q(\’/r;) be a pure cubic field and Uy be the group
of units of the ring of integers of K. Then the equation (1.1) has no solutions.

Making use of the theorem and the second remark, we shall prove the
Theorem of Mollin et al. in [3].

CorOLLARY 2 (Theorem of Mollin et al). Let K = Q{\/c_i), where d is
a squarefree integer. Let Uy denote the group of units in the ring of integers of K.
There exist solutions to the equation (1.1) if and only if d= ~1, 2 or 3.

Proof For d > 1 and d # 2, 5 there exists no solution to (1.1) by the
second remark and the theorem. For d =2, u; = l+\/§, u, = 1—\/5,
uy = —1 is a solution. For d =35, uy =2+./5, “2=(1+\ﬁ}f2s u;=11s
a solution.

Ford <0,d # —1, =3, U, = {4+ 1} and the equation (1.1) is not solvable.

Ford= -1, Uy = {+1, +i}. It is easy to see that a solution exists: u, =1,
u, =iand uy = —i. Ford = —3, Ug = {1, {, £, {3, (%, {*}, where { is a primi-

1
a =5(rf+n’) >0, b=
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tive 6th root of unity. We use the simple fact that if |a, +a,+a;s| =1, |g,| = 1,
k =1, 2, 3 then there exist 1 <i < j < 3 such that g;+a; = 0. This can be seen
by viewing a parallelogram as four vectors with clockwise orientation in which
case opposite vectors are additive inverses or in the degenerate case adjacent
vectors are additive inverses. We have 1 = |th{2¢b| ="+ +P and
M =1, i=1,2, 3 So we may assume (* = —{", then

‘:h — Ch +cl;+cl3 s cl. c:;gl; = __‘:21,?;'
Consequently, ({")*> = —1. Thus {"* = +i, which is impossible.
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Note on a decomposition of integer vectors, II
by

S. CHaLaDUS (Czgstochowa) and Yu. TETERIN (Leningrad)

The notation of this paper is that of [6]. For m linearly independent
vectors n,, ..., n,eZ*, H(n,, ..., n,) denotes the maximum of the absolute

",
values of all minors of order m of the matrix [ : ] and D(m,, ..., n,) the

nm
greatest common divisor of these minors. Furthermore

h(n)=H(m) for m#0, h(0)=0
and for k=1l=2m, k>m.

) D caiiil (k=Ditk—m) 1
colk, I, m) = supnM(H) 11 ),

where the supremum is taken over all sets of linearly independent. vectors
n,, ..., n,eZ* and the infimum is taken over all sets of linearly independent
vectors p,, ..., p;€Z* such that for all i<m

i
(1) no=3 u;p, Uu;€Q;
J=

[ || denotes the usual Euclidean norm.
The aim of the paper is to prove the following two theorems.

THEOREM 1. For all integers k, I, m satisfying k 21> m, k > m we have

'k (k= Dj(2(k —m))
colk, I, m) < ?’I{Lzm.ﬁ—l(m)

where Yy -mx—1 is the Rankin constant (see [4]).

THEOREM 2. For all integers k, I, m satisfying k > 1 > m, k > m and for every
H there exist linearly independent vectors n, ..., n, € Z* such that

Hn,,..., n,,,)}H

i D(ny, .o )
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